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Abstract: We study the response of space-division multiplexed fiber links
to an excitation by a short impulse of the optical intensity. We show that,
in the presence of full mixing, the intensity impulse response is Gaussian,
confirming recently reported experimental observations, and relate its
variance to the mean square of the mode dispersion vector of the link~τ.
The good agreement between our theory and the previously published
experiments provides solid foundations to the random coupling model of
SDM fiber links, and provides a tool for efficient design of MIMO-DSP
receivers.
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1. Introduction

Space-division multiplexing (SDM) in fiber optic communications relies on the use of multiple-
input multiple-output (MIMO) techniques implemented by means of electronic digital signal
processing (DSP). Efficient design of the MIMO DSP algorithms requires knowledge on the
statistics of the temporal spreading of the transmitted waveforms, which is determined by the
modal dispersion (MD) of the SDM fiber. A convenient and frequently used method for charac-
terizing MD consists of separately exciting each of the spatial channels by a short optical pulse
and observing the received intensities in each of the SDM channels [1–4]. In a link operating
over a fiber withN spatial modes (2N modes including polarization), this yields 2N ×2N in-
tensity waveforms, whose sumI(t) was used in [2] for assessing the signal delay-spread caused
by MD. In this work we show that in the regime of strong mode-coupling and with typical MD
values,I(t) = r(t)⊗ I0(t), where⊗ represents convolution,I0(t) is the intensity waveform of
the pulse that excites the individual SDM channels at the input, andr(t) is what we refer to as
theintensity impulse response (IIR). We also show thatr(t) is a Gaussian function whose mean-
square width is given by〈|~τ |2〉/(2N)2, where the angled brackets represent ensemble averaging
and where~τ is the MD vector which was introduced in [5] as a generalization of the famous
polarization mode dispersion (PMD) vector, known in the context of single-mode fibers [6]. As
in the case of single mode fibers, the mean square MD value is proportional to the fiber length
〈|~τ |2〉 = (2N)2κ2L [7], where the proportionality coefficientκ2 is the only relevant parameter
for characterizing the delay spread statistics in strongly coupled SDM transmission [8]. The re-
lation betweenκ and the physical fiber structure is studied in [7]. Sinceκ can be extracted from
experiments such as [1–4], the present analysis has the potential of bridging the gap between
system measurements and fiber construction properties.

We stress that contrary to early studies [5, 9], where the delay spread was assumed to be
random and equal to the difference between the delays of the slowest and fastest principal
modes, in typical SDM fibers the delay spread is deterministic. As we show in this paper, this
reality is a consequence of the fact that MD changes substantially across the channel bandwidth,
thereby averaging out the randomness of the MD phenomenon.

2. The intensity impulse response

We denote byψ0(t) the complex envelope of the pulse used to excite each of the 2N modes
at the fiber input and bỹψ0(ω) =

∫ ∞
−∞ exp(iωt) ψ̃0(ω)dt its Fourier transform. In addition,

without loss of generality, we assume that
∫ ∞
−∞ |ψ0(t)|2dt =

∫ ∞
−∞ |ψ̃0(ω)|2dω/2π = 1. We define

a 2N×2N matrixH(t) whosej,k elementH j,k(t) is the complex envelope of the signal received
in the j-th mode, when thek-th mode was excited byψ0(t), so thatH(t) is given by

H(t) =
∫ ∞

−∞

dω
2π

exp(−iωt)U(L,0;ω)ψ̃0(ω), (1)

whereU(z,0;ω) is the transfer matrix of the fiber section between the transmitter (assumed to
be atz = 0) and a generic pointz. When a given modek is excited by an impulse at the fiber
input, the received power (summed over all output modes) is given by∑2N

j=1 |H j,k(t)|2. Similarly
to [2–4], our interest in this paper is in the average of this quantity with respect to all the input
modesk. Namely, we are looking at

I(t) =
1

2N

2N

∑
k=1

[

2N

∑
j=1

|H j,k(t)|2
]

=
1

2N
Trace

[

H†(t)H(t)
]

, (2)
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The Fourier transform ofI(t) is readily expressed as

Ĩ(Ω) =

∫ ∞

−∞

dω
2π

ψ̃∗
0(ω)ψ̃0(ω +Ω)R̃(Ω,ω), (3)

where

R̃(Ω,ω ;z) =
1

2N
Trace

[

U(z,0;ω +Ω)U†(z,0;ω)
]

, (4)

and where for the ease of notation we denoteR̃(Ω,ω) = R̃(Ω,ω ;L). We demonstrate in what
follows that in the regime of strong mode coupling,R̃(Ω,ω) can be replaced with its ensemble
average ˜r(Ω)≡ 〈R̃(Ω,ω)〉, which is a function ofΩ only, owing to the stationarity of the fiber
transfer matrix with respect to frequency. In this case the inverse Fourier transform of Eq. (3)
yields

I(t) =
∫ ∞

−∞
dt ′r(t − t ′)I0(t

′), (5)

wherer(t) is the inverse Fourier transform of ˜r(Ω) andI0(t) = |ψ0(t)|2. Equation (5) justifies
the choice of referring tor(t) as the IIR.

In order to justify the replacement of̃R(Ω,ω) with r̃(Ω) we note that the frequency de-
pendence of the fiber transfer matrixU(L,0;ω) is characterized by the correlation bandwidth
BMD = 2N/

(

2π〈τ2〉1/2
)

= 1/(2πκL1/2), where we definedτ = |~τ|, as we demonstrate in the
section that follows. The dependencies ofU(L,0;ω +Ω)U†(L,0;ω) and R̃(Ω,ω)− r̃(Ω) on
ω is characterized by a bandwidth of the same order of magnitude, as long asΩ ≫ 2πBMD,
namely whenU(L,0;ω +Ω) andU(L,0;ω) are uncorrelated. Therefore, when the signal band-
width is much greater thanBMD , the contribution ofR̃(Ω,ω)− r̃(Ω) to the integral in Eq. (3)
becomes negligible. As we show later, measurements conducted on state-of-the-art SDM fibers
suggest thatBMD is of the order of 150MHz [2], whereas typical channel bandwidths in coher-
ent communications are of the order of tens of GHz — more than two orders of magnitudes
larger. In the following section we explicitly derive the bandwidthBMD and show that

r(t) =
1√

2πT 2
exp

(

− t2

2T2

)

, (6)

whereT = 1/(2πBMD) = 〈τ2〉1/2/2N is what we refer to as the delay spread [7].

3. Derivation of r(t)

The derivation ofr(t) follows a procedure similar to the one carried out in [11]. Starting from
Eq. (4), we express the forward increment d˜r(Ω;z) = r(Ω;z+dz)− r̃(Ω;z) as

dr̃(Ω;z) =
1

2N

{〈

Trace[U(z,0;ω +Ω)dU†(z,0;ω)]
〉

+
〈

Trace[dU(z,0;ω +Ω)U†(z,0;ω)]
〉

+
〈

Trace[dU(z,0;ω +Ω)dU†(z,0;ω)]
〉}

. (7)

The increment dU can be expressed with the help of Eq. (19) from [5],

dU(z,0;ω) =

[

i
ω~βω ·~Λ

2N
dz− ω2κ2

2
dz

]

U(z,0;ω), (8)

where the generalized birefringence vector is approximated as~β = ~β0+ω~βω , and where the
immaterial contribution of its frequency independent term~β0 is omitted for simplicity. We as-
sume the strong coupling regime, where~βω is modeled as a(4N2−1)-dimensional isotropic
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Fig. 1. Left panel: The mode-averaged intensity waveformI(t;z) at several pointsz along
the link obtained by transmitting a Nyquist signal with bandwidthB = 20 GHz in the three-
core fiber described in [7]. The solid blue curves are the results of simulations, whereas the
dashed black curves refer to Eqs. (5) and (6). The red dotted curves correspond to the IIR
waveform of Eq. (6) normalized so that their peak value is one. Right top panel: The broad-
eningT 2(z) of the propagating intensity waveformI(t;z) versus propagation distance. The
squares show simulation results, whereas the dotted red curve is a plot ofT 2 = κ2z – the
temporal mean square width of the IIR waveform. Right bottom panel: Relative deviation
of the broadeningT 2(z) from the theoretical value,ε = [T2(z)−κ2z]/κ2z, versus propa-
gation distance. The solid thin curves show the standard deviation envelope±〈ε2〉1/2, as
given in Eq. (16).

white Gaussian noise process such that〈~βω(z) ·~βω(z′)〉 = (2N)2κ2δ (z− z′). Equation (8) is a
stochastic differential equation that has to be interpreted in the Ito sense, where the second term
in the square parentheses is the so-called Ito correction [10]. The modeling of~βω(z) as isotropic
delta-correlated noise is an important analytical tool. On the one hand, the strong coupling
regime that we consider here (consistently with the majority of reported experiments where
quasi-degenerate modes are excited) justifies the assumption of isotropic perturbations. On the
other hand, since the correlation length of the actual perturbations is much shorter than the
length of the link, the assumption of delta-correlated perturbations is also justified. The coeffi-
cientκ , which fully characterizes the perturbations, is determined by the correlation length and
the variance of the actual perturbations, as discussed in [7]. We note, however, that although the
analysis is performed with delta-correlated perturbations, the simulation results that we present
in what follows were performed with a non-zero correlation length. The bandwidthBMD is the
width of the autocorrelation matrixA(L,Ω) = 〈U(L,0;ω +Ω)U†(L,0;ω)〉, which owing to the
stationary ofU with respect to frequency, is identical toA(L,Ω) = 〈U(L,0;Ω)U†(L,0;0)〉. As
follows from Eq. (8),U(L,0;0) = I. ThereforeA(L,Ω) = 〈U(L,0;Ω)〉 = exp

(

−Ω2κ2L/2
)

I,

as is readily obtained from Eq. (8), using the fact that〈(~βω ·~Λ)U(z,0;Ω)〉= 0. The exp(−1/2)
width of A(L,Ω) can be readily verified to be 2πBMD. From the above it readily follows that
r̃(Ω) = Trace{A(L,Ω)}/2N = exp

(

−Ω2κ2L/2
)

, whose inverse Fourier transform is the IIR
given in Eq. (6).

In Fig. 1 we test the IIR theory of Eqs. (5) and (6) by considering the three-core fiber example
of [2]. Each core’s radius is 6.2 µm, the inter-core distance isd = 29.4µm, and the refractive
index difference between cores and cladding is of 0.27%. Following up on [7], we assume
that perturbations are due to random and independent fluctuations in the three core-to-core dis-
tances, as well as due to random polarization coupling in the individual cores. The perturbations
are therefore characterized by means of their correlation lengthLC, the standard deviation∆brms
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in the coupling coefficient between each two cores, and in termsof the beat lengthLB between
polarizations in the individual cores. The numerical settings of the perturbation parameters are
those shown in the first row of the table in Fig. 3 of [7], that isLB = 20m,LC = 20m,b= 2.3 and
∆brms/b = 0.2. In the simulation we transmitted a Nyquist signalψ0(t) =

√
B sin(πBt)/(πBt),

with B = 20 GHz, over a 4000km link and looked at the mode-averaged intensity waveform
I(t;z) at several pointsz along the link. The numerically obtained waveforms at three specified
values ofz are plotted by solid blue curves in the left panel of Fig. 1, together with the curves
obtained from Eqs. (5) and (6), which are plotted by dashed black curves. The excellent agree-
ment between theory and simulations is self-evident. The red dotted curves, also shown in the
figure, correspond to the IIR waveform of Eq. (6) normalized so that their peak value is one. The
main lobe of the output intensity waveform is practically identical to the Gaussian-shaped IIR,
while only the tails are affected by the shape of the input waveform. This result, which is quite
general, is a consequence of the fact that, as occurs in most cases of practical relevance [2–4],
the input pulse is much narrower than the IIR, and hence it has little effect on the convolution
in Eq. (5). Indeed the intensity waveforms measured in [2–4] were accurately fit by a Gaussian
function. In the top right panel of Fig. 1 we show by the blue squares the broadening of the
propagating intensity waveformI(t;z), which is denoted byT 2(z) and is defined as the differ-
ence between thetemporal mean-square widths ofI(t;z) at pointz and atz = 0. The dotted red
curve is a plot ofκ2z – the temporal mean square width of the IIR waveform. The right bottom
panel shows the relative deviation from the theoretical value,ε = [T 2(z)−κ2z]/κ2z.

The Gaussian profile of the IIR reflects the Gaussian-shaped spectrum of the correlation
functionR̃(Ω;z), which is a direct consequence of our model, and therefore the agreement with
the IIR obtained experimentally in [2] should be interpreted as the model’s validation.

4. Accuracy of the delay spread assessment

While the delay spreadT , defined by means of Eq. (6) is a deterministic quantity, the actual
pulse broadeningT (z) depends on the specific instantiation of the SDM fiber and therefore it is
in principle a random quantity. In the limit where the bandwidth of the transmitted waveform
is much larger thanBMD , it approaches its average value with negligible fluctuations. In this
section we characterize the magnitude of these fluctuations and their dependence on the ratio
between the signal bandwidth andBMD . To do so, we define the moments ofI(t;z) as

Mn(z) =
∫ ∞

−∞
tnI(t;z)dt =

(

−i
∂

∂Ω

)n

Ĩ(Ω;z)

∣

∣

∣

∣

Ω=0
, (9)

where we remind the reader that
∫ ∞
−∞ I(t;z)dt = 1, which follows from the normalization as-

sumed forψ0(t). Using Eq. (3) forn = 1 and 2, one obtains

M1(z) =
1

2N

∫ ∞

−∞

dω
2π

ψ∗
0(ω)Trace

{[

−i
∂

∂ω
ψ̃0(ω)U(z,0;ω)

]

U†(z,0;ω)

}

, (10)

and

M2(z) =
1

2N

∫ ∞

−∞

dω
2π

Trace

{[

−i
∂

∂ω
ψ̃0(ω)U(z,0;ω)

][

−i
∂

∂ω
ψ̃0(ω)U(z,0;ω)

]†}

. (11)

The frequency dependence of the unitary operatorU(z,0;ω) is described by [5]

−i
∂

∂ω
U(z,0;ω) =

~τ(ω) ·~Λ
2N

U(z,0;ω), (12)
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where we set the mode-independent delay to zero, by assuming ideal chromatic dispersion
compensation. Performing the differentiation in the integrand of Eq. (11) and using Eq. (12)
we obtainM1(z) = M1(0), which we set to zero without loss of generality. Within the same
procedure, and assuming a chirp-free input, the pulse broadeningT 2(z) = M2(z)−M2(0) is
found to be

T 2(z) =
∫ ∞

−∞

dω
2π

|ψ̃0(ω)|2τ2(ω)

(2N)2 , (13)

whereM2(0) =
∫ ∞
−∞ |∂ψ̃0(ω)/∂ω |2dω/(2π) is the mean square width of the incident pulse

|ψ0(t)|2, and where we used the fact that Trace{[~τ(ω) ·~Λ]2}= 2Nτ2(ω) [5]. We now character-
ize the errorε = [T 2(z)−κ2z]/κ2z by evaluating its variance, using the procedure introduced
in [11] for PMD. For the sake of simplicity, we perform the analysis by assuming the same
Nyquist pulse used in the previous section. After performing the algebra, one obtains

〈ε2〉= 1
T 4B2

∫ πB

−πB

dω ′

2π

∫ πB

−πB

dω ′′

2π
〈τ2(ω ′)τ2(ω ′′)〉

(2N)4 −1. (14)

Using the expression for the correlation function〈τ2(ω ′)τ2(ω ′′)〉 given in [5] we obtain

〈ε2〉= 1
b2(4N2−1)

∫ b/2

−b/2
dw′

∫ b/2

−b/2
dw′′ f

(

w′−w′′) (15)

wheref (u) = 4/u2− (4/u4)[1−exp
(

−u2
)

] andb is a normalized bandwidthb = 2N√
4N2−1

B
BMD

,

so that forN larger than one,b≃ B/BMD . In the limit of large signal bandwidthb≫ 1, the inner
integral can be extended to the entire real axis, in which case, using

∫ ∞
−∞ du f (u) = 16

√
π/3, one

obtains

〈ε2〉 ≃ 16
√

π
3(4N2−1)b

=
8
√

π
3N

√
4N2−1

BMD

B
, (16)

a result consistent forN = 1 with the formula given in [11]. As expected,〈ε2〉 reduces with the
ratioB/BMD, which can be interpreted as the effective number of independent fiber realizations
contained in the bandwidthB of the transmitted waveform. For example, in the experiment re-
ported in [2], whereN = 3, the measured delay spread atL= 4200km wasT 2 ≃ 1 ns2, and hence
BMD = 1/(2πT) ≃ 160 MHz, which for the input signal bandwidthB = 20 GHz corresponds
to a 〈ε2〉1/2 ∼ 4.5%. This small value suggests that the IIR obtained in measurements such as
those in [2] is practically deterministic and independent of the particular fiber realization.

5. Conclusion

We studied the response of SDM fiber links to an excitation by a short impulse of the optical
intensity, as is commonly performed in experiments [2–4]. We showed that, once the regime
of strong mode coupling is achieved, the mode-averaged intensity waveform, referred to as the
link’s intensity impulse response, becomes a practically deterministic Gaussian shaped func-
tion. The IIR’s duration is determined by the mode dispersion vector of the link~τ which was
introduced in [5]. The excellent agreement between the presented theory and published exper-
imental results validates random mode coupling model and provides a tool for efficient design
of MIMO-DSP receivers.
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