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Abstract: A theoretical treatment is presented for the focusing of polarized 
vortex beams, including the generation of Bessel beams. A combination of 
a phase vortex with arbitrary topological charge, and a polarization vortex 
of arbitrary order is considered. Results are given for both paraxial and high 
NA systems. Conditions for the presence of non-zero on-axis intensity are 
given. An interesting observation is that half-order phase vortices can exist, 
without the existence of any phase discontinuity. The behavior of Bessel 
beams with half-order phase vortices is investigated. 
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1. Introduction 

At present, there continues to be strong interest in the properties of phase vortices [1–8], and 
also polarization vortices [9–24]. At a phase vortex, at the centre of which the electric field is 
zero, the phase changes by an integer (called the topological charge) multiplied by 2π radians 
on travelling around the singularity. It carries orbital angular momentum of integer charge. A 
polarization vortex is defined as a structure including a point where the transverse electric 
field is zero, and the polarization state therefore undefined. A particular example of 
polarization vortex is when the field is inhomogeneous and locally plane-polarized, the 
direction of the field rotating by an integer (called the order) multiplied by 2π radians on 
travelling around the singularity. The polarization vortex carries no angular momentum, but 
on travelling around the singularity the geometric (Pancharatnam) phase changes by an 
integral number of 2π radians. 

Note that the polarization vortex considered here, with a zero in electric field, is different 
from the generic polarization singularities naturally present in optical fields [25–30]. Nye has 
pointed out that in generic fields there are no points where the electric field is zero at all times 
[30]. However, here we are concerned with engineering the presence of these polarization 
vortices. Nye describes polarization singularities such as lines of circular polarization, 
surfaces of linear polarization, and disclinations in instantaneous field distributions. Although 
these singularities are different from the polarization vortices, there are some topological 
similarities. 

Some general properties of the polarization of almost-plane waves have been described 
[31]. General properties of the polarization of tightly focused beams have also been discussed 
by Lekner [32]. 

Focusing of waves exhibiting phase vortices has been investigated by Condell, and 
Kotlyar and Soifer [2, 5]. However, their treatment was limited to paraxial optics. Similarly, 
paraxial treatments of polarization vortices have been presented [12, 14–16]. Propagation 
properties of non-paraxial beams with polarization vortices have also been described [9–11, 
17]. There is great interest currently in the focusing of waves with lenses of high numerical 
aperture (NA), such as a microscope objective. The important case of focusing of a linearly 
polarized wave was analysed by Richards and Wolf [33]. More recently, focusing of waves of 
other polarization distributions has been reported [13, 18–20]. One reason for this interest is 
the possibility of producing a more highly localized focal distribution in this way. Another 
reason is that the orientation of a fluorescent molecule can be determined by illumination by a 
wave of appropriate polarization, as in single-molecule fluorescence studies [34–38]. A third 
application is in optical trapping of absorbing particles, or particles with refractive index 
lower than the surroundings, and in rotation of these particles [39, 40]. A fourth application is 
the generation of doughnut beams for STED (stimulated emission depletion microscopy) [41, 
42]. 

Here, we combine these two areas, and investigate the focusing of waves with various 
phase and polarization properties by a high numerical aperture lens, concentrating in 
particular on Bessel beams. Although Bessel beams are a specific example, they can be 
integrated up to produce more general beams or simulate a lens aperture. Although there is 
much in common between the two types of vortex, few papers seem to have considered the 
combination. We presented a preliminary study [43]: one important observation is that a 
tightly focused azimuthally polarized beam with a unity charge phase singularity gives a non-
zero field on the axis, coupled with a small focal spot [21–24]. Helseth considered the 
combination of azimuthally or radially polarized beams with phase singularities, and showed 
that radial polarization with a unity charge phase singularity gives a non-zero field on-axis, 
even for paraxial focusing [21]. This effect has been exploited to focus paraxially radially-
polarized light to a spot [44]. However, to our knowledge no paper has analyzed the behavior 
of a combination of a phase vortex of arbitrary charge with a polarization vortex of arbitrary 
order. Polarization vortices of order two, in particular, are very common in focusing systems. 
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For example, high NA focusing of a plane wave gives a component with a polarization vortex 
of order two in the focal region [31]. 

2. Phase and polarization of an almost plane wave 

As an electromagnetic wave must satisfy Maxwell’s equations, it follows that any wave that 
is not of infinite extent must include a z  component of either electric or magnetic field, and 
cannot be purely plane polarized. However, if the variation in the amplitude of the wave is 
slowly varying relative to the wavelength, we can assume that the amplitude and polarization 
state varies in an arbitrary way over the wavefront, and that the z  components of field are 
negligible. For the case of focusing by a lens of high numerical aperture in the Debye 
approximation, the incident waveform can be assumed to be polarized on the Gaussian 
reference sphere, equivalent to the strength of an angular spectrum of plane waves. Further, 
the strength and polarization of the angular spectrum of plane waves can be calculated from 
the incident fields by the vectorial method of Richards and Wolf, or the matrix method of 
Török et al. [33, 45]. The amplitude in the front focal plane of the lens can be assumed to be 
an almost-plane wave, over the entrance pupil. Here, we are concerned with locally linearly 
polarized illumination for a few modes of low order, but more general behavior has been 
considered elsewhere [31]. In a different context, we also note research on vector Zernike 
polynomials [46, 47]. 

We consider combinations of polarization and phase vortices as circular harmonics, so 
that we can write for the locally linearly-polarized electric field in the front focal plane of the 
lens 1,2E  
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+
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where m, n are integers, being the order of the polarization vortex and charge of the phase 
vortex, respectively, ,ρ φ  are cylindrical coordinates, and ,i j  are unit vectors in the Cartesian 

,x y  directions. The electric field is locally linearly polarized, but with spatially varying 

orientation. Then 0m =  corresponds to x  or y  polarized, respectively for solutions 1 and 2. 
In cylindrical coordinates these become 
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where ,ρ φa a are unit vectors in the ,ρ φ  directions. We see that 1m =  corresponds to radial 

(also called TM01) and azimuthal polarization (also called TE01), respectively, both 
corresponding to an antiparallel screw disclination [25, 31]. The cases when 1m = −  
correspond to a parallel screw disclination, or saddle, (TE21 or TM21). Another important case 
is the polarization vortex of order two ( 2m = ), or dipole, which can be generated on grazing 
incidence reflection from a deep paraboloid (or toroidal) mirror [48], or reflective axicon 
(waxicon) [49]. The input polarizations for different values of m , for 0n = , are illustrated in 
Fig. 1 for the first (upper) case. 

Interestingly, the form in Eqs. (1), (2) is valid even for non-integer values of m and n. The 
cases (1/2, 1/2) and (–1/2,1/2) are particular cases where the polarization of the electric field 
rotates by π radians on circling around the origin, but the direction of the electric field 
matches up after a complete rotation because of the phase introduced by the phase 
dislocation, as shown in the time sequences in Fig. 2(a) (Media 1) and Fig. 2(b) (Media 2). 
These correspond topologically to the so-called lemon and star singularities [25]. For Fig. 1, 
on the other hand, 0n =  and so there is a discontinuity in polarization for non-integer values 
of m . Other papers have considered fractional topological charge, but for a scalar system this 
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necessarily results in a phase discontinuity [50]. The three-fold symmetry for 1/ 2m = −  in 
Fig. 1 and Fig. 2(b) is apparent from Eq. (2). 

m=0

m=1/2 m=1 m=3/2 m=2

m= -1/2 m= -1 m= -3/2 m= -2
 

Fig. 1. The input field polarizations (inhomogeneous, locally linear polarization) for different 
values of m , for 0n = , for the first (upper) case of Eq. (1). The arrow length is proportional 
to the field strength. 

 

Fig. 2. Input vector field at time 0t = , with the time variation shown in the Media, for (a) 
1 / 2, 1 / 2m n= =  (Media 1), (b) 1 / 2, 1 / 2m n= − =  (Media 2). 

As the amplitude of the wave can be altered, as desired, using a mask [51], we take the 
power of ρ to be more generally g. Indeed, if the polarization or phase of an initially plane-
polarized wave is modified using a spatial light modulator, then 0g =  as the intensity of the 

wave is not changed. The particular case when 0g =  and 1n =  is very interesting, as it has 
been shown to exhibit properties expected of a two-dimensional Hilbert transform [52, 53]. 

Equation (1) can be written 

 
( ) ( ) ( ) ( ){ }
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2
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 (3) 

and thus each is identified as the sum of two circularly-polarized phase singularities. 
Combining the two equations in Eq. (3), we obtain 
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giving right or left handed circularly polarized vortices. The topological charge of the phase 
vortex is different in the two cases. Different combinations of n and m can give the same 
effective result. This means that a vortex that is circularly polarized, the quadrature sum of x 
and y polarizations, is equivalent to the quadrature sum of, for example, radial and azimuthal 
polarizations with vortices of different topological charge. 

3. Polarized Bessel beams 

One way to generate a Bessel beam is by placing a narrow annular aperture in the front focal 
plane of a lens [54, 55]. If the annulus has close to a Gaussian cross-section, a Bessel-Gauss 
beam results. Bessel beams can be simply generalized to the non-paraxial case, i.e. they are 
exact solutions to Maxwell’s equations. In this they differ from some other beams such as 
Gaussian beams. The behavior of the zero-order non-paraxial vectorial Bessel beam, as 
generated by focusing a plane-polarized wave, was discussed many years ago [48]. 
Longitudinal and cross components of polarization are introduced by focusing, so that the 
cross-section is broadened and divides into two spots for convergence angles greater than 
65 (corresponding to a NA of 0.9 in air). Radially polarized Bessel beams (also called 
transverse magnetic, TM0) avoid this problem, and give a circularly-symmetric spot, with a 
central longitudinal polarization [13, 21, 22, 24]. Azimuthal polarization was considered by 
several authors [21–24]. Two further polarization distributions that give a beam with 
transverse linear polarization on axis are the electric dipole (ED) polarization, giving the 
weakest side-lobes, and the transverse electric polarization (TE1), which gives the smallest 
cross-section [22–24]. As the polarization produced by focusing plane-polarized light can be 
separated into ED and magnetic dipole (MD) parts, it has been called the mixed-dipole 
polarization. The mixed-dipole polarization can also be separated into TE1 and transverse 
magnetic (TM1) components [22–24]. TE1, TM1 and mixed-dipole polarizations are special 
cases of the more general spatially varying, linear polarization given in Eq. (1). ED and MD 
correspond to input polarizations that are inhomogeneously elliptically polarized, being 
circularly polarized for small θ , and azimuthally polarized as 90θ →  . These can be 
generated by adding together different proportions, according to the value of θ , of the upper 
and lower solutions in Eq. (1). All of these Bessel beams are propagationally invariant in that 
the cross-sectional intensity does not change upon propagation, although phase and 
polarization state may change on propagation. In fact later we show that propagation is 
equivalent to a time delay. 

4. Field in the focal region of a lens 

We consider focusing of a wave by a lens of high numerical aperture with a narrow annular 
pupil. Generalizing the results of Richards and Wolf to include y as well as x polarization, the 
strength vector x y ze e e= + +e i j k  on the Gaussian reference sphere of the lens can be written 

in terms of the incident field ,x yE E : 
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The terms in cos 2 , sin 2φ φ  represent cross polarization, and those in cos , sinφ φ  represent 
longitudinal polarization. Equation (6) can be written 

 

( )

2 2 2

2 2 2

2

cos 1 cos 2 tan sin 2 tan ,
2 2 2

cos sin 2 tan 1 cos 2 tan ,
2 2 2

cos cos sin 2 tan ,
2 2

x x y

y x y

z x y

e E E

e E E

e E E

θ θ θφ φ

θ θ θφ φ

θ θφ φ

  = − −    
  = − − +    

 = +  

 (6) 

which shows clearly how the strength of the cross and longitudinal polarization terms 
increase with the angle θ , the longitudinal component increasing more rapidly. Following 
Richards and Wolf, the electric field at a point P (spherical coordinates , ,P P Pr θ φ  or 

cylindrical coordinates , ,P P Pr zφ ) in the focal region of the lens of angular semi-aperture α is 

 ( )2 1/2
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where A is a constant, 2 /k π λ= , and 
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with ,θ φ  the coordinates on the Gaussian reference sphere. A time variation exp( )i tω− has 
been suppressed. 

We now consider what happens if the lens is illuminated with a wave that contains 
polarization and phase vortices. Starting from the upper case of Eq. (2), we have on the 
reference sphere 
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For the case of a Bessel beam, the integral 1/2sin cos sing dθ θ θ θ  in Eq. (7) can be omitted. 
Then, using the identity 

 ( ) ( ) ( ) ( )2

0
exp exp cos 2 exp ,n

nin i d i J in
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φ ρ φ γ φ π ρ γ− =    (10) 

where ( )nJ ⋅  is a Bessel function of the first kind, the electric field in the focal region is (after 

normalizing by dividing by 1 22 cos ( / 2)n mi θ+ +− ) 
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The distance term combines with the time variation to give a term exp[ ( )]Pi kz tω− , so that 
propagation is equivalent to a time delay. Similarly, for the lower case of Eq. (2), we have on 
the reference sphere 
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so that in the focal region for a Bessel beam (normalizing as before) 
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For the case of a paraxial beam, we can put θ  as small, giving for the first solution 
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There is no longitudinal field component. For the second solution 
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 (15) 

Equations (11) and (13)–(15) can be applied to different combinations of phase and 
polarization vortices. We make the following general observation. As the Bessel function has 
a non-zero value for zero argument for order zero, for the paraxial case there is a non-zero 
field on axis only if 0n m+ =  or 0n m− = . These cases include the special cases 0n m= = , 
when there are no vortices; 1, 1m n= = ±  corresponding to radial and azimuthal polarization 
with a phase vortex for cases 1 (Eq. (14)) and 2 (Eq. (15)), respectively [21–
24]; 1, 1m n= − = ± corresponding to a parallel screw disclination with a phase vortex; and 

2, 2m n= = ±  corresponding to a dipole dislocation with a charge two phase vortex. One of 

the conditions is also satisfied by the fractional indices 1/ 2, 1/ 2m n= − = ±  and 

1/ 2, 1/ 2m n= = ± . These are related to the star and lemon singularities. Although other non-
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integer values of ,m n  may satisfy one of the conditions, the half-integer values are special 
because a rotation of direction by π  is equivalent to a phase change of π , and hence there is 
no discontinuity of phase. 

Turning to the non-paraxial case, we see from Eqs. (11) and (13) that there is a 
longitudinal field component on the axis of order tan( / 2)θ  if 1 0n m+ − =  or 1 0n m− + = . 

Although this is weak for small θ , in systems of high NA it can become strong. Examples are 
1, 2m n= − = ± , 0, 1m n= = ± , 1, 0m n= = , 2, 1m n= = ± . For a plane-polarized phase 

vortex of unit charge, the zero of the vortex is filled in by the longitudinal field component. It 
should be noted that on the axis there is a z component of field only, so that this component 
has a well-defined phase, and the wave is linearly polarized in the direction of propagation. 
The axis is thus an LT line [27]. Here the superscript T refers to ‘true’, i.e. three dimensional. 
For radially polarized illumination with no phase vortex there is also a longitudinal field 
component. However, for azimuthal polarization, the two parts of the zE term in Eq. (13) 

cancel. Interestingly, for the vortex 1/ 2m n= = , there is also a longitudinal field component 
on axis, in addition to the transverse component. 

There is also a transverse axial field component of order 2tan ( / 2)θ  if 2 0n m+ − =  or 

2 0n m− + = . Examples are 1, 3m n= − = ± , 0, 2m n= = ± , 1, 1m n= = ± , 2, 0m n= = . For 
a plane-polarized phase vortex of charge two, the zero of the vortex is filled in by the 
transverse cross-field component. The field on the axis is thus again nonzero, and is 
transverse and right hand circularly polarized, even though the illumination is plane polarized. 
The axis is a CT line [27]. For a dipole polarization vortex with no phase vortex there is also a 
transverse field on axis. 

For 0m =  and values of 3n ≥ , or for 0n =  and 3m ≥  or 1m ≤ − , there is a zero in 

intensity on the axis as all components exhibit zeros on axis. Near to the axis, the field is 
predominantly transverse and circularly polarized. For 0, 1n m= = − , corresponding to 

parallel screw disclination, the field is thus zero on axis. For low NAs, the 1J  terms dominate, 

and the intensity is axially symmetric. As θ  increases, the relative strength of the axial field 
component increases, which introduces an intensity component with four-fold rotational-
symmetry. 

For 0, 2n m= = , corresponding to a dipole polarization vortex, for low NAs, the 2J  
terms dominate, and the intensity is zero on axis and exhibits four-fold rotational-symmetry. 
As θ  increases, the other components increase in strength. The intensity exhibits two-fold 
symmetry, with the field linearly polarized in the transverse direction on axis. Plots of the 
intensity variation were given by Sheppard [48]. 

5. Circular polarized phase singularity 

Equation (3) showed that the combined phase and polarization vortices can be considered as 
the sum of two circularly-polarized phase vortices. From Eq. (4), we see that the field 
depends only on n m  for right/left circular polarization, respectively, which we take as p  
in each case. For the case of a circularly polarized phase vortex, the field in the back focal 
plane is thus taken to be 
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Then on the reference sphere 
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Neglecting a constant multiplier, we obtain for the field in the focal region for a circularly-
polarized Bessel beam 
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For the paraxial case, this reduces to 
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as we might expect. From Eq. (17), for 1p =  for the first solution, and 1p = −  for the second 
solution, all the field components are zero on axis, and we obtain a true phase singularity, 
corresponding to a circularly polarized beam with a unity charge phase vortex. Note that as a 
plane-polarized beam with a phase vortex was shown not to exhibit a zero on axis, the zero 
for the circular polarization case depends critically on the polarization being exactly circular. 
This is important for applications in stimulated emission depletion (STED) microscopy [41, 
42]. For 1p = −  for the first solution or 1p =  for the second solution, there is a longitudinal 
field component on axis. This corresponds to the case when the handedness of the phase 
vortex is in the opposite sense to that of the circular polarization. Similarly, for 2p =  for the 
first solution, or for 2p = −  for the second solution there is a true phase singularity, while for 

2p = −  for the first solution, or 2p =  for the second solution, there is a transverse, circularly 
polarized, field on axis. 

6. Half-order phase vortices 

We now investigate the behavior of fractional order vortices 1/ 2, 1/ 2m n= ± = , which 
produce an intensity maximum on axis. The results shown are for the upper solution in Eq. 
(1). The lower solution is just rotated, while 1/ 2n = −  produces rotations with time in the 
opposite direction. First we examine the case of a paraxial Bessel beam. The behavior is 
plotted against normalized optical coordinates sin , sinx yv kx v kyθ θ= = . Figures 3 and 5 

show the Stokes parameters for the cases 1/ 2, 1/ 2m n= ± = , respectively. Stokes’ parameter 

0S , which represents the intensity of the beam, is axially symmetric, and the same in both 

cases. The cross-section is shown in Fig. 4. 1 2,S S  give the linearly polarized components. 3S  
gives the circularly polarized component, which is also axially symmetric, with opposite 
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handedness for the two cases. 1 2 3, ,S S S are plotted in the range [ 1,1]− . On the axis, the beam 

is fully circularly polarized. At 1.43v = , then again at 3.12v = , 3 0S = , and the beam is 
linearly polarized. Interestingly, these are both inside the central lobe of the Airy disc, so if 
the circularly polarized component were separated, it would be much narrower than the Airy 
disc (about half the width). In Figs. 3 and 5 we also show various parameters of the 
polarization ellipse. The orientation angle ψ  is given by 2 1tan 2 /S Sψ = . The ellipticity χ is 

given by 3 0sin 2 /S Sχ = . The auxiliary angle α is given by 1 0cos 2 /S Sα = . The phase δ  

difference is given by 3 2tan /S Sδ = . ψ  is plotted in the range [ / 2, / 2]π π−  in steps of 

/10π , from dark to light. χ  is plotted in the range [ / 4, / 4]π π−  in steps of / 20π . α  is 

plotted in the range [0, / 2]π  in steps of / 20π . δ  is plotted in the range [ , ]π π−  in steps of 

/ 5π . None of these quantities depend on the absolute phase. The angle δ ′  is the phase along 
the major axis of the polarization ellipse. In each lobe, there is a phase change of π  on 
making a circuit counter-clockwise around the axis. 

 

Fig. 3. Parameters for the case 1 / 2, 1 / 2m n= = . The top row shows the Stokes parameters. 

The bottom row show , , , ,ψ χ α δ δ ′ . 

 

Fig. 4. A cross section through the beam at 0y =  for 1 / 2, 1 / 2m n= = . 0S  is shown in 

blue, 2S  in red, and 3S  in green. The Airy disc is shown as a chained line for comparison. 

#212728 - $15.00 USD Received 26 May 2014; revised 10 Jul 2014; accepted 11 Jul 2014; published 18 Jul 2014
(C) 2014 OSA 28 July 2014 | Vol. 22,  No. 15 | DOI:10.1364/OE.22.018128 | OPTICS EXPRESS  18139



 

Fig. 5. Parameters for the case 1 / 2, 1 / 2m n= − = . The top row shows the Stokes 

parameters. The bottom row show , , , ,ψ χ α δ δ ′ . 

The time-variation of the polarization is illustrated in Fig. 6(a), Media 3, and Fig. 6(b), 
Media 4, which show the vector field of the beam for 1/ 2m = ± , respectively. In Fig. 6(a), 
Media 3, a polarization vortex near to the axis rotates around in a circle, changing 
continuously from radial to azimuthal polarization and so on. In Fig. 6(b), Media 4, the 
polarization vortex near to the axis is a parallel screw disclination, which rotates as the vortex 
rotates. In three dimensions, the vortex spirals around the axis as the beam propagates. 

As the angular aperture of the beam increases, the other polarization terms become 
significant. Although the intensity of the beams is the same for 1/ 2m = ± in the paraxial case, 
for large convergence angles they become different, as shown in Fig. 7. For 

1/ 2, 1 / 2m n= = there is a longitudinal field component on the axis, in addition to the 
circularly polarized transverse field. At the origin, the electric field vector is 

[ ]{ }2 tan( / 2) / 2i θ− −i k j , so that the field is elliptically polarized in a plane tilted at an 

angle [ ]arc tan 2 tan( / 2)θ . For 1/ 2, 1/ 2m n= − =  the longitudinal component has terms with 

1J  and 2J , which increase the width of the beam. By 75θ =  , the maximum intensity is no 
longer on the axis. For the non-paraxial case, the polarization and vectorial behaviors are 
rather complicated, and we do not discuss them here. 

 

Fig. 6. The vector electric field of Bessel beams at time 0t = , with the time variation shown 
in the media, for (a) 1 / 2, 1 / 2m n= =  (Media 3), and (b) 1 / 2, 1 / 2m n= − =  (Media 4). 
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Fig. 7. The intensity of a non-paraxial Bessel beam of semi-angle of convergence 

0, 60 , 75θ =  
, for (a) 1 / 2, 1 / 2m n= = , and (b) 1 / 2, 1 / 2m n= − = . 

7. Discussion 

The focusing of beams exhibiting both phase vortices and polarization vortices, by an 
aplanatic lens of high NA, has been analysed. Equations are given for the electric field of 
Bessel beams with different polarization and phase vortex conditions. These can be integrated 
to calculate the focused field of a lens of high NA. 

If a linearly polarized beam including a phase vortex of unity charge is focused by a high 
NA lens, there is an axial electric field component on the axis. For a phase vortex of charge 
two there is a weak transverse field on axis. Thus in both these cases, there is not strictly a 
phase singularity in the focused field. For 3n ≥ , there is a zero in electric field on the axis. 
Circularly polarized beams with a phase vortex can result in a zero axial field component, but 
only for the correct handedness of the vortex. Polarization vortices can exhibit TE or TM 
behavior (order 1m = ). Beams with a polarization vortex of order 1m = −  result in a zero in 
electric field on the axis after focusing. Beams with a polarization vortex of order 2m =  
when focused have a transverse, linearly polarized electric field on axis. Beams exhibiting a 
combination of polarization and phase vortices can be decomposed into a summation of 
circularly polarized beams, each in general with phase vortices. A TE beam 1n m= =  gives a 
focused spot with a bright centre and, obviously, no axial electric field component. A TM 
beam 1n m= =  also gives a focused spot with a bright centre. Combinations of n and m that 
are half-integer give novel, physically realizable, polarized Bessel beams. 
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