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Abstract: We study random coupling induced crosstalk between groups
of degenerate modes in spatially multiplexed optical transmission. Our
analysis shows that the average crosstalk is primarily determined by the
wavenumber mismatch, by the correlation length of the random pertur-
bations, and by the coherence length of the degenerate modes, whereas
the effect of a deterministic group velocity difference is negligible. The
standard deviation of the crosstalk is shown to be comparable to its average
value, implying that crosstalk measurements are inherently noisy.
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1. Introduction

Spatially multiplexed transmission is considered to be a promising solution for increasing the
information throughput of fiber-optic systems [1], and significant efforts are being invested into
exploring the properties of fiber structures supporting several propagation modes. A typical sit-
uation occurring in multimode structures is that groups of modes are characterized by similar
propagation constants, implying strong coupling between them [2]. We refer to such modes as
degenerate. On the other hand, modes that belong to different groups characterized by notably
different propagation constants are weakly coupled, as has been observed in a series of experi-
ments [3, 4]. This reality is nicely exemplified in the case of single-core fibers operating in the
weakly guiding regime, where the linearly polarized (LP) mode approximation is valid [5]. A
multi-core fiber forms another example as, depending on the overall core number and geometry,
multiple degeneracies between the resultant super-modes may exist [6].

Our goal in this paper is to model the coupling between non-degenerate groups of modes
and to understand its dependence on various fiber parameters. We obtain an expression for the
crosstalk and find that the degree of coupling is mainly determined by the mismatch between
the wavenumbers of the two groups, whereas the effect of the mismatch on group velocities is
negligible. In addition, we show that the standard deviation of the crosstalk is comparable to
its average value, a property that has to be taken in proper consideration when characterizing
crosstalk in multimode fibers.

2. Analysis

As elaborated in [7], linear propagation in a fiber supportihgrthogonal spatial modes is
described by the equation

d& . 1z RNy 2

el B+ 2Nb(oo,z) A\ &, 1)
where N is the total number of propagation modes (with the factor of 2 accounting for polariza-
tions), and? is a N-dimensional column vector whose components are the complex envelopes
of the electric field in the individual modes. The overall number of modes i&@?":l 29;,
whereg;j is the degeneracy of thgth group of modes ani is the number of groups. For
example, in a weakly-guiding step index fiber supporting the first two LP mode groups, we
haveN = 3,M = 2,g; = 1, andg, = 2. The N x 2N matrix B describes propagation in the
absence of perturbations, where the modes are uncoupled. Its only nonzero elements are on the

main diagonal and they equal the wavenumbers of the various modes [8]. Theﬁ(eam)

has N? — 1 real-valued components and it generalizes the familiar birefringence vector used
in the modeling of polarization effects in single mode fibers [10]. The tilde above the vec-
tor sign serves to distinguish between generalized birefringence vectors [7] and electric field
vectors such ag. The termA(®V) s the generalized Pauli matrix vector [7] and its elements
are N x 2N traceless Hermitian matricég, which reduce to the standard Pauli matrices [10]

in the case of the single mode fibéd & 1). These matrices constitute a basis for the space
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of 2N x 2N traceless Hermitian matrices. The scalar prodﬁjafi(ZN) is to be interpreted as

z‘j‘ﬂi*l bjA;j, and (wherb is assigned the appropriate statistics) accounts for the effect of mode
coupling resulting from random perturbations in the fiber structure. For ease of representation,
it is convenient to decompose the electric field veefdnto vectorsE; of smaller dimension

29;, whose components are the field envelopes of the degenerate members-tfi greup.

In this representation, the firsg2terms of the main diagonal of the matiare equal tq3;

(the wavenumber of the modes in the first group), the followiggterms are equal t@, (the
wavenumber of the second group) and so on.

We now proceed by dividing the matixA@Y) into rectangular blocks denoted by whose
dimension is Bj x 2g;, which can be demonstrated to have the propbffjty: bji. With this

notation, and substituting for convenieré€z) = exp(—if2)E (2), Eq. (1) can be rewritten as
a set of coupled equations

dg i i< gz
E:ﬁbnéJrﬂ eril?py &, 2)
f

where we define@;; = 3j — . A formal solution of Eq. (2) is given by
i Moz 8.7
42 =U@0RO) + 35> [ Ui(z)by(@)8Z)eM ez ©

where U, (z,0) is a unitary matrix satisfying d,/dz = ib,U,/2g,, and whereU,(z,Z) =
U (z, O)UlT(zQO) describes propagation in theh group of modes frord to zin the absence of
random coupling with other groups.

2.1. Coupling between groups of modes

We now study the signal leaking from one group of degenerate modes to another. To that end,
we evaluaté, (z) when the input signal is injected only into gromywith g # |. Since we expect

the coupling between different groups to be small due to the large wavenumber difference, we
extractE, (z) via a first-order perturbation analysis, which yields

&(2) = ﬁ l/o.zé'ﬁmiu (2.2)biq(Z)Uq(Z,0)84(0)dZ. 4)

The interpretation of Eq. (4) is rather intuitive. The electric field generated in dratyposition

Z is proportional to the product of the random coupling makiixZ) by the field&(Z) =
Uq(Z,0)&;(0). The matrixU; (z,Z) accounts for the propagation of the field in grdufpom Z

to zand the term ex{i)3y Z) accounts for the mode-independent phase that it accumulates. In
what follows we will assume that the input vector is normalized, so|&éd)| = 1.

It is of interest to note that the inverse Fourier transform of Eq. (4) is the impulse response
of the system describing coupling between thth and thel-th groups of modes. When the
delay spread in the fiber is dominated by the deterministic walk-off between the groups, the
impulse response measured after a distane#l be limited to a time interval whose duration
is [zBq 1|, wherefy 1 is the frequency derivative g8y at the carrier frequency, namely at
w = 0. This picture is in agreement, in terms of the general shape of the impulse response, with
the experimental results reported in [3] and it can be deduced from Eg. (4) by approximating

Ba =~ By 0+ By 1 and by neglecting the frequency dependence of the perturbation Bezm;or
which is responsible for random modal dispersion [7].
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In order to quantify the extent of coupling between different groups of modes we consider
the total energy received in ttheh group when a signal is transmitted in tfp¢h group. This
guantity is given by
o . dw
ug= [ Flo)laz o) 5, )
whereP(w) is the input signal spectrum, normalized so tfigf P(w)dw/2m= 1. Since this
problem is stochastic in nature, we now examine the statistiog oiver fiber realizations.

2.2. Satistics of mode coupling

We first calculate the average crosstdlky). This involves calculating first|g (z, w)[?),
which in turn involves calculatingU} (', 0)b}, (Z/)U] (z.2')U| (z.2)biq(2)Uq (2, 0)), as a con-
sequence of the double integral appearing when evalu@ifgw)|? from Eq. (4). Since the
statistics of mode coupling should be stationary with respect to frequency within the tele-
com bandwidth, we may set the offset from the carrier frequency to zero, namel,

in 5(&)7 z) when performing the average. Since the matriogsand byq (that determineJ,
andUg) are statistically independent of each other [11] and of the coupling blogksthe
averaging of the inner terr(Ur(z,z”)U|(z7z’)> = (U,(Z' — Z,0)) can be performed indepen-
dently of the outer terms. By isotropy the desired average should be proportional to the iden-
tity matrix I;, and we may write(U;(z,0)) = exp(—z/L;)l;, where we assumed exponen-
tial decorrelation of the electric field vector. The physical meaning of the correlation length
L, is seen when expressing the longitudinal autocorrelation function of the field vector as
(&(2)18(2)) =8(0)1(UI(Z' —Z.0))8(0) = & (0)Pexp(~ |2’ — Z|/Ly). We thus refer td,
as the coherence length of the electric field [12].

We are then left with the calculation QUa(z”,O)brq(z”)bm(z’)uq(z’,O)), where the inner

productbrq(z”)bm(z’) can be averaged separately as it is independebyoffo accomplish
this task, we refer the reader to the detailed construction of\ff® matrix vector, which
is presented in the appendix of [7]. Moreover, since the matligesepresent off-diagonal
blocks of the matri>t_'~)-7\<2N), the real and imagipary parts of each of the elementspare
proportional to different components of the vedipwith the proportionality coefficient equal

to v/N. Hence, since we model the generalized birefringence vMoonsisting of statis-
tically independent components, there is statistical independence between the elerbgnts of
and between the real and imaginary parts of each element. Denotifigzbyhe autocorre-

lation function of the components @{z), namely (b;(Z)b(Z')) = f(Z — 2')Jjx, we obtain
<brq(z”)b|q(z’)> =4Ng, f(Z —Z')l4. This leaves us with the calculation (ﬁla(z’/,O)Uq(z’, 0)),
which follows the same lines as in the calculation performedforvith the result:

() = e [ ufe Wk e g1 &)t . ©

To gain further insight we assume a particular functional form for the autocorrelation function

of the mode coupling perturbation,z) = npexp(—z/L¢), whereng quantifies the strength of

the perturbations and. is their correlation length. This is a plausible choice, which is custom-

ary in PMD studies [13]. The average coupled energy can thus be written as

2 teo . Kz Kz-1)d
nlgg| Re { e " +Kz } w

- Plo)—— P (7)

(Ug) =
whereK = 1/Let +ifiq, With Let = (1/Lc+ 1/Ly + 1/Lq) L. Note that for large propagation

distances, the fractional expression inside the integral in Eq. (7) can be approximagéd by

#182849 - $15.00 USD Received 4 Jan 2013; revised 18 Feb 2013; accepted 4 Mar 2013; published 9 Apr 2013
(C) 2013 OSA 22 April 2013 | Vol. 21, No. 8 | DOI:10.1364/OE.21.009484 | OPTICS EXPRESS 9487



0.08 - 0.025
e Analytic (a) Analytic (b) A <102 4 (c)
5 I E 1
< 006 simelified g 0.02fsimulations g
= Simulations o il <o
2 \X ® 0.015 £10
o 6\ 7 S z~6L
5 004 AW 3 § c
@ ° 001 >
o s =10° 3 \
2 002 |5 ) 1 Chi-squared
z £ 0.005 F p—Squaredy,
\ -~ Owia < ° Ssimulations N
\wa . £ ol \Jsmulstons "N
0
0 5 10 0 5 10 0 0.05 0.1
Normalized distance z/L, Normalized distance z/L, Crosstalk u;q

Fig. 1. (a) Average energy coupled from non-degenerate gndoga two-fold degenerate
group| versus propagation distance normalized.¢0 The solid black line represents the
complete expression given by Eq. (7), whereas the thin red and the dotted green lines were
obtained in simulation with different parameters (see text). The dashed black line shows
the simplified crosstalk expression given by Eq. (8). The shaded area marks one standard
deviation from the mean as given by Eq. (9). (b) Standard deviation of the crosgtalk

as obtained from Eq. (9) (thick-black curve) and from numerical simulations (thin red). (c)
Crosstalk probability density function (circles) and chi-squared distribution fit (solid line).

which shows that the degree of coupling can be reduced by increasing the wavenumber mis-
match. Expanding Eq. (7) to fourth orderﬁml, and approximatingq ~ Biq.0+ wPBiq,1, yields

np 29 z
(Ug) = 75—~ 7 (1+aq), (8)
B|2q,0 N Le
wheregiq = 3wisB%1/B500 With wins = [ w?P(w)dw/2m being the mean square band-
width of the input signal. The quantityq is a correction term which turns out to be negligibly
small for realistic fiber parameters. For example, assuming/2m = 20 GHz, we obtain
gq~19x 1@5/[3'%,0 for the differential mode group delay valydg 1 = 20 ps/km [3], and

gq 0.9/[3,%4’0 for the much greater valugy 1 = 4.35 ns/km [4], which gives a very small

number sinced qo is by orders of magnitude larger than 1t This means that with a large
enough wavenumber mismatch the group velocity difference is expected to have a negligible
effect on system performance [14].

We now estimate the standard deviation of the crosstglk Inspection of Eq. (4) suggests
that, if the propagation distance is much longer than the correlation lendih,athen the
output field is the sum of many independent, random contributions, and hence by the central-
limit theoremg (z) becomes a Gaussian vector with) .xdependentomplex components. The
crosstalkuiq is proportional to the frequency integral @ (2)|? and its statistical properties
are affected by the frequency-dependence of the coupling. In the special case where fiber char-
acterization is performed with a continuous-wave (CW) signglcan be approximated by a
chi-squared distributed variable witly4degrees of freedom and standard deviation given by

(Ug)
e = g )
With the characteristic values gf in the majority of relevant fiber structures (in the case of

few mode fibers in the weakly guiding approximation, the largest valgg isf2), this implies

that measurements of crosstalk are necessarily noisy, a fact that needs to be properly taken into
account in practical considerations.
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3. Results

In order to validate the above theory, one would like to compare its predictions with the sim-
ulation of a realistic fiber structure, supporting multiple groups of modes. Such a procedure
would however be prohibitively inefficient because of the multiple length scales involved in the
processes of propagation and coupling. On the one hand, the beat-length associated with the
wavenumber difference between any two groups of modes can easily be of the order of a mil-
limeter or less, while on the other hand, the correlation lengths characterizing perturbations in
the fiber are likely to be on the multiple meters scale (as can be expected based on polarization
studies in single-mode fibers). A meaningful statistical study requires simulation of multiple
correlation lengths, a prohibitively time-consuming procedure when a step-size of a fraction of
a millimeter needs to be used. In order to bypass this difficulty we presentin Fig. 1 the results of
a computation performed where the correlation length of the perturbatiassmuch shorter

than in reality and equal to only fifteen beat Iength@%l.lS%). In addition, the coherence

lengths of the fields in the two groups of modes were assumed tg bel 4 = L¢/10. We
assumed degeneracy factorggt= 1 andg, = 2, for the two groups of modes and the pertur-

bation vector’B(z) was assigned Gaussian statistically independent components. Since we do
not seek to resolve the details of the formation of strong coupling within each of the two groups

of modes, we take the components*:')(xi) that are responsible for such coupling as white noise
processes in the longitudinal dimensianit can be shown that their power spectral density
(which is constant) is equal togB, (497, — 1)*1L[ql. The other components @z), which

are responsible for coupling between the two groups of modes, were produced as Ornstein-
Uhlenbeck processes [15], with the above specified correlation lépgihd with a variance

no which was chosen such that a couplingo5 x 102 is predicted by Eq. (8) dt = 10Lc.

In Fig. 1(a) we plot the average crosstdlk,) as a function of propagation distance, as-
suming transmission of a CW signal. The thick solid lines (black) represent the full expression
Eq. (7) and the thin lines (red) represent the results of Monte Carlo simulations with 50,000
fiber realizations. The dashed lines represent the simplified expression Eq. (8). The excellent
agreement between the analytical solutions and the simulations is evident. The small deviation
observed when the crosstalk level rises towards 5% represents the saturation of the first order
analysis that we used. We note that the accuracy of the analytical results depends only on the
overall level of coupling and not on the exact parameter combinations. To demonstrate this,
the dotted green curve in Fig. 1(a), which overlaps with the red curve, was calculated with dif-
ferent parameterg;c = 30%0 andL; = Lg = Lc/5. The shaded area surrounding the curves

marks one standard deviation as given by Eq. (9). Figure 1(b) shows the standard deviation
Ou,, as a function of propagation distance. Once again, the thick black and the thin red lines
represent the analytical expression Eq. (9) and the numerical results, respectively. In Fig. 1(c)
we plot the crosstalk probability density function for the displayed values of the propagation
distance. Symbols represent Monte Carlo simulations, solid lines are the plot of a chi-squared
distribution with 4y, = 8 degrees of freedom and mean value given by Eq. (7).

4, Conclusions

We studied the crosstalk between groups of degenerate modes induced by random perturbations
in multimode fibers. We showed that the crosstalk is determined almost exclusively by the
wavenumber difference between the groups, whereas the effect of the group-velocity difference
is negligible. In addition, the standard deviation of the crosstalk was found to be comparable
in magnitude with the average crosstalk. This result is of major significance for experimental
fiber characterization as it questions the reliability of isolated crosstalk measurements.
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