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Abstract: We study random coupling induced crosstalk between groups
of degenerate modes in spatially multiplexed optical transmission. Our
analysis shows that the average crosstalk is primarily determined by the
wavenumber mismatch, by the correlation length of the random pertur-
bations, and by the coherence length of the degenerate modes, whereas
the effect of a deterministic group velocity difference is negligible. The
standard deviation of the crosstalk is shown to be comparable to its average
value, implying that crosstalk measurements are inherently noisy.
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1. Introduction

Spatially multiplexed transmission is considered to be a promising solution for increasing the
information throughput of fiber-optic systems [1], and significant efforts are being invested into
exploring the properties of fiber structures supporting several propagation modes. A typical sit-
uation occurring in multimode structures is that groups of modes are characterized by similar
propagation constants, implying strong coupling between them [2]. We refer to such modes as
degenerate. On the other hand, modes that belong to different groups characterized by notably
different propagation constants are weakly coupled, as has been observed in a series of experi-
ments [3, 4]. This reality is nicely exemplified in the case of single-core fibers operating in the
weakly guiding regime, where the linearly polarized (LP) mode approximation is valid [5]. A
multi-core fiber forms another example as, depending on the overall core number and geometry,
multiple degeneracies between the resultant super-modes may exist [6].

Our goal in this paper is to model the coupling between non-degenerate groups of modes
and to understand its dependence on various fiber parameters. We obtain an expression for the
crosstalk and find that the degree of coupling is mainly determined by the mismatch between
the wavenumbers of the two groups, whereas the effect of the mismatch on group velocities is
negligible. In addition, we show that the standard deviation of the crosstalk is comparable to
its average value, a property that has to be taken in proper consideration when characterizing
crosstalk in multimode fibers.

2. Analysis

As elaborated in [7], linear propagation in a fiber supportingN orthogonal spatial modes is
described by the equation

d~E
dz

= i

[

B+
1

2N
~̃b(ω ,z) ·~Λ(2N)

]

~E , (1)

where 2N is the total number of propagation modes (with the factor of 2 accounting for polariza-
tions), and~E is a 2N-dimensional column vector whose components are the complex envelopes
of the electric field in the individual modes. The overall number of modes is 2N= ∑M

j=12g j,
whereg j is the degeneracy of thej-th group of modes andM is the number of groups. For
example, in a weakly-guiding step index fiber supporting the first two LP mode groups, we
haveN = 3, M = 2, g1 = 1, andg2 = 2. The 2N ×2N matrix B describes propagation in the
absence of perturbations, where the modes are uncoupled. Its only nonzero elements are on the

main diagonal and they equal the wavenumbers of the various modes [8]. The vector~̃b(ω ,z)
has 4N2−1 real-valued components and it generalizes the familiar birefringence vector used
in the modeling of polarization effects in single mode fibers [10]. The tilde above the vec-
tor sign serves to distinguish between generalized birefringence vectors [7] and electric field
vectors such as~E . The term~Λ(2N) is the generalized Pauli matrix vector [7] and its elements
are 2N ×2N traceless Hermitian matricesΛi, which reduce to the standard Pauli matrices [10]
in the case of the single mode fiber (N = 1). These matrices constitute a basis for the space
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of 2N × 2N traceless Hermitian matrices. The scalar product~̃b ·~Λ(2N) is to be interpreted as

∑4N2−1
j=1 b jΛ j, and (wheñ~b is assigned the appropriate statistics) accounts for the effect of mode

coupling resulting from random perturbations in the fiber structure. For ease of representation,
it is convenient to decompose the electric field vector~E into vectors~E j of smaller dimension
2g j, whose components are the field envelopes of the degenerate members of thej-th group.
In this representation, the first 2g1 terms of the main diagonal of the matrixB are equal toβ1

(the wavenumber of the modes in the first group), the following 2g2 terms are equal toβ2 (the
wavenumber of the second group) and so on.

We now proceed by dividing the matrix~̃b ·~Λ(2N) into rectangular blocks denoted bybl j whose
dimension is 2g j × 2gl, which can be demonstrated to have the propertyb†

l j = b jl . With this

notation, and substituting for convenience~el(z) = exp(−iβlz)~El(z), Eq. (1) can be rewritten as
a set of coupled equations

d~el

dz
=

i
2N

bll~el +
i

2N

M

∑
j 6=l

eiβ jl zbl j~en, (2)

where we definedβ jl = β j −βl. A formal solution of Eq. (2) is given by

~el(z) = Ul(z,0)~el(0)+
i

2N

M

∑
j 6=l

∫ z

0
Ul(z,z

′)bl j(z
′)~e j(z

′)eiβ jl z
′
dz′, (3)

where Ul(z,0) is a unitary matrix satisfying dUl/dz = ibllUl/2gl, and whereUl(z,z′) =
Ul(z,0)U

†
l (z

′,0) describes propagation in thel-th group of modes fromz′ to z in the absence of
random coupling with other groups.

2.1. Coupling between groups of modes

We now study the signal leaking from one group of degenerate modes to another. To that end,
we evaluate~El(z) when the input signal is injected only into groupq, with q 6= l. Since we expect
the coupling between different groups to be small due to the large wavenumber difference, we
extract~El(z) via a first-order perturbation analysis, which yields

~el(z) =
i

2N

∫ z

0
eiβqlz

′
Ul(z,z

′)blq(z
′)Uq(z

′,0)~eq(0)dz′. (4)

The interpretation of Eq. (4) is rather intuitive. The electric field generated in groupl at position
z′ is proportional to the product of the random coupling matrixblq(z′) by the field~eq(z′) =
Uq(z′,0)~eq(0). The matrixUl(z,z′) accounts for the propagation of the field in groupl from z′

to z and the term exp(iβqlz′) accounts for the mode-independent phase that it accumulates. In
what follows we will assume that the input vector is normalized, so that|~eq(0)|= 1.

It is of interest to note that the inverse Fourier transform of Eq. (4) is the impulse response
of the system describing coupling between theq-th and thel-th groups of modes. When the
delay spread in the fiber is dominated by the deterministic walk-off between the groups, the
impulse response measured after a distancez will be limited to a time interval whose duration
is |zβql,1|, whereβql,1 is the frequency derivative ofβql at the carrier frequency, namely at
ω = 0. This picture is in agreement, in terms of the general shape of the impulse response, with
the experimental results reported in [3] and it can be deduced from Eq. (4) by approximating

βql ≃ βql,0+βql,1ω and by neglecting the frequency dependence of the perturbation vector~̃b(z),
which is responsible for random modal dispersion [7].
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In order to quantify the extent of coupling between different groups of modes we consider
the total energy received in thel-th group when a signal is transmitted in theq-th group. This
quantity is given by

ulq =

∫ +∞

−∞
P̃(ω)|~el(z,ω)|2 dω

2π
, (5)

whereP̃(ω) is the input signal spectrum, normalized so that
∫+∞
−∞ P̃(ω)dω/2π = 1. Since this

problem is stochastic in nature, we now examine the statistics ofulq over fiber realizations.

2.2. Statistics of mode coupling

We first calculate the average crosstalk〈ulq〉. This involves calculating first〈|~el(z,ω)|2〉,
which in turn involves calculating〈U†

q(z
′′,0)b†

lq(z
′′)U†

l (z,z
′′)Ul(z,z′)blq(z′)Uq(z′,0)〉, as a con-

sequence of the double integral appearing when evaluating|~el(z,ω)|2 from Eq. (4). Since the
statistics of mode coupling should be stationary with respect to frequency within the tele-
com bandwidth, we may set the offset from the carrier frequency to zero, namelyω = 0,

in ~̃b(ω ,z) when performing the average. Since the matricesbll and bqq (that determineUl

andUq) are statistically independent of each other [11] and of the coupling blocksblm, the
averaging of the inner term〈U†

l (z,z
′′)Ul(z,z′)〉 = 〈Ul(z′′ − z′,0)〉 can be performed indepen-

dently of the outer terms. By isotropy the desired average should be proportional to the iden-
tity matrix I l , and we may write〈Ul(z,0)〉 = exp(−z/Ll)I l , where we assumed exponen-
tial decorrelation of the electric field vector. The physical meaning of the correlation length
Ll is seen when expressing the longitudinal autocorrelation function of the field vector as
〈~el(z′′)†~el(z′)〉 =~el(0)†〈Ul(z′′ − z′,0)〉~el(0) = |~el(0)|2exp(−|z′′ − z′|/Ll). We thus refer toLl

as the coherence length of the electric field [12].
We are then left with the calculation of〈U†

q(z
′′,0)b†

lq(z
′′)blq(z′)Uq(z′,0)〉, where the inner

productb†
lq(z

′′)blq(z′) can be averaged separately as it is independent ofUq. To accomplish

this task, we refer the reader to the detailed construction of the~Λ(2N) matrix vector, which
is presented in the appendix of [7]. Moreover, since the matricesblq represent off-diagonal

blocks of the matrix̃~b ·~Λ(2N), the real and imaginary parts of each of the elements ofblq are

proportional to different components of the vector~̃b, with the proportionality coefficient equal

to
√

N. Hence, since we model the generalized birefringence vector~̃b as consisting of statis-
tically independent components, there is statistical independence between the elements ofblq

and between the real and imaginary parts of each element. Denoting byf (z) the autocorre-

lation function of the components of~̃b(z), namely〈b j(z′)bk(z′′)〉 = f (z′ − z′′)δ jk, we obtain
〈b†

lq(z
′′)blq(z′)〉= 4Ngl f (z′− z′′)Iq. This leaves us with the calculation of〈U†

q(z
′′,0)Uq(z′,0)〉,

which follows the same lines as in the calculation performed forUl , with the result:

〈|~el(z)|2〉=
gl

N
Re

{

∫ z

0
e−iβqlξ e−(1/Ll+1/Lq)ξ (z− ξ ) f (ξ )dξ

}

. (6)

To gain further insight we assume a particular functional form for the autocorrelation function
of the mode coupling perturbations,f (z) = n0exp(−z/Lc), wheren0 quantifies the strength of
the perturbations andLc is their correlation length. This is a plausible choice, which is custom-
ary in PMD studies [13]. The average coupled energy can thus be written as

〈ulq〉=
2n0gl

N
Re

{

∫ +∞

−∞
P̃(ω)

e−Kz +Kz−1
K2

}

dω
2π

, (7)

whereK = 1/Leff + iβlq, with Leff = (1/Lc +1/Ll +1/Lq)
−1. Note that for large propagation

distances, the fractional expression inside the integral in Eq. (7) can be approximated byz/K,
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Fig. 1. (a) Average energy coupled from non-degenerate groupq to a two-fold degenerate
group l versus propagation distance normalized toLc. The solid black line represents the
complete expression given by Eq. (7), whereas the thin red and the dotted green lines were
obtained in simulation with different parameters (see text). The dashed black line shows
the simplified crosstalk expression given by Eq. (8). The shaded area marks one standard
deviation from the mean as given by Eq. (9). (b) Standard deviation of the crosstalkσulq

as obtained from Eq. (9) (thick-black curve) and from numerical simulations (thin red). (c)
Crosstalk probability density function (circles) and chi-squared distribution fit (solid line).

which shows that the degree of coupling can be reduced by increasing the wavenumber mis-
match. Expanding Eq. (7) to fourth order inβ−1

lq , and approximatingβlq ≃ βlq,0+ωβlq,1, yields

〈ulq〉=
n0

β 2
lq,0

2gl

N
z

Leff
(1+ εlq), (8)

whereεlq = 3ω2
rmsβ 2

lq,1/β 2
lq,0, with ω2

rms =
∫ +∞
−∞ ω2P̃(ω)dω/2π being the mean square band-

width of the input signal. The quantityεlq is a correction term which turns out to be negligibly
small for realistic fiber parameters. For example, assumingωrms/2π = 20 GHz, we obtain
εlq ≃ 1.9×10−5/β 2

lq,0 for the differential mode group delay valueβlq,1 = 20 ps/km [3], and

εlq ≃ 0.9/β 2
lq,0 for the much greater valueβlq,1 = 4.35 ns/km [4], which gives a very small

number sinceβlq,0 is by orders of magnitude larger than 1 m−1. This means that with a large
enough wavenumber mismatch the group velocity difference is expected to have a negligible
effect on system performance [14].

We now estimate the standard deviation of the crosstalkσulq . Inspection of Eq. (4) suggests
that, if the propagation distance is much longer than the correlation length ofblq, then the
output field is the sum of many independent, random contributions, and hence by the central-
limit theorem~el(z) becomes a Gaussian vector with 2gl independentcomplex components. The
crosstalkulq is proportional to the frequency integral of|~el(z)|2 and its statistical properties
are affected by the frequency-dependence of the coupling. In the special case where fiber char-
acterization is performed with a continuous-wave (CW) signal,ulq can be approximated by a
chi-squared distributed variable with 4gl degrees of freedom and standard deviation given by

σulq =
〈ulq〉√

2gl
. (9)

With the characteristic values ofgl in the majority of relevant fiber structures (in the case of
few mode fibers in the weakly guiding approximation, the largest value ofgl is 2), this implies
that measurements of crosstalk are necessarily noisy, a fact that needs to be properly taken into
account in practical considerations.
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3. Results

In order to validate the above theory, one would like to compare its predictions with the sim-
ulation of a realistic fiber structure, supporting multiple groups of modes. Such a procedure
would however be prohibitively inefficient because of the multiple length scales involved in the
processes of propagation and coupling. On the one hand, the beat-length associated with the
wavenumber difference between any two groups of modes can easily be of the order of a mil-
limeter or less, while on the other hand, the correlation lengths characterizing perturbations in
the fiber are likely to be on the multiple meters scale (as can be expected based on polarization
studies in single-mode fibers). A meaningful statistical study requires simulation of multiple
correlation lengths, a prohibitively time-consuming procedure when a step-size of a fraction of
a millimeter needs to be used. In order to bypass this difficulty we present in Fig. 1 the results of
a computation performed where the correlation length of the perturbationsLc is much shorter
than in reality and equal to only fifteen beat lengths (Lc = 15 2π

βlq,0
). In addition, the coherence

lengths of the fields in the two groups of modes were assumed to beLl = Lq = Lc/10. We
assumed degeneracy factors ofgq = 1 andgl = 2, for the two groups of modes and the pertur-

bation vector̃~b(z) was assigned Gaussian statistically independent components. Since we do
not seek to resolve the details of the formation of strong coupling within each of the two groups

of modes, we take the components of~̃b(z) that are responsible for such coupling as white noise
processes in the longitudinal dimensionz. It can be shown that their power spectral density

(which is constant) is equal to 8g2
l,q(4g2

l,q − 1)−1L−1
l,q . The other components of~̃b(z), which

are responsible for coupling between the two groups of modes, were produced as Ornstein-
Uhlenbeck processes [15], with the above specified correlation lengthLc and with a variance
n0 which was chosen such that a coupling of∼ 5×10−2 is predicted by Eq. (8) atL = 10Lc.

In Fig. 1(a) we plot the average crosstalk〈ulq〉 as a function of propagation distance, as-
suming transmission of a CW signal. The thick solid lines (black) represent the full expression
Eq. (7) and the thin lines (red) represent the results of Monte Carlo simulations with 50,000
fiber realizations. The dashed lines represent the simplified expression Eq. (8). The excellent
agreement between the analytical solutions and the simulations is evident. The small deviation
observed when the crosstalk level rises towards 5% represents the saturation of the first order
analysis that we used. We note that the accuracy of the analytical results depends only on the
overall level of coupling and not on the exact parameter combinations. To demonstrate this,
the dotted green curve in Fig. 1(a), which overlaps with the red curve, was calculated with dif-
ferent parameters;Lc = 30 2π

βlq,0
andLl = Lq = Lc/5. The shaded area surrounding the curves

marks one standard deviation as given by Eq. (9). Figure 1(b) shows the standard deviation
σulq as a function of propagation distance. Once again, the thick black and the thin red lines
represent the analytical expression Eq. (9) and the numerical results, respectively. In Fig. 1(c)
we plot the crosstalk probability density function for the displayed values of the propagation
distance. Symbols represent Monte Carlo simulations, solid lines are the plot of a chi-squared
distribution with 4g2 = 8 degrees of freedom and mean value given by Eq. (7).

4. Conclusions

We studied the crosstalk between groups of degenerate modes induced by random perturbations
in multimode fibers. We showed that the crosstalk is determined almost exclusively by the
wavenumber difference between the groups, whereas the effect of the group-velocity difference
is negligible. In addition, the standard deviation of the crosstalk was found to be comparable
in magnitude with the average crosstalk. This result is of major significance for experimental
fiber characterization as it questions the reliability of isolated crosstalk measurements.
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