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Abstract: We show that polarization modulated and polarization mul-
tiplexed transmission may be significantly impaired by the polarization
scattering induced by intra-channel cross-phase modulation and four-wave
mixing. In polarization multiplexed transmission, channel interleaving may
be used to mitigate the effect when two-pulse collisions are dominant.
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1. Introduction

It is well known that intra-channel cross-phase modulation (XPM) may produce significant
polarization scattering in soliton transmission [1]. Intra-channel XPM is however a significant
process in highly dispersed pulse transmission, so that we may expect a similar polarization
scattering to occur in polarization multiplexed or polarization modulated highly dispersed pulse
transmission even if the transmission is single channel. This effect may impair high baud rate
single channel transmission like it impaired multi-channel soliton transmission. Using a per-
turbation approach [2], we analyze in this Letter the effect of intra-channel collisions in polar-
ization modulated or polarization multiplexed systems, and show that they may indeed induce
signal depolarization similar to that caused by collisions between wavelength division multi-
plexed solitons [1]. Simple analytical expressions capturing the essence of the phenomenon and
quantitatively predicting the observed amount of depolarization are derived. We finally show
that a relative delay of the two multiplexed channels by half of a symbol duration (channel
interleaving) reduces the scattering by more than one order of magnitude.

2. First order perturbation theory

For moderate amounts of polarization mode dispersion (PMD), the evolution of the vector
electric field E of a polarized optical field in a nonlinear dispersive fiber, averaged over the fast
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polarization evolution, is well described by the Manakov equation [1, 3]
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Here, β ′′ is the group velocity dispersion (negative in the anomalous dispersion region),
γ = 2πn2/(λAeff) is the fiber nonlinear coefficient, n2 is the nonlinear refractive index, and
Aeff is the effective area of the fiber. The function f (z) rescales the fiber nonlinearity to include
the effect of a non-uniform power profile caused by the fiber loss. When equally spaced lumped
Erbium amplifiers are used, this function is f (z) = exp[−α mod(z,zs)], where mod is the modu-
lus function, α is the power attenuation coefficient, and zs is the span length. Let us now assume
that the field E=∑n En(z, t) is a sequence of well separated pulses En centered at Tn = nT , with
T the symbol duration, and that the message is encoded by a different polarization, phase and
amplitude of the individual pulses. A large dispersion adds on pulses a strong time-frequency
correlation, because each frequency component is delayed proportionally to its detuning from
the center frequency. Consequently, it is possible to show that the well-known selection rules
of four-wave mixing in frequency reflect into similar rules in time domain. As a result of these
rules, the evolution of the pulse centered at T0 = 0 is described by the equation
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where the triple sum in Eq. (2) is extended to terms where the four-wave mixing interaction is
resonant with the pulse E0, which are those with Tk = Tj +Tl hence k = j+ l. In a three dimen-
sional space (the Stokes space) spanned by the unit vectors (�e1,�e2,�e3), let us now introduce the
Pauli spin vector as �σ = (|x〉〈x|− |y〉〈y|)�e1 +(|y〉〈x|+ |x〉〈y|)�e2 + i(|y〉〈x|− |x〉〈y|)�e3, where
|x〉 and |y〉 are unit polarization vectors parallel to the x and y axis respectively. Let us then
define En = En|s〉 where |s〉 is the unit polarization state, and the Stokes vectors of the field is
�s = 〈s|�σ |s〉. After multiplying by E†

0�σ both sides of Eq. (2), adding the hermitian conjugate,
and integrating over t we obtain
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An integration by parts −i
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0)�σ(∂tE0) shows that the term propor-

tional to dispersion is purely imaginary so that it cancels at the right hand side, so that
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If we define the average polarization across the pulse as �s0(z) =
∫

dt|E0|2�s0(z, t)/U0, where
U0 =

∫
dt|E0|2 is the total energy of the pulse centered at T0 = 0, we obtain
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Equation (5) may be solved using a perturbation approach, by entering at right hand side for
En, n = 0,k, l, j and |sn〉, their expressions in the absence of nonlinearity. To this purpose, let
us assume that the input pulses have a well-defined polarization, uniform across the pulses,
that is En(z = 0, t) = En(0, t)|s〉, where the unit polarization vector |s〉 is independent of t. A
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purely dispersive propagation preserves the uniformity of the polarization hence, within the
perturbation approach, 〈s0|�σ |sl〉〈s j+l |s j〉 at right hand side of Eq. (5) may be assumed as time
independent quantities, and pulled out of the integral.

It is interesting to consider the limit case of two-pulse interaction, in which two pulses of
the four at right hand side of Eq. (5) overlap, that is the particular case j = 0. Using that
|sl〉〈sl |= 1

2 (1+ ŝl ·�σ) and i[�σ(�σ ·�sl)− (�σ ·�sl)�σ ]/2 =�sl ×�σ [4], we obtain from Eq. (5)
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In the special case of Gaussian pulses En(0, t) = An exp[−t2
n/(2τ2)] where tn = t − nT ,

the solution in the absence of nonlinearity may be analytically expressed as En(z, t) =
An exp

(−t2
n/{2τ2[1+ρ(z)]})/√1+ρ(z), where ρ(z) = −i(|β ′′|/β ′′)(z − z∗)/zd . Here, we

defined the dispersion length zd = |β ′′|/τ2, and we included a possible pre-dispersion of the
pulses of the amount βpre =−β ′′z∗, in ps2 if β ′′ is in ps2/km and z∗ in km. For Gaussian pulses,
Eqs. (5) and (6) become
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where we defined the normalized bivariate normal distribution, albeit with an imaginary corre-
lation coefficient ρ(z) =−i(|β ′′|/β ′′)(z− z∗)/zd , as
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The case of two-pulse interaction described by Eqs. (6) and (8) corresponds to pure XPM.
In this case, the component parallel to �s0 at the right hand side of Eqs. (6) and (8) is zero,
hence dlnU0/dz = 0. This means that two-pulse collisions does not produce exchange of en-
ergy between the two pulses but only a change in their polarization. In addition, there is no
polarization scattering if the pulses are either co-polarized (�s0 parallel to�sl) or cross-polarized
(�s0 anti-parallel to�sl). Note once again the strong analogy between the two-pulse case and the
polarization scattering caused by inter-channel XPM in wavelength division multiplexed and
polarization multiplexed soliton transmission [1].

Four pulse interactions described by Eqs. (5) and (7) with j �= 0, on the other hand, corre-
spond to non-degenerate intra-channel four-wave mixing. In this case, intra-pulse power trans-
fer may take place. This is reflected by the fact that 〈s0|�σ |sl〉 may have a component par-
allel to �s0. Furthermore, polarization scattering may also occur between three co-polarized
pulses and one cross-polarized. To see this, let us assume without loss of generality that
�s0 =�e2. In this case, in Eqs. (5) or (7) the rate of power change dlnU0(z)/dz is proportional
to |〈s0|�σ |sl〉 ·�e2|2 = (1+�sl ·�s0)/2, whereas the rate of depolarization d�s0/dz have components
along�e1 and�e3 proportional to |〈s0|�σ |sl〉 ·�e1,3|2 = (1−�sl ·�s0)/2. Therefore, when�sl ·�s0 =−1,
hence when the pulses at l and 0 are orthogonally polarized, d�s0/dz may have non-zero depo-
larizing components parallel to�e1 and�e3 if the pulse at j is co-polarized with the pulse at j+ l
so that |〈s j+l |s j〉|= 1.

3. Numerical example: polarization multiplexed QPSK signal

Let us now evaluate the variance of the polarization spread in a polarization-multiplexed
quadrature phase shift keying (QPSK) signal, where all pulses have the same amplitude Ak = A
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and the phases of the pulses on each polarization are 0, π/2, π and 3π/2, assuming syn-
chronous pulse streams on the two polarizations. To evaluate the effect of two-pulse colli-
sions, we notice that in this case the possible pulse polarizations are the two linear polariza-
tions �s = (0,±1,0) and the two circular polarizations �s = (0,0,±1). Let us assume that the
pulse at T0 = 0 has the linear polarization �s0 = (0,1,0). The interacting pulses will be with
equal probability linearly polarized, in which case �s0(0)×�sl(0) = 0, or circularly polarized,
in which case�s0(0)×�sl(0) = (±1,0,0). Assuming a random message, the polarization spread
Δ�s0 =�s0(z)−�s0(0) is on average zero, 〈Δ�s0〉= 0, whereas its variance along�e1 is

〈[Δ�s0(z) ·�e1]
2〉2−pulse =

(
8
9

γπA2τ2
)2

∑
l �=0

[∫ z

0
dz′ f (z′)G(lT,0,z′)

]2

, (10)

where the sum is over all pulses that overlap with the pulse 0 during propagation up to z. Notice
that, if the number of interacting pulses is large, because of the central limit theorem Δ�s0 ·�e1 is
Gaussian distributed with zero average and variance given by Eq. (10).

The estimate of the polarization scattering caused by multiple pulse collisions requires the
knowledge of the polarization and the absolute phase of the 16 transmitted pulses. They are
in our example ±|± s2〉, ±|s±〉, ±i|± s2〉, and ±i|s±〉, where |± s2〉= (|x〉± |y〉)/√2, |s±〉=
(|x〉± i|y〉)/√2. Assume that |s0〉 = |+ s2〉. We have 〈s2|�σ |s2〉 =�e2, 〈s2|�σ | − s2〉 =�e1 + i�e3,
〈s2|�σ |s+〉= (1− i)�e1/2+(1+ i)(�e2 +�e3)/2, 〈s2|�σ |s−〉= (1+ i)�e1/2+(1− i)(�e2−�e3)/2, and
〈s2|s±〉= (1± i)/2 〈−s2|s±〉= (1∓ i)/2, 〈s2|− s2〉= 〈s+|s−〉= 0.

When the interaction is with a pulse l circularly polarized or co-polarized with the pulse in 0,
the four wave mixing interaction has a component parallel to�s0, which produces a change of the
pulse energy U0. This means that only the intra-channel two-pulse interaction is a real soliton-
like collision, where there is no power transfer between the two pulses but only a polarization
change. Four-pulse interaction (not unexpectedly) produces a polarization rotation of the pulse
at 0 together with a phase dependent and polarization dependent power variation.

Notice that the average of 〈s j+l |s j〉 over all pulse is zero, so that the average polariza-
tion displacement is also zero. Squaring the expression for Δ�s0(z) ·�e1,3, we obtain a four-
fold sum of terms proportional to product of the real part of a1 = 〈s0|�σ |sl〉〈s j+l |s j〉 and
a2 = 〈s0|�σ |sl′ 〉〈s j′+l′ |s′j〉. Let us now use the expansion 〈Re(a1)Re(a2)〉 = 1/2[〈Re(a1a2)〉+
Re(a1a∗2)〉]. The first term is zero for the phase symmetry of the channel. The second term
is the real part of 〈s0|�σ |sl〉〈s j+l |s j〉 · 〈s j′ |s j′+l′ 〉〈sl′ |�σ |s0〉, which for isotropic polarization dis-
tribution has non-zero average only if j = j′ and l = l′. Using now that 〈|〈s j+l |s j〉|2〉 =
1/2 and 〈|〈s0|σ1,3|sl〉|2〉 = 1/2, and the statistical independence of the two terms, we
obtain 〈Re

[
2iG〈s0|σ1,3|sl〉〈s j+l |s j〉

]
Re

[
2iG〈s0|σ1,3|sl′ 〉〈s j′+l′ |s j′ 〉

]〉 = δ j, j′δl,l′ |G|2/2. Notice
that, being the polarization of the pulse at 0 parallel to�e2, depolarization of this pulse is caused
by the fluctuations of the first and third component of the Stokes vector only.

The contribution of the four pulse collision to the polarization spread along �e1 and�e3 is the
sum of the average squared of the individual elements of the sum, that is

〈[Δ�s0(z) ·�e1,3]
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For the first component of �s0, to this term should be added the one deriving from two-pulse
collisions. The term with j = 0 has been excluded because it comes from two-pulse collisions,
the term l = 0 has been excluded because it is zero at the right side of Eq. (7).

In Fig. 1 we show the depolarization of the pulse Stokes vectors on the Poincaré sphere in
a transmission systems employing two polarization multiplexed QPSK signals at 50 Gbaud/s
(200 Gbit/s aggregate rate). The pulses have a 5 ps full-width at half maximum Gaussian profile.
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a) b) c)

Fig. 1. Depolarization on the Poincaré sphere when two-pulse collisions are dominant, for
3 dBm (plot a), 7 dBm (plot b) and 13 dBm (plot c) average input power (per polarization).

The system is made of 7 spans of zs = 100 km each hence total length L = 700 km, with pre-
compensation −β ′′z∗, full compensation after each span, and post-compensation at the receiver
−β ′′(zs − z∗) so that 100% of the total fiber dispersion is compensated. Figure 2 has been
obtained with no pre-compensation, z∗ = 0. The fiber dispersion is 16 ps/nm/km, loss is 0.25
dB/km, and nonlinear coefficient γ = 1.3 W−1 km−1. The average input power is (left to right)
3, 7 and 13 dBm. The polarization rotation caused by intra-channel collisions is evident.

Let us now make a quantitative comparison between theory and simulations, for the same
system analyzed in Fig. 1. In Fig. 2a we show the standard deviation of the first component of
the Stokes vector, 〈[Δs0(L) ·�e1]

2〉1/2, for 7 dBm input power vs. the pre-compensated length of
fiber. The red dot-dashed line is the contribution of the two-pulse collisions alone, the purple
dashes line is the contribution of the four pulse collisions alone, the blue solid line is the com-
bination of the two, so it is the observed value of the standard deviation of the polarization jitter
along �e1. Along �e3, the contribution of the two-pulse collisions to polarization jitter is zero,
and only the contribution of the four pulse collisions is effective, and its variance is equal to
the variance of the four pulse collisions along �e1. Consequently, the purple dashed curve rep-
resents the observed standard deviation of the fluctuations of the third component of�s0, that is
〈[Δ�s0(L) ·�e3]

2〉1/2. The same expression may be obtained for the standard deviation of the term
parallel to�e2, hence being�s0 parallel to�e2, to the fluctuations of the pulse amplitude [the sec-
ond term at left hand side of Eq. (7)]. Scattered symbols represent the results directly obtained
from simulations, with the exception of the symbols over the two-pulse collision curve, which

have been inferred using 〈[Δ�s0(L) ·�e1]
2〉1/2

2−pulse = {〈[Δs0(L) ·�e1]
2〉 − 〈[Δs0(L) ·�e3]

2〉}1/2. The
imperfect agreement at low pre-compensation is probably caused by the small depolarization
of the pulses induced by the nonlinear interaction, more effective for small pulse pre-dispersion.
The simulations were performed using the Manakov equation, yet the full equations including
random mode coupling gave in our numerical example identical results if the fiber PMD did not
exceed 0.05 ps/km1/2, and results within 10% if the fiber PMD did not exceed 0.1 ps/km1/2.

A possible way to significantly reduce the polarization scattering is polarization interleaving.
If the two orthogonally polarized channels are offset by half of a symbol time, the interaction
is between pulses either parallel or orthogonally polarized and two-pulse collision induced
polarization rotation is to first order absent. This approach is expected to be effective only when
two-pulse scattering is dominant over multiple-pulse scattering, that is for moderate amounts of
pre-compensation, because four-pulse interactions produce polarization scattering also when all
pulses are either co- or cross-polarized. To verify the effect of channel interleaving, we show in
Fig. 2b by solid lines and in a logarithmic scale the standard deviation of the fluctuations of the
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Fig. 2. a) Standard deviation of the first component of the Stokes vector, 〈[Δ�s0(L) ·�e1]
2〉1/2,

for 7 dBm input power, vs. the pre-compensated length of fiber. Red dot-dashed curve:
two-pulse collisions only; purple dashed curve, four pulse collisions only; blue solid curve,
complete polarization jitter. The purple curve is also the standard deviation of the third
component of the Stokes vector, 〈[Δs0(L) · e3]

2〉1/2, because the two-pulse contribution
does not give fluctuations along �e3. b) Standard deviation of the first component of the

Stokes vector, 〈[Δ�s0(L) ·�e1]
2〉1/2

2−pulse, for 3 dBm (lower solid curve and triangles), 7 dBm
(intermediate solid curve and squares), and 13 dBm (upper solid curve and circles) average
input power, vs. the dispersion pre-compensation z∗ in km of precompensated fiber, with
no interleaving. Scattered symbols are the results of simulations, solid lines the prediction
of the theory. In the three lower curves, dotted lines connect the results of simulations with
channel interleaving under the same conditions of the solid lines.

first component of the Stokes vector, 〈[Δ�s0(L) ·�e1]
2〉2−pulse vs. the dispersion pre-compensation

z∗ obtained using Eq. (10), with no interleaving. Points show the results of simulations. The
three curves refer to an average input power of 3 (lower solid curve, triangles), 7 (intermediate
solid curve, squares) and 13 (upper solid curve, circles) dBm. In the same figures, dashed black
lines connect triangles, squares and circles representing the result of simulations with pulse
interleaving. Again, triangles, squares and circles refer to 3, 7 and 13 dBm input power. The
curves show a reduction of the polarization jitter by more than one order of magnitude, down
to a level compatible with that expected from the sole contribution of four-pulse collisions.
The reduction of depolarization obtained with pulse interleaving relies on the validity of the
Manakov equation, which neglects PMD, hence the benefit of this technique may become less
significant as PMD increases.

4. Conclusions

We have shown that intra-channel collisions may introduce significant polarization scattering in
systems in which non orthogonal polarizations are transmitted. This phenomenon is the intra-
channel analogous of the inter-channel polarization scattering in wavelength division multi-
plexed transmission. A first order perturbation theory including both two-pulse collision and
four pulse collisions and quantitatively predicting the expected amount of depolarization has
been presented. Finally, we have predicted and verified by computer simulations that channel
interleaving reduces polarization jitter by more than one order of magnitude compared to the
case of synchronous channels.
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