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Abstract 
Current bioinformatics workflows for PIWI-interacting RNA (piRNA) 
analysis focus primarily on germline-derived piRNAs and piRNA-
clusters. Frequently, they suffer from outdated piRNA databases, 
questionable quantification methods, and lack of reproducibility. 
Often, pipelines specific to miRNA analysis are used for the piRNA 
research in silico. Furthermore, the absence of a well-established 
database for piRNA annotation, as for miRNA, leads to uniformity 
issues between studies and generates confusion for data analysts and 
biologists. 
For these reasons, we have developed WIND (Workflow for pIRNAs aN
d beyonD), a bioinformatics workflow that addresses the crucial issue 
of piRNA annotation, thereby allowing a reliable analysis of small RNA 
sequencing data for the identification of piRNAs and other small non-
coding RNAs (sncRNAs) that in the past have been incorrectly 
classified as piRNAs. WIND allows the creation of a comprehensive 
annotation track of sncRNAs combining information available in 
RNAcentral, with piRNA sequences from piRNABank, the first database 
dedicated to piRNA annotation. WIND was built with Docker 
containers for reproducibility and integrates widely used 
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bioinformatics tools for sequence alignment and quantification. In 
addition, it includes Bioconductor packages for exploratory data and 
differential expression analysis. Moreover, WIND implements a "dual" 
approach for the evaluation of sncRNAs expression level quantifying 
the aligned reads to the annotated genome and carrying out an 
alignment-free transcript quantification using reads mapped to the 
transcriptome. Therefore, a broader range of piRNAs can be 
annotated, improving their quantification and easing the subsequent 
downstream analysis. WIND performance has been tested with 
several small RNA-seq datasets, demonstrating how our approach can 
be a useful and comprehensive resource to analyse piRNAs and other 
classes of sncRNAs.
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Introduction
Advances in the field of Next-Generation Sequencing and big 
data analysis have led to the identification of several small  
non-coding RNA (sncRNA) classes, some of which are still 
poorly characterised1,2. Among others, the most investigated 
include microRNAs (miRNAs), small interfering RNAs (siRNAs), 
PIWI-interacting RNAs (piRNAs), small nuclear (snRNAs) and 
small nucleolar RNAs (snoRNAs). Increasing evidence dem-
onstrates that the different sncRNAs constitute interconnected 
networks of molecules with key-regulatory functions in multiple  
biological processes, including physiological events, organism  
development or even disease3.

piRNAs represent an heterogeneous group, ubiquitous in most 
animal’s germline cells, with lack of conserved sequences and 
few common structural features in the various species, due 
to the highly adaptive nature of the piRNA pathway4. Germ-
line piRNAs typically have a 21–35 nt length, a strong bias for  
5’-end uridine signature and a 2’-O-methyl group at their  
3’-end5. Most of them are transcribed by either mono-directional 
or bidirectional genomic clusters, specific regions ranging from 
<1 kb to >100 kb, giving rise to a long, single-stranded precur-
sor and further processed in multiple mature piRNAs through 
enzymatic cleavage. A subset of piRNAs present an adenosine  
bias at position 10, a feature indicating their biogenesis through 
the ping-pong cycle, a mechanism by which the cleavage of the 
target RNA is coupled with the production of a second popu-
lation of target-specific piRNAs. They interact with PIWI  
proteins of the Argonaute (AGO) family, forming a silencing 
complex able to suppress transposable elements, regulate target’s 
gene expression at both epigenetic and post-transcriptional 
level and defend from viral infections6. These piRNA functions 
are well studied in the animal germline, however in somatic  
cells, their role needs to be further elucidated. Additional stud-
ies have revealed that piRNA dysregulation can contribute to 
the onset of several diseases7. Notably in cancer, the abnormal 
expression of piRNAs has been associated with tumour initiation,  
progression, and metastasis formation and these molecules 
have shown the potential to be useful diagnostic tools and  
therapeutic targets as well as biomarkers for cancer prognosis8.

A limitation in understanding their function and use in clinical 
practice is the lack of a comprehensive and reliable method for 

their identification in tissues others than germline. A common 
strategy for piRNAs identification is based on mapping the 
reads obtained from high-throughput small RNA libraries to  
the genome and then annotate to small RNA databases for quan-
tification. Most of the piRNA sequences identified so far have 
been deposited in databases such as piRNABank9, piRNAdb  
(https://www.pirnadb.org/), piRNAclusterDB10 and others. How-
ever, data collected in these repositories mainly include germ-
line piRNAs, while somatic piRNAs represent a minor fraction.  
In addition, piRNAs in somatic tissues and human cancers 
are less abundant than in germline, thereby leading to a more 
difficult identification and characterisation. Although piRNAs 
were initially confounded with fragments of longer RNAs,  
functional piRNAs have been identified to derive from fragments 
of rRNAs, tRNAs, snoRNAs, and post-transcriptionally processed  
mRNA11–13. Another level of complexity is represented by their 
genomic origin(s) and their actual amount, since identical 
sequences of piRNA can be produced by multiple genomic loci,  
resulting in very low precision and sensitivity.

For all the reasons stated above, and since existing workflows  
and tools for piRNA-analysis, usually, focus on the identifica-
tion and quantification of piRNA clusters (PILFER14, unitas15)  
or use outdated piRNA databases, we decided to implement a 
useful workflow for small RNA sequencing data analysis, able 
to analyse all classes of sncRNAs but especially designed for  
piRNA identification. We created a workflow that provides a 
quick method to integrate different piRNA databases in one 
annotation track, a two-method approach for small RNA identifi-
cation, annotation and quantification, and an output with several  
ready-to-publish plots and statistics. Additionally, we packaged 
the entire workflow in several Docker16 containers avoid-
ing the annoying problems related to the installation and  
libraries dependencies. Finally, we applied it to different small  
RNA datasets, highlighting that piRNAs are dysregulated 
in breast cancer tissues and may play an important role in  
maintaining the stemness of MCF7 spheroid-enriched cancer  
stem cells (CSCs).

Methods
In this study, we implemented a workflow for small RNA  
sequencing data analysis, defined WIND (Workflow for p 
IRNAs a Nd beyon D)17, designed for a comprehensive iden-
tification and quantification of small-RNAs and especially of  
piRNAs. We deployed it exploiting the Docker containerisa-
tion approach, allowing us to integrate multiple bioinformatics  
tools. In detail, we created two Docker images where we adopted 
broadly used tools for pre-processing, reads alignment, iden-
tification and quantification of sncRNAs, and all downstream  
analyses. We also integrated the already available container 
made for Salmon18 for transcriptome analysis. This solution 
takes into account best practices for reproducibility, versatility 
and ease of use, as the software deployment is fast and efficient.  
It can be used in various operating systems with only the 
requirements of the Docker engine and some minimum  
adjustments for processing power and RAM for the most  
memory demanding tools.

           Amendments from Version 1
To improve the results provided by WIND, we have created a 
new GTF that could be considered more accurate with respect 
to the previous one as it does not include sequences of piRNAs 
inside mRNA coding regions. Therefore, we modified all figures, 
tables, and data produced from the new analysis using the new 
GTF. We also added new packages in the new code, useful for 
the creation of ping-pong and coverage plots, and we integrated 
piRNAClusterDB information in the final GTF as metadata.

Any further responses from the reviewers can be found at 
the end of the article
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Workflow
The workflow consists of three significant steps (Figure 1):

1.  Annotation forging: the generation of the annota-
tion files for small RNA sequences used in the next  
quantification step.

2.  Pre-processing and quantification: pre-processing, 
alignment and quantification of the reads assigned to  
sncRNAs (using a dual approach: genomic and  
transcriptomic analysis).

3.  Exploratory data analysis: result exploration of both 
quantification methods in parallel and Differential 
Expression (DE) with two different methodologies  
(edgeR19,20 and limma-voom21).

Annotation forging. The first step of WIND, the Annotation 
forging (blue box in Figure 1) is the creation of the annotation  
track. In this step, we tried to reduce and potentially correct the 
issues regarding piRNA annotation, such as the presence of 
multi-mapped piRNA IDs, the inconsistencies among piRNA  
databases, and the misleading annotation of small RNA frag-
ments. In particular, 667,944 human and 1,399,813 mouse 
sequences were acquired from piRNABank (02-May-2007,  
Version 1, hg19). Duplicates and multi-mapped sequences were  
collapsed, leading to 23,439 and 39,986 unique sequences 
for human and mouse, respectively. Afterwards, these unique 
sequences were realigned to the latest version of the reference 
genome (Gencode22 primary assembly, GRCh38.p13 for human, 
and GRCm38.p6 for mouse) using STAR aligner23 with the fol-
lowing parameters: --alignIntronMax 0, --outFilterMultimapNmax  
100, --outFilterMatchNmin 16, and --outFilterMismatchNmax 0. 
Further on, 446,265 human and 180,780 mouse small RNA 
sequences from RNAcentral24 (v16, 28/09/2020) were utilised 
to complete the database (for details see Extended data:  
Supplementary Table 1). Then, the sequences from both data-
bases were filtered with respect to their length, keeping only  
those with less than 100 bases in length, since our primary  
interests are piRNAs and sncRNAs, and keeping only those that 
correspond to standard chromosomes. Moreover, a re-classifi-
cation of the piRNABank sequences was made. According to  
Tosar et al.25, a small percentage of annotated piRNAs are prob-
ably piRNA-sized fragments of sncRNAs (rRNAs, tRNAs, 
YRNAs, snRNAs, and snoRNAs) or intermediates of miRNA 
biogenesis and potentially act as contaminants in the quan-
tification step of the workflow. For this reason, piRNABank 
sequences matching sequences from RNAcentral with different  
sncRNA types (biotype) other than piRNA are re-categorised  
with the biotype from RNAcentral.

Subsequently, as it is well established that mature piRNAs have 
a length of around 21~35 bases26, before the final assembly of 
the sequences from both databases, the piRNABank sequences 
shorter than 69 bases (<69bp) are integrated with RNACentral  
sequences. Furthermore, we excluded the piRNA genomic  
ranges falling in regions annotated as protein coding, exons or 
CDS from the GENCODE annotation file. However, the user 
can choose to skip this filtering and obtain a “less stringent” 
GTF file. Moreover, inspired by Tosar et al. 202127, we included,  
as metadata, those piRNAs sequences that are inside other 
sncRNAs and lncRNAs from GENCODE annotation file. The 

Figure 1. Workflow schematic representation. The Annotation 
forging step, represented in blue, is the creation of a GTF file, where 
the two input databases (piRNABank and RNAcentral) are merged 
to produce the new small RNA annotation track, that together 
with the Fasta files constitute the inputs of the following step. In  
Pre-processing & Quantification step (light blue area), the user’s 
fastq files undergo through the quality check, and the adapter 
removal followed by the two quantification approaches (completed 
by Salmon, and STAR with FeatureCounts software) that perform 
in parallel alignment and the quantification of reads. In the green 
box, representing the Exploratory data analysis phase, are displayed 
all the possible results produced by the workflow. The data analyst 
could also pursue differential expression analysis if that is the 
desirable outcome.
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obtained sequences are finally exported to Fasta and GTF 
(Gene Transfer Format) file format. Eventually, we decided to 
provide the information available on piRNACLusterDB10 as  
metadata in the final GTF file. 

These tracks, for human and mouse species, have been included 
in the GitHub repository of the workflow and are available for 
users (https://github.com/ConYel/wind); therefore, the anno-
tation forging step can be skipped. The workflow can also 
be used for any other species, but in this case, it would be  
necessary for the user to run the Annotation forging step with  
the specific genome and small RNA sequences, respectively.

The mapping of these piRNA sequences to the genome has  
revealed that the piRNAs can derive from two types of 
genomic locations: discrete genomic loci (the piRNA clus-
ters) and protein-coding genes (e.g. UTRs introns)28–30. Using  
bumphunter31 package in the workflow, we were able to obtain 
piRNA origin information and provide it as the first addi-
tional file of the annotation. Since piRNAs are involved in 
the maintenance of genome stability through the silencing of  
transposable elements32, in this step, we also report a GTF file 
with the intersection between the genomic positions of small 
RNAs, the various categories of Transposable Elements (TEs)  
and information about the TE class, family and gene. Briefly, 
the GTF file is created with the related Fasta file; then the 
Genomic_Region_info, Multimapping_piRNA_info and Trans-
posable_Elements_info files are reported which carry infor-
mation about the genomic topology for the sequences in the  
GTF file. Likewise, these files are available in the GitHub reposi-
tory (GRCh38 and GRCm38), for future usage by the data  
analyst.

Pre-processing and quantification. The second step of the 
workflow, Pre-processing and quantification (light blue box in  
Figure 1), consists of a quality control check of the small  
RNA-seq data, carried out using the FastQC tool33, followed 
by the adapter removal using Cutadapt34 and by another quality 
control check using FastQC again. After these initial steps, the  
workflow exploits two different approaches for the quantifica-
tion of sncRNAs. In particular, one uses alignment to a refer-
ence genome with STAR and then quantification of aligned 
reads with FeatureCounts35; the other one uses Salmon (an  
aligner-free method) for the estimation of transcript-level abun-
dance. We named the two approaches “genomic” and “transcrip-
tomic” based on how the two methods work. Both approaches 
have positive and negative features. Undoubtedly, with STAR,  
the reads are aligned on a reference genome, Salmon instead is 
an alignment-free quantification method, able to prioritise the 
association of a feature with a specific site on a transcriptome.  
On the one hand, STAR could associate a read on multi-
ple sites creating a complete list of identified regions, but this 
makes it more difficult to determine the genomic locations of  
origin, thus requiring more computational work. On the other 
hand, Salmon is a transcriptome quantifier able to correct for 
fragment GC-content and positional bias, which improves the  
accuracy of abundance estimates and potentially the sensitivity  
of subsequent DE analysis.

To ensure the proper alignment of sncRNA reads to the genome, 
we used the following options for STAR aligner (as used in  
SPAR workflow36): --alignIntronMax 1, --outFilterMultimapNmax 
100, --outFilterMismatchNmax 1 and --outFilterMatchNmin 14. 
For Salmon, to be suitable for small RNA reads, the following  
options were applied: --seqBias, --gcBias, --numBootstraps 
100, and --validateMappings as was suggested from the work of 
Wu et al.37. Resulting files, from the previous step, are imported 
to R using the Bioconductor packages: tximport (for Salmon) 
and Rsubread (for FeatureCounts), as DGEList objects (edgeR).  
After reads count, a FeatureCounts object is reported as an 
R object (.RDS) for an easy and fast way to import it in R.  
Moreover, we decided to record the assigned reads from  
both Salmon and FeatureCounts as BAM files.

Exploratory data analysis. The last step of the workflow is 
the Exploratory data analysis (EDA), which includes the  
filtering of low expressed small RNAs, the normalisation  
procedures performed in parallel for both FeatureCounts and  
Salmon, and then the visualisation of the results according to 
the suggested EDA workflows38–41 from Bioconductor42. Finally, 
the workflow provides several useful output files: text and  
RDS files with filtered or normalised reads, information about  
the filtering step, Multidimensional Scaling (MDS) plots, biode-
tection plots, expression per small RNA category plot (counts-
bio), distance-matrix plot, hierarchical clustering plots with  
various normalisation methods, Principal Components Analy-
sis (PCA) plots, Relative Log Expression (RLE) plots43,44, voom-
derived plots, sequence length barplots, and piRNA sequence 
logos. Briefly, for each dataset analysed, 9 RDS files, 17  
tab-delimited files with all the statistics from alignment,  
filtering and annotation plus the filtered and normalised reads 
in counts per million (CPM), and 24 PDF files with several 
exploratory data analysis plots for each of the two methods used  
are generated. Furthermore, we also provided a script for the 
creation of ping-pong and strand coverage plots exploiting  
ssviz45 and ggbio46 R packages from Bioconductor.

Eventually, the gene expression data can be further compared  
using the DE analysis module, which allows calculating  
logarithmic fold change values using limma-voom or edgeR  
methods, and finally, both results (Salmon and FeatureCounts) 
can be merged and visualised together using heatmaps47. Then,  
the data analyst can choose to use the union of the results, 
and either consider all the molecules identified by at least one 
of the two methods, or use the intersection of the results and  
consider only the molecules supported by two methods. The 
differentially expressed molecules can be further used for 
piRNA target prediction analysis (included in the code) which  
was inspired by the similar module of iSMART tool48.

This workflow is structured to provide maximum flexibility to  
the user, who can modify several elements. In each step, altera-
tions can be made regarding the tools or the databases used  
according to the needs of the data analyst, while the workflow  
strategy remains the same. Specifically, in the first step, the 
GTF file can be enriched with more sequences of interest or 
a completely new GTF file could be created for any species.  
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Currently, the first step has been performed on human and mouse  
sncRNA sequences for the generation of the GTF files (included 
in the GitHub repository), but the same approach could be uti-
lised for any well-annotated genome that has enough small  
RNA sequences reported. In the second step, it is possible 
to use different tools for quality control, adapter trimming,  
aligning of the reads, e.g. Subread49 or HISAT250 or a different  
“alignment-free” RNA-seq quantification method, as Kallisto51.

Operation
The workflow was run on CentOS Linux release 7.8.2003 (Core) 
with Docker Engine - Community v19.03.13 and in R v4.0.0,  
with Bioconductor v3.12.

Validation and datasets
The complete workflow has been tested on several datasets to  
evaluate whether this worked in the identification of known 
piRNAs, low abundant molecules and in different species.  
Specifically, we have evaluated the performance of the tran-
scriptomic approach on sncRNA identification, and particularly 
on piRNAs, for which this method has been tested here for the  
first time. We created a small dataset where spike-in sequences 
of piRNA-like molecules were added to the input RNA. 
For this purpose, RNA of metastatic colon cancer cell line 
(COLO 205), where piRNA’s population has been already  
characterised52, was used. To mimic the behaviour of true  
piRNAs, a synthetic set of 4 piRNA-like molecules was used, 
including two non-methylated (SS-22 and SS-28) and two meth-
ylated (mSS-22 and mSS-28) of different lengths (22 nt and  
28 nt). Spike-ins were chemically synthesised at Exiqon, adapt-
ing the sequences described in Locati et al.53 to our conditions  
and the pool of 4 molecules was used at three different  
concentrations, with a final amount of 0.3 × 10^9 (dil_A), 0.3 × 
10^10 (dil_B) and 0.3 × 10^11 (dil_C) molecules/ug of RNA. 
Small RNA libraries were prepared using 1 μg of total RNA 
with a TruSeq small RNA Sample Prep Kit (Illumina, San 
Diego, Canada) and sequenced on the NextSeq 500 platform 
(Illumina, San Diego, CA, USA) as previously described in  
Sellitto et al. 201952 (samples are available on ArrayEx-
press, Accession number E-MTAB-9772: COLO205_Dil_A, 
COLO205_Dil_B, COLO205_Dil_C). Furthermore, we also 
exploited the samples processed with sodium periodate/β-elimi-
nation (samples are available on ArrayExpress, Accession number 
E-MTAB-8115: Treated_COLO205_1, Treated_COLO205_2, 
Treated_COLO205_3, Treated_testis_1) as an additional con-
trol for the quantification algorithms. Indeed, sodium periodate  
oxidation strongly reduces the non-methylated molecules 
allowing to see a drastic change in non-methylated spike-ins  
concentration.

To test the performance of WIND, in both high-piRNA and  
low-piRNA expression conditions, we used Human Testis 
RNAs (BioChain Institute Inc, Newark, CA, USA) and COLO 
205 cell line RNAs (samples are available on ArrayExpress. 
Accession number E-MTAB-8115: Non_treated_Testis_1 and  
Non_treated_COLO205_1, Non_treated_COLO205_2, Non_
treated_COLO205_3, Treated_COLO205_1, Treated_COLO205_2,  
Treated_COLO205_3, Treated_testis_1; Accession number  

E-MTAB-9782: Non_treated_Testis_2 and Non_treated_Testis_3).  
To test the workflow on mouse data, we used two samples 
of mouse adult Cardiac Myocyte (samples are available on 
ArrayExpress, Accession number E-MTAB-9866: aCM1,  
aCM2)54,55.

Furthermore, we also exploited two public datasets to test our  
workflow thoroughly including the differential expression  
module dataset, consisting of two experimental conditions in 
triplicates, MCF-7 enriched CSCs spheroids and monolayer  
cultures (Accession number GSE6824656,57); and a subset of 18 
samples from TCGA-BRCA58,59, using 9 Primary Solid Tumour  
versus 9 Solid Tissue Normal corresponding samples.

Results
The goal of this study was to create a robust workflow for the  
identification and quantification of piRNA sequences in small 
RNA sequencing data. It focuses on elucidating and solving  
one of the most challenging issues of this kind of analysis, 
the annotation controversies of piRNAs, thus providing rela-
tively accurate detection of the piRNA expression patterns. As  
a first point, a unique GTF file was generated for human and 
mouse species, starting from sequences obtained from the 
two widely used databases (piRNABank and RNAcentral) for  
piRNAs and sncRNAs, respectively. The GTF file was cre-
ated as described in the Methods obtaining 149,549 differ-
ent genomic locations corresponding to 39,812 sequences in 
human and 925,759 distinct genomic locations correspond-
ing to 95,205 sequences in mouse for all small RNA types (see  
Extended data: Supplementary Table 1). Furthermore, in humans, 
from the 39,812 sequences coding for small RNAs, 28,000 
were classified as piRNA, and 19,203 of them were found 
in common between RNAcentral and piRNABank; instead,  
8,444 were found only in RNAcentral and 353 only in  
piRNABank. Additionally, in the mouse genome, from 95,205 
sequences of small RNAs, 65,632 were categorised as piRNA, 
34,306 were in common between the two databases and on 
the contrary, 29,114 were unique to RNACentral, and 2,213  
were exclusive to piRNABank.

To test WIND thoroughly, we used several datasets with  
different characteristics: data produced in house, data available 
in a public repository, samples which include internal controls  
(spike-ins), datasets from different species (human and mouse), 
a dataset including different experimental conditions, and a 
dataset of tumour tissues (for more details see Methods and  
Data availability). First, we compared the quantification capa-
bility of the two methods implemented in the workflow.  
In particular, we evaluated the performance of the transcrip-
tomic approach on piRNA quantification, as this method to 
our knowledge, has not yet been used to analyse this sncRNA 
class. For this reason, we decided to apply the workflow on an  
own-made dataset, in which spike-in sequences of four  
piRNA-like molecules, two non-methylated and two methylated 
at three different concentrations, were included (see Methods 
for details). Exploiting this feature, we were able to assess the  
high efficiency of both (genomic and transcriptomic) approaches 
in quantifying the spike-ins, as demonstrated by the very similar  
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results obtained by the different methods. Supplementary 
Table 2 (Extended data) summarises the results obtained for the  
4 piRNA-like molecules calculated using three methods: 
iSMART, FeatureCounts, and Salmon. The results show that all 
approaches can identify and quantify all the types of piRNA-like  
sequences (methylated, non-methylated, treated and not treated, 
and of different length) correctly.

For a long time, piRNAs have been considered exclusively  
expressed in germline cells, but recently, it has been reported 
by several studies their presence also in somatic and pathologic  
tissues5,52,60–62. Germinal cells generally show the most sig-
nificant number and a higher level of expression of piRNAs.  
Starting from this knowledge, we tested the workflow on small 
RNA data obtained from human testis samples and tumour  
cell line (COLO205) to assess the capability to detect piRNAs 
in high and low concentration. Using WIND, we analysed the 
dataset and represented the results as plots of biodetection  
(Figure 2A and B) and countsBio (Figure 2C and D) per  
sample from NOISeq63 package. Biodetection plots are made 
from raw data in order to explore: a) the percentages of each  
small RNA type (named “biotypes”) in the genome (referred 
to the whole set of small RNAs provided); b) the propor-
tion detected in each sample; c) the percentage of each biotype  
within the sample. The countsBio plots, instead, show the 
count distribution for each biotype displayed as box plots, and 
the number of sncRNAs detected per biotype. Here, the two  
biodetection plots show, as expected, the presence of higher per-
centage of piRNA in testis sample respect to the COLO 205 
cells (∼75% in testis and ∼20% in COLO 205; Figure 2A and B).  
Moreover, considering the countsBio plots (Figure 2C and D),  
it is also possible to assess piRNAs higher median expres-
sion in testis if compared to the COLO 205 cells. Finally, we 
also produced sequence logos for the expressed piRNAs in the  
two sample types. These plots indicate if the bias for urid-
ine at first position base or the adenine at the 10th position of 
the sequence exists and if there are other biases in the 15 first 
bases of the sequences64. As expected, both groups showed a  
strong bias for uridine at the first position (drawn as thymine in 
the plots), in accordance with the preferential binding of PIWI  
proteins to transcripts starting with U. A bias, albeit with a 
much weaker signal, was also evident toward adenine at posi-
tion 10 in testis group, a hallmark of piRNAs generated by 
the ping-pong cycle and typical feature of germinal cells  
(Figure 2E and F).

For this analysis, we applied a stringent approach; thus, we  
considered as expressed only those molecules that were iden-
tified by both methods (genomic and transcriptomic). Then, 
we found that 7324 piRNAs were identified in testis and 223 
in COLO 205 cells. Therefore, this workflow was able to effi-
ciently identify a good number of piRNAs in somatic cells, 
where low levels of expression make the procedure more  
complicated, even when very stringent analysis parameters are 
used.

It is worth mentioning that, as detailed in the Methods, this  
workflow operates using two methods in parallel, each of which 

is able to identify sncRNAs with different performance. Apply-
ing the two algorithms together (considering the union of the 
results) allows the identification of an enriched number of  
molecules. The final user can decide, based on specific inter-
ests, which results should take into consideration, the union  
of the two approaches, only one, or the intersection.

We also evaluated the performance of the workflow for  
piRNA identification in the mouse. Specifically, we analysed  
small RNA-seq samples from mouse adult cardiac myocyte 
(aCM). In these samples, we were able to identify, considering the  
union of the genomic and transcriptomic approach, ∼290  
different piRNAs per samples (see Extended data: Supple-
mentary Table 3 for the details of the two analysis in com-
parison). We found that the piRNA population identified in 
aCM represents 12% of all reads assigned to small RNAs, and 
the top 100 expressed molecules are listed in Supplementary  
Table 3 (Extended data).

Moreover, to test the accuracy of the workflow across diverse  
sets of data, we moved to a public dataset. Recent findings have 
indicated that the role of piRNAs may not be only limited to 
germ cells, but may be extended to the regulation of cancer,  
promoting a stem-like state of tumour cells65. Therefore, we 
selected a dataset (GSE68246) to compare the piRNA profiles 
of breast spheroid-enriched CSCs against parental MCF7 cells 
and also generated in this case files, statistics and plots with 
WIND that are all available on the GitHub repository. On the  
expression data, filtering for low-expressed features was first 
carried out, then two of the NOIseq filters (1 count per million,  
and proportional filtering) or the EdgeR were applied, filter-
ing by group with and without the specific batch. The resulting 
objects were reported as RDS files and, for all the analysed  
sequences, a histogram (Figure 3A and B) with the average log

2
 

CPM before and after filtering of the counts was made using 
the edgeR filtering. Finally, the normalisation of all the counts 
was carried out with multiple methods: TMM66, TMMwsp  
(TMM with singleton pairing), RLE67, limma-Voom, with and 
without quality weights quantile68, Voom, with and without qual-
ity weights using the TMM normalisation, and Voom with and  
without quality weights exploiting the TMMwsp normalisation. 
To visualise the unforeseen sources of variation and to con-
trol whether the normalisation applied was correct, RLE plots  
(Figure 3C and D) were generated for all the sequenced data, 
for each normalisation method and for the not normalised,  
filtered data. An RDS object was also exported with the list of 
all normalised objects, and hierarchical clustering (Figure 3E  
and F) was then performed on previous data with various  
normalised methods. We applied the Euclidean distance and 
the methods of Ward’s, complete and average linkage. Further-
more, a correlation plot (Figure 4A) with sample-to-sample 
distances was made to show the similarities and dissimilarities 
between samples on all sncRNA data. In order to check for 
batch effects and get the summarised effects of the experimental  
categories, MDS plots (Figure 4B) and the first two Principal  
Components on a PCA plot were reported (Figure 4C). From 
the GTF file, sequences’ lengths were extracted and com-
bined with information about the expressed molecules to draw 
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Figure 2. Example of plots generated by WIND. A) and B) Biodetection plots (genomic approach) from NOIseq reporting: percentages 
of each sncRNA type called “biotype” on the genome (grey bar) for one of the samples; the proportion detected in each sample (red 
stripes bar); the percentage of each biotype within the sample (red bar). The biotypes on the right side of the green dashed line are the 
least abundant, and the reference values are reported on the Y right axis. C) and D) CountsBio plots (genomic approach) from NOIseq 
showing the count distribution for each biotype displayed as boxplots. Numbers on top of the plot show how many sncRNAs are detected 
per biotype in the entire dataset analysed. Different colours indicate different sncRNA classes. E) and F) Sequence Logo (1-15 bps) 
extracted from the piRNA sequence of the expressed piRNAs found in each group of samples (transcriptomic approach). A, C, E represents  
the results obtained for one representative testis samples, while B, D, F represent one representative COLO 205 sample.

Page 8 of 24

F1000Research 2021, 10:1 Last updated: 14 MAY 2021



Figure 3. Exploratory data analysis plots generated by WIND. A–B) Histograms of average log2 Counts Per Million (CPM) among all 
samples before (A) and after (B) filtering with one of the selected methods (EdgeR filtering in this case) for sncRNA data. C–D) Relative Log 
Expression (RLE) plots for each normalisation method, made with the use of plotRLE function for all the sncRNA data. As an example, only the 
first two plots (with TMM (D) and without normalisation (C) for the filtered counts derived from FeatureCounts) are shown. E–F) Hierarchical 
Clustering plots, exploiting all the sequenced sncRNA data, with multiple clustering methods and different normalisation methods. As an 
example, only the first two plots (with TMM (D) and without normalisation (C) for the filtered counts derived from FeatureCounts). In black 
and brown are shown the two different groups (monolayer and spheroid).
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the barplots (Figure 5), allowing to underline the differences  
between the two methods or between the groups of interest.  
Alongside, in this case, the sequences’ logos for only the 
expressed piRNAs were generated. Moreover, we reported a 
tab-delimited file with the mean CPM per biological group, 
as it is useful to know these values for further studying or visu-
alisation. All the files, plots and statistics are available in  
the GitHub repository.

Ultimately, we performed the differential expression analysis 
on the results of both methods (genomic and transcriptomic),  
and the union of the comparisons was reported (Extended data: 
Supplementary Table 4). Our workflow identified 466 dif-
ferentially expressed sncRNAs (p-value ≤ 0.05) using both 
methods and 352, considering the adjusted p-value ≤ 0.05. 63 
miRNAs were found DE, in common with Boo et al.56. Most 
importantly, we were able to identify 181 expressed piR-
NAs, 48 of which differentially expressed (adj. p-value < 0.05) 
between spheroids and parental cells, with 44 of them up- and 4  
down-regulated (Figure 6A). Their log-fold changes were 
varying from -2.60 to 8.05, and 20 of them derive from the 
sequences found in RNAcentral while  28 from piRNABank, 
thus showing the importance of including both databases in 
the final GTF file. Of these 48 DE piRNAs, three of them  
(DQ570940, DQ571550, DQ578783) have also been found  
DE in the work of Vella et al.69 in cardiosphere-derived cells.  
This suggests a possible functional role of this group of  

Figure  4.  Sample  group  clustering  plots.  A) Correlation plot 
showing samples’ distances in GSE68246 dataset. The darker 
the colour, the more correlated they are. B) Multidimensional 
Scaling (MDS) plot using all the sequenced data and one of the 
normalisation methods applied in the workflow (in this case, TMM) 
made with plotMDS() function from EdgeR. In black and brown 
are shown the two different groups (monolayer and spheroid).  
C) Principal Components Analysis (PCA) plot displaying the first 
two Principal Components using all the sncRNA molecules data. 
Each sample is shown with different colours (depending on 
the group) and different symbols (depending on the batch).

Figure  5.  Barplots  of  the  length  of  piRNA  classes  with 
respect to each experimental group (in this case monolayer 
and  spheroid  MCF7).  The colours indicate the two different  
methods of quantification (genomic and transcriptomic).
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Figure 6. Differential expression analysis. A) Heatmap of differentially expressed piRNAs in 3 MCF7 Spheroid samples versus 3 MCF7 
Monolayer (GSE68246 public dataset) found in common with both approaches (genomic and transcriptomic). B) Heatmap of differentially 
expressed piRNAs among 9 Primary Solid Tumour versus 9 Solid Tissue Normal from TCGA found in common with both approaches 
(genomic and transcriptomic).
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piRNAs in the stemness of cancer cells, independently from  
the tissue type.

As a final test, we exploited sncRNA data of 18 samples from 
TCGA-BRCA, 9 Primary Solid Tumor versus 9 Solid Tissue  
Normal (Extended data: Supplementary Table 5). We identi-
fied 10 piRNAs DE out of 235 DE sncRNA molecules with 
both approaches (genomic and transcriptomic). In the heatmap  
(Figure 6B), it is possible to note that the two approaches 
obtained equivalent results, and the clustering approach showed a  
good clustering between tumour and normal samples. Inter-
estingly, some of the identified piRNAs have been previously 
described as related to cancer progression in tissues like kid-
ney and lung (DQ58103370, DQ593398 - DQ59293271). In  
addition, from the 235 DE sncRNA, 64 are reported as miRNA 
and most importantly, we found the cancer-specific MIR-8  
(now reported as mir-141 and mir-200) upregulated as previ-
ously reported by Hoadley et al.59. In order to acquire possi-
ble functional information about the DE piRNAs, we predicted 
their possible target RNAs (using the code included in the  
workflow), and we identified 11 protein-coding genes (Extended 
data: Supplementary Table 5). Most of them were predicted to 
bind their targets at the 3’ UTR and 4 at the 5’ UTR. The func-
tional enrichment analysis of the 11 predicted piRNA tar-
gets, using the EnrichR online tool72, revealed that they might 
be involved in regulating “signal transduction that contributes 
to a DNA damage checkpoint” (GO:0072422), a biological  
process that has a vital role in cancer progression.

Conclusions
In this paper, we describe a novel bioinformatics workflow,  
WIND17, for the identification and analysis of piRNA from 
small RNA sequencing data. The main innovations of WIND 
are: a Docker containerisation approach for the complete analy-
sis, the integration of two databases for piRNA annotation, a  
dual-method for detection and quantification of piRNAs (named 
as “genomic” and “transcriptomic” in this article), and the 
creation of ready-to-use plots and statistics for the interpreta-
tion of the results. The idea was born in order to cope with the  
absence of a gold-standard pipeline for piRNA identification 
and annotation. We tried to solve many issues related to small 
RNA sequencing data analysis and, in particular, piRNA iden-
tification and quantification. For this reason, the first step was  
to deploy multiple Docker containers set up to run all the steps 
of the workflow without installing tools, software or librar-
ies. After this, we focused on the creation of an easy method 
to integrate data from distinct databases (RNACentral and  
piRNABank). As described in methods, we were able to assess 
the deep diversity between the databases. Indeed, it was pos-
sible to notice not only differences in numbers of piRNAs anno-
tated between the two databases (both in human and mouse 
genome) but also inconsistencies in the annotation or in the 
classification (e.g. the same molecule is classified as piRNA in  
one and as miRNA in the other). Actually, combining databases  
usually produces discrepancies and working with sncRNA 
sequences that have multiple annotations is troublesome.  

However, with this step, it is possible to obtain a unique GTF 
file that merges this information (all ids and genomic loca-
tions associated with that specific molecule) that can be used 
for piRNA identification and annotation. The main part of 
our workflow consists of two detection methods for piRNAs 
described above as “genomic” and “transcriptomic”. For the 
genomic part, we decided to perform an alignment using STAR.  
STAR is a well-known genomic aligner that uses a reference 
genome to compute read alignments. For the transcriptomic 
part, we used Salmon to produce accurate transcript-level quan-
tification estimates from sncRNA sequencing data. Salmon’s 
main innovation is the use of quasi-mapping (accurate and very  
fast-to-compute read alignments). However, even if the tran-
scriptomic approach proved to be working well, it has been dem-
onstrated that for the identification of some sncRNAs might not 
be as efficient as the genomic approach37. For this reason, we 
set the methods to improve sncRNAs identification, following 
the suggestions of previous works36,37. Our idea was to combine 
the two approaches in order to evaluate the similarities between 
the results obtained and then ameliorate the identification of  
piRNAs. The last step was to create a Differential Expression 
module and, most importantly, the automatic creation of plots  
and statistics useful for the interpretation of data and results.

To test WIND, we applied it to several sncRNA datasets.  
Working on the first dataset, were we used the spike-in approach, 
we found a good consistency between the different meth-
ods in the detection of piRNA-like molecules, highlighting the  
efficiency of both approaches in piRNA quantification. Fur-
thermore, the test on germline and somatic tissues revealed 
that the two methods, even when a stringent filter is applied, are  
able to assess the presence of piRNAs also in tissues where 
they are not abundant. In addition, the workflow is also func-
tional in different species, as shown by the results obtained 
on the mouse genome. Finally, we also tested WIND on two  
published datasets, comprising tumour cell lines and tissues.  
Our workflow, also in this instance, was able to identify  
efficiently piRNAs and find differentially expressed molecules  
(not previously investigated) and to recognise, in general, a  
significant number of sncRNAs.

In conclusion, WIND is a complete dockerised workflow, 
usable by bioinformaticians and data analysts who want to 
explore small RNA sequencing data globally, but specifically 
designed and optimised for piRNAs. WIND allows going from 
raw data to plots and statistics ready for publication thanks 
to fast and efficient software implementation, making it very  
useful in the field of small RNA research.

Data availability
Underlying data
ArrayExpress: Monitor the efficiency of “WIND: A Workflow 
for pIRNAs aNd beyonD” for the identification of single-
stranded (SS) spike-in piRNA-like molecules in smallRNA-seq,  
Accession number E-MTAB-9772: https://www.ebi.ac.uk/arrayex-
press/experiments/E-MTAB-9772/
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ArrayExpress: Monitor the efficiency of “WIND: A Work-
flow for pIRNAs aNd beyonD” for the identification of piRNA  
molecules in small RNA-seq, Accession number E-MTAB-9782: 
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9782/

ArrayExpress: Monitor the efficiency of “WIND: A Workflow 
for pIRNAs aNd beyonD” for the identification of piRNA in  
mouse samples, Accession number E-MTAB-9866: https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-9866/

ArrayExpress: Analysis of the 3’-end of piRNAs in the 
COLO 205 cell line through sodium periodate (NaIO4) / 
β-Elimination treatment and small RNA-Seq, Accession number  
E-MTAB-8115: https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-8115/

NCBI Gene Expression Omnibus: miRNA transcriptome  
profiling of spheroid-enriched cells with cancer stem cell prop-
erties in human breast MCF-7 cell line, Accession number  
GSE68246: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 
GSE68246

Selected samples from the Genomic Data Commons Data  
Portal73 have been accessed and analysed from the TCGA-BRCA 
project: https://portal.gdc.cancer.gov/projects/TCGA-BRCA

Extended data
Zenodo: Supplementary tables, http://doi.org/10.5281/zenodo. 
473040074.

This project contains the following extended data:
•  Supplementary Table 1. Statistics of GFT files 

obtained for human and mouse genome. The file reports 
the data of the filtering process and the final GTF  
data.

•  Supplementary Table 2. Spike-in quantification. 
For each sample are shown the percentage of each 
piRNA-like molecules, respect to the raw reads count,  
using three quantification methods.

•  Supplementary Table 3. Statistics of sncRNA data 
analysis for mouse cardiomyocytes. The file reports 
the results obtained using the two methods applied 
in the workflow and the list of top 100 expressed  
piRNAs.

•  Supplementary Table 4. Differentially Expressed 
molecules found for GSE68246 dataset. In yellow are 
highlighted miRNA DE in common with Boo et al.56,  
in red and green are highlighted the up- and down-
expressed molecules respectively, in light blue and 
cyan the molecules with a p-value and adjusted  
p-value less than 0.05 respectively.

•  Supplementary Table 5. Differentially Expressed  
molecules found for BRCA TCGA dataset. In red and 
green are highlighted the up- and down-expressed 
molecules respectively, in light blue and cyan the  
molecules with a p-value and adjusted p-value less 
than 0.05 respectively. For DE piRNA molecules, the  
predicted possible target RNAs are also provided.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Workflow available from: https://github.com/ConYel/wind

Archived workflow as at time of publication: http://doi.org/ 
10.5281/zenodo.428990817.

License: MIT

All software packages used throughout this workflow are  
publicly available through the Bioconductor project (http://bio-
conductor.org), or the Comprehensive R Archive Network (https://
cran.r-project.org) and all bioinformatics tools are freely available  
as Docker containers on https://hub.docker.com/r/congelos/.
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Wen Yao   
National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 
Zhengzhou, China 

The authors developed a new computational pipeline for analysis of piRNAs in small RNA 
sequencing data. The methods were elaborated clearly in the manuscript. The pipeline was tested 
with real small RNA sequencing data of human and mouse. The manuscript is well written and the 
WIND pipeline will be a good tool facilitating the analysis of piRNAs. I have several comments and 
suggestions for the authors. 
 
Major:

The title should be revised as “a strategy for in-depth analysis of small RNA-seq data” is 
confusing. The WIND pipeline mainly focuses on the analysis of piRNA, which is only a 
category of all small RNA species. For example, miRNA is ignored by WIND. 
 

1. 

I agree with the author that the key to piRNA analysis is the comprehensive and accurate 
identification of piRNAs and piRNA precursor. However, only piRNABank and RNAcentral 
were used in the “Annotation forging” step of WIND while updated databases of piRNA and 
piRNA cluster had been published. I suggest the authors integrating piRBase1 and piRNA 
cluster database2 in the WIND pipeline. 
 

2. 

Figure 1. “small RNA Fastq files” were not used in the “Annotation forging” step, and should be 
placed in the “Pre-processing and quantification” step. 
 

3. 

In the “Annotation forging” step, I noticed two length thresholds (100 bp and 69 bp) were 
used when building the “final Fasta file”. So why 100 and 69?

4. 

Minor:
Figure 5 is bar plot rather than histogram. 
 

1. 

Figure 6B - part of the legend at the bottom is obscured.2. 
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, Bioinformatics, Genetics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 Apr 2021
Francesca Rizzo, University of Salerno, Baronissi, Italy 

Q.1 The title should be revised as “a strategy for in-depth analysis of small RNA-seq data” is 
confusing. The WIND pipeline mainly focuses on the analysis of piRNA, which is only a 
category of all small RNA species. For example, miRNA is ignored by WIND. 
  
A.1 The most problematic part of this workflow was, without any doubt, creating a good 
GTF file and removing all the possible noise from piRNA sequences. We agree that, in this 
paper, we focused our attention mostly on piRNAs but our workflow is made for analysing 
all species of sncRNAs as shown in the figures. A user can easily focus his attention on 
another small RNA species and perform all the analyses exploiting the genomic and the 
transcriptomic approach. For this reason, we choose to write in the title “piRNAs and 
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beyond”, to indicate that our workflow is suggested not only for the study of piRNAs but can 
also be used to analyse other sncRNAs molecules. 
 
Q.2 I agree with the author that the key to piRNA analysis is the comprehensive and 
accurate identification of piRNAs and piRNA precursor. However, only piRNABank and 
RNAcentral were used in the “Annotation forging” step of WIND while updated databases of 
piRNA and piRNA cluster had been published. I suggest the authors integrating piRBase and 
piRNA cluster database in the WIND pipeline. 
  
A.2 Thank you for your valuable comment. Initially, we have incorporated piRNAbank in our 
WIND pipeline as the first building block for the piRNAs annotation track. After that, we 
incorporated RNACentral to include also sncRNAs sequences in the annotation track in 
order to have a complete view of the sncRNAs species (known until now). 
However, regarding the additional piRBase database, we are facing a major bottleneck in 
including it. In detail, the database provides the largest and more comprehensive resource 
of piRNA sequences annotation, including more than 8 million sequences for human and 
about 60 million sequences for mouse. A major problem is that many of these sequences 
are located in the same genomic locus, and they differ only in one or a few nucleotides 
opening the possibility, not yet demonstrated, that they could be piRNA isoforms produced 
by variations on 5’ or 3’ end, including nucleotides extension, addition or trimming. 
This situation raises the question of how these molecules should be quantified and 
including all of them as independent molecules (“In piRBase, if a piRNA sequence is a 
subsequence of another piRNA, both of them were considered as different sequences and 
were assigned distinct piRBase names.” cited from Wang et al. (2019)) would significantly 
falsify the abundance ratio in the quantification step when measuring gene expression with 
Featurecounts or Salmon. Indeed, this could be an additional methodological constraint 
that would generate biased counts for any further downstream analysis (e.g. differential 
expression analysis). On this premise, we are considering including piRBase in a future 
version of WIND, but some issues about the quantification need to be solved. Nevertheless, 
about piRNAClusterDB (piRNAcldb), as suggested, we integrated the information included in 
piRNAcldb as metadata in the final GTF file produced by the annotation forging step. We 
updated the workflow shown in Figure 1 and we added the following sentence in the 
Method section: 
 
Q.3 Figure 1. “small RNA Fastq files” were not used in the “Annotation forging” step, and 
should be placed in the “Pre-processing and quantification” step. 
  
A.3 We modified the figure as suggested. 
 
Q.4 In the “Annotation forging” step, I noticed two-length thresholds (100 bp and 69 bp) 
were used when building the “final Fasta file”. So why 100 and 69? 
 
A.4 We have selected 100 nts as a filter for sncRNAs sequences on both databases to filter 
out all other sequences that were too long to be sncRNAs. Following, we added a new filter 
to the sequences deriving from the piRNABank alignments to the genome (hg38). Although 
the piRNABank sequences that we used are shorter than 34 nts, when these sequences 
were aligned to the genome, the genomic ranges were in some cases ≥ 69 nts due to gap-
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opening, specifically, we found few sequences aligning on genomic regions longer than 33nts 
(69, 75, 81, 87 and 99 nts). This could be due to the fact that the original piRNABank database 
was built on genome version hg18. In order to exclude these genomic ranges, which 
correspond to molecules that do not align correctly on the new version of the genome, we 
applied the filter at 69 nts as piRNAs are considered to be about 28-34 nts. However, the 
users can easily change this number or remove this filter as they prefer. 
 
Minor comments: 
 
Q.5 Figure 5 is bar plot rather than histogram. 
 
A.5 We corrected the error in the figure legend and in the text. 
 
Q.6 Figure 6B - part of the legend at the bottom is obscured. 
 
A.6 We corrected the issue.  
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Juan Pablo Tosar   
1 Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo, 
Uruguay 
2 Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay 

The authors developed a workflow for small RNA-seq data analysis, especially intended for the 
study of Piwi-interacting RNAs or piRNAs. The authors called their workflow WIND (for Workflow 
for pIrnas aNd beyonD) which is a nice name but should not be presented as an acronym because 
it is not. The manuscript is professionally written and reads very well, and I think the workflow is 
complete and can be a useful resource. However, I have major concerns in its design that I will try 
to explain below. 
 
One of the motivations of the authors was to develop a reliable package for piRNA analysis that 
can be also applied for piRNA identification in somatic cells. The authors cite our 2018 study (ref. 
25) so they are aware that piRNA databases contain a small percentage of contaminating entries 
that are probably not piRNAs. They considered this information in the design of their workflow 
and removed all piRNA reads in piRNABank that also have an alternative annotation in RNA 
Central. However, it is not clear to me whether they did the same with the piRNA sequences in 
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RNA Central that also have an alternative annotation in RNA Central. Figure 2A shows that roughly 
80% of the sequences in testis are piRNAs, and also 80% of the sequences in testis are annotated 
as tRNAs. So this is the proof that, if the authors really intended to depurate their GTF file from 
piRNAs also having an annotation in RNA Central, they were not effective in doing so. And this 
completely alters the author’s conclusions regarding non-germinal piRNAs. 
 
Another concern is that RNA Central is explicitly a database of non-coding RNAs. Thus, by 
removing entries in piRNABank that have an alternative annotation in RNA Central, they are not 
removing those piRNAs in piRNABank that are mRNA-fragments. How to distinguish secondary 
piRNAs generated from cleavage of coding sequences from mRNA fragments contaminating 
piRNA databases? It is not surprising, therefore, that the authors found that the remaing piRNAs 
in their GTF file are either derived from piRNA clusters or from protein-coding genes. This is a 
methodological bias and does not seem to be a deliberate decision based on the biology of the 
piRNA pathway. Again, this can completely alter the authors’ results and conclusions when 
analyzing RNA-seq data obtained in somatic cells using WIND. 
 
The authors affirm that they focused in “solving on of the most challenging issues of (small RNA) 
analysis, the annotation controversies of piRNAs”. I’m afraid that, in my opinion, this controversy is 
still not solved. I would suggest the authors to read our last contribution in this topic (Tosar et al. 
20201) and reconsider the design of their workflow based on what we discussed in that paper. My 
suggestion is to take the union of piRNAs from piRNABank and RNA Central, and remove those 
sequences that have alternative annotations in RNA Central. This can be used to construct GTF file 
1 containing “canonical” piRNAs derived from piRNA clusters and also mRNA fragments (whether 
truly piRNAs or not). Then, remove sequences matching to human or mouse mRNAs from RefSeq 
to make GTF file 2, containing sequences that can only be classified as piRNAs. Repeat their 
analysis and compare the results shown in this manuscript with what they see based on my 
suggested approach. 
 
Minor comments:

Consider adding “testis” and “COLO 205 cells” as a headline in Figure 2. 
 

○

The authors refer that the problem of detecting piRNAs in COLO 205 cells is their low 
expression. However, there are some sequences which are highly expressed according to 
Figure 2, D. Are these sequences really piRNAs? 
 

○

A brief description of the sequencing library preparation should be supplied. If the authors 
spiked in methylated RNAs, treating the samples with sodium periodate before NGS could 
have been an interesting control. 
 

○

Sequence logos are nice and can be informative, but the workflow could be more powerful 
if it included plots showing ping-pong signals. 
 

○

Why 69 nt as a cut-off?○

I hope the authors find this suggestions useful and my comments constructive. 
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Molecular and cell biology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 Apr 2021
Francesca Rizzo, University of Salerno, Baronissi, Italy 

Q.1 One of the motivations of the authors was to develop a reliable package for piRNA 
analysis that can be also applied for piRNA identification in somatic cells. The authors cite 
our 2018 study (ref. 25) so they are aware that piRNA databases contain a small percentage 
of contaminating entries that are probably not piRNAs. They considered this information in 
the design of their workflow and removed all piRNA reads in piRNABank that also have an 
alternative annotation in RNA Central. However, it is not clear to me whether they did the 
same with the piRNA sequences in RNA Central that also have an alternative annotation in 
RNA Central. Figure 2A shows that roughly 80% of the sequences in testis are piRNAs, and 
also 80% of the sequences in testis are annotated as tRNAs. So this is the proof that, if the 
authors really intended to depurate their GTF file from piRNAs also having an annotation in 
RNA Central, they were not effective in doing so. And this completely alters the author’s 
conclusions regarding non-germinal piRNAs. 
 
A.1 We thank the reviewer for the helpful suggestion. We removed all piRNA sequences in 
piRNABank that also have an alternative annotation in RNA Central. However, checking the 
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sequences in RNA Central that also have an alternative annotation in RNA Central, we found 
only six molecules and none of them is a piRNA. These sequences have been deduplicated 
in the final GTF, and corresponded to snoRNAs. 
 
We apologize to the reviewer for the misunderstanding, in Figure 2, the categories on the 
right of the green dashed line should be referred to the axis on the right. In this specific 
case, the piRNAs in the testis sample are ~75% while tRNA are ~4% as shown on the axis on 
the right of the plot. To clarify this point, we specified this in the legend as follows: << The 
biotypes on the right side of the green dashed line are the least abundant, and the 
reference values are reported on the Y right axis.>> 
 
Q.2 Another concern is that RNA Central is explicitly a database of non-coding RNAs. Thus, 
by removing entries in piRNABank that have an alternative annotation in RNA Central, they 
are not removing those piRNAs in piRNABank that are mRNA-fragments. How to distinguish 
secondary piRNAs generated from cleavage of coding sequences from mRNA fragments 
contaminating piRNA databases? It is not surprising, therefore, that the authors found that 
the remaining piRNAs in their GTF file are either derived from piRNA clusters or from 
protein-coding genes. This is a methodological bias and does not seem to be a deliberate 
decision based on the biology of the piRNA pathway. Again, this can completely alter the 
authors’ results and conclusions when analyzing RNA-seq data obtained in somatic cells 
using WIND. 
 
A.2 We want to thank the reviewer for this challenging question. As suggested in question 
3, we have created a new GTF that takes this into account by removing the sequences 
matching to human or mouse mRNAs. For more details see “answer 3”. 
 
Q.3 The authors affirm that they focused in “solving one of the most challenging issues of 
(small RNA) analysis, the annotation controversies of piRNAs”. I’m afraid that, in my opinion, 
this controversy is still not solved. I would suggest the authors to read our last contribution 
in this topic (Tosar et al. 20201) and reconsider the design of their workflow based on what 
we discussed in that paper. My suggestion is to take the union of piRNAs from piRNABank 
and RNACentral, and remove those sequences that have alternative annotations in 
RNACentral. This can be used to construct GTF file 1 containing “canonical” piRNAs derived 
from piRNA clusters and also mRNA fragments (whether truly piRNAs or not). Then, remove 
sequences matching to human or mouse mRNAs from RefSeq to make GTF file 2, containing 
sequences that can only be classified as piRNAs. Repeat their analysis and compare the 
results shown in this manuscript with what they see based on my suggested approach. 
 
A.3 We want to thank the reviewer for this very illuminating article regarding the piRNA 
annotation challenges. We agree with the reviewer that the problem has not been 
completely resolved, but we are trying to move in that direction and above all, we are trying 
to highlight that this problem must be considered and addressed in order to study the 
piRNAs correctly. Using the suggestions proposed, we created a new GTF file removing the 
sequences matching to human or mouse mRNAs. Using this approach, it is possible to note 
that some differences exist between the previous and the new results. For this reason, we 
modified all the tables, figures and data in the text accordingly. We are confident that now 
our workflow is stronger and more robust. However, it is possible to obtain the previous 
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GTF from GitHub or change the code in order to produce the preferred GTF. 
Finally, we have also added on the method section the details about the creation of this new 
GTF file: <> 
 
Minor comments: 
Q.4 Consider adding “testis” and “COLO 205 cells” as a headline in Figure 2. 
 
A.4 We modified the figure as suggested. 
 
Q.5 The authors refer that the problem of detecting piRNAs in COLO 205 cells is their low 
expression. However, there are some sequences which are highly expressed according to 
Figure 2, D. Are these sequences really piRNAs? 
 
A.5 When we talk about the low expression of piRNAs in COLO205 we are referring to an 
average expression of all identified molecules, however, among these, there are also 
molecules with a higher expression. In any case, after the creation of the new GTF file, as 
described before, we reanalysed all the datasets and we were still able to identify some 
molecules highly expressed and classified as piRNAs. Obviously, WIND exploits the previous 
knowledge about sncRNAs, this means that the obtained results, even if more accurate 
thanks to these new improvements, are still limited due to the primary databases used. 
However, as always suggested, a wet-lab validation should be necessary to confirm the in 
silico results and to really establish the correct identification and function of the discovered 
molecules, but this is beyond the scope of this article. 
 
Q.6 A brief description of the sequencing library preparation should be supplied. If the 
authors spiked in methylated RNAs, treating the samples with sodium periodate before NGS 
could have been an interesting control. 
 
A.6 As suggested by the reviewer, we added three samples treated with sodium periodate 
before library preparation and now, in Supplementary Table 2, is available the “Treated” 
table with the percentages of all the spike-ins used. Furthermore, we modified the method 
section accordingly: 
 
Q.7 Sequence logos are nice and can be informative, but the workflow could be more 
powerful if it included plots showing ping-pong signals. 
 
A.7 We added in the GitHub repository a code called “pinp_pong.Rmd” that creates a ping-
pong plot or a coverage plot for both the strands from a BAM file selected for piRNAs. 
Finally, we modified the Methods section as following: 
 
Q.8 Why 69 nt as a cut-off? 
 
A.8 We have selected 100 nts as a filter for sncRNAs sequences on both databases to filter 
out all other sequences that were too long to be sncRNAs. Following, we added a new filter 
to the sequences deriving from the piRNABank alignments to the genome (hg38). Although 
the piRNABank sequences that we used are shorter than 34 nts, when these sequences 
were aligned to the genome, the genomic ranges were in some cases ≥ 69 nts due to gap-
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opening, specifically, we found few sequences aligning on genomic regions longer than 33nts 
(69, 75, 81, 87 and 99 nts). This could be due to the fact that the original piRNABank database 
was built on genome version hg18. In order to exclude these genomic ranges, which 
correspond to molecules that do not align correctly on the new version of the genome, we 
applied the filter at 69 nts as piRNAs are considered to be about 28-34 nts. However, the 
users can easily change this number or remove this filter as they prefer.  
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