Radiation torque on nonspherical particles in the transition matrix formalism: erratum

Ferdinando Borghese, Paolo Denti, Rosalba Saija, and Maria Antonia Iatì
Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, Università di Messina, Salita Sperone 31, 98166 Messina, Italy
borghese@ortica.unime.it

Abstract

An erratum is presented to correct the errors in two equations in Sect. 3 of [Opt. Express 14, 9508-9521 (2006)]. © 2007 Optical Society of America OCIS codes: (290.0290) Scattering; (260.2110) Electromagnetic theory; (260.2160) Energy transfer.

References and links

1. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, "Radiation torque on nonspherical particles in the transition matrix formalism," Opt. Express 14, 9508-9521 (2006).
2. F. Borghese, P. Denti and R. Saija, Scattering from model nonspherical particles, 2nd edition (Springer, Berlin, 2007)

The last two unnumbered equations of Sect. 3 of Ref. [1] are written with wrong indices, and in the second equation a minus sign is missing. The correct equations read

$$
\begin{aligned}
& \left\langle\Gamma_{\mu ; \bar{\eta} \eta}^{(\mathrm{ext})}\right\rangle=c_{\Gamma} \sum_{p l m} s_{\mu ; l m} \sum_{\bar{p} \bar{l}} W_{\mathrm{I} \eta l, m-\mu}^{(p)} \overline{\mathscr{S}}_{{ }_{l m} \bar{l} m}^{\bar{p}^{(p \bar{p}) *}} W_{\mathrm{I} \bar{\eta} \bar{l} m}^{(\bar{p}) *}, \\
& \left\langle\Gamma_{\mu ; \bar{\eta} \eta}^{(\mathrm{sca} \eta}\right\rangle=-c_{\Gamma} \sum_{p l m} s_{\mu ; l m} \sum_{\overline{\bar{p}} \bar{p}^{\prime}} \sum_{\overline{\bar{l}}} \sum_{m^{\prime}} \overline{\mathscr{S}}_{l, m-\mu, \bar{l}, m^{\prime}-\mu}^{(p \bar{p})} W_{\mathrm{I} \eta \bar{l}, m^{\prime}-\mu}^{(\bar{p})} \overline{\mathscr{S}}_{l m \bar{l}^{\prime} m^{\prime}}^{\left(p \bar{p}^{\prime}\right) *} W_{\mathrm{I} \bar{\eta} \bar{l}^{\prime} m^{\prime}}^{\left(\bar{p}^{\prime}\right) *} .
\end{aligned}
$$

An identical error affects the analogous equations on p. 105 of Ref. [2]. Nevertheless, we stress that the calculations reported both in Refs. [1] and [2] were performed using the correct formulas.

