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Introduction
The general approach to studying financial time series is mostly based on applying 
econometric tools in time series analysis, in which the observed price is considered a 
noisy representation of an unobserved price. This approach is generally referred to as 
the macro-to-micro approach. However, in recent years, a new strand of literature has 
emerged. This new area deals with these problems by looking at the opposite perspective 
called the micro-to-macro approach, which directly models observable quantities and 
exploits point processes (Fodra and Pham 2015).

Among this new area of the literature, one of the first attempts to model financial time 
series using a semi-Markov chain is from D’Amico and Petroni (2012a), followed by an 
extension of the model by introducing a memory index (D’Amico and Petroni 2011). 
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Other authors have employed the semi-Markov process to model the limit order book 
(Swishchuk et al. 2017).

However, the approach that reported the best results is the weighted-indexed semi-
Markov chain model (WISMC) by D’Amico and Petroni (2012b) and its multivari-
ate extensions (D’Amico and Petroni 2018, 2021). The model has proven to reproduce 
important stylized facts of financial time series, such as first-passage-time distributions 
and the persistence of volatility. Moreover, it has also been employed in other applica-
tions. Specifically, D’Amico et al. (2018) applied the WISMC approach to model financial 
volumes, whereas D’Amico et al. (2020b) employed the model to study some risk meas-
ures in a high-frequency financial setting. In other fields, a simple indexed version of the 
model has been applied to analyze wind-power generation (D’Amico et al. 2020a).

The WISMC model can be regarded as a generalization of the semi-Markov chain 
model. Although the latter employs two random variables, namely, the observed price 
returns and the time between each price change, the WISMC includes a third variable 
that considers the history of the price returns and their intercurrent time, thus allow-
ing for better reproduction of the observed quantities. However, in their original paper, 
D’Amico and Petroni (2012b) highlighted that applying the WISMC model to financial 
time series requires calibration of several parameters involved in the model. Mainly, we 
have to deal with converting continuous returns into a discrete state space. Moreover, 
the inclusion of an index that captures the history of the process requires further discre-
tization. In D’Amico and Petroni (2012b), both conversions were based on visual inspec-
tion of the distribution of both processes, thus imposing a subjective choice. D’Amico 
et  al. (2019) addressed the partition of the state space of an indexed Markov chain 
employing a change point approach.

In this study, we explore the possibility of automating the discretization of both price 
and index processes by testing the effectiveness of two simple discretizations, one based 
on quantiles and the other based on the returns standard deviation, and two algorithms 
taken from the machine learning literature, namely, the k-means and Gaussian mixture 
model (GMM). We included two machine learning algorithms because clustering and 
feature selection are two important research areas in applied financial research, espe-
cially given the complex distribution of financial data, and their respective literature is 
rapidly expanding. For example, Li et  al. (2021) proposed an integrated cluster detec-
tion approach for financial applications, such as credit evaluation and fraud detection. 
Furthermore, Kou et  al. (2021) employed machine learning algorithms to predict the 
bankruptcy of small and medium-sized enterprises (SMEs) using transactional data and 
payment network-based variables. Moreover, with automatic discretization, we can limit 
the discretion to the choice of the number of states. However, at the end of the paper, we 
show that using the GMM approach allows us to find the optimal number of states for 
both the returns and the index based on the Bayesian information criterion (BIC).

In addition, considering that the WISMC model has only been tested on stock mar-
kets, we apply the model to the cryptocurrency market in this study, particularly to the 
most recent Bitcoin prices from the Binance market, which is one of the most active 
cryptocurrency markets. The aim is to capture the typical stylized facts of this type of 
financial market, specifically the extremely high volatility inherent in Bitcoin prices, 
its high persistence, heavy tail behavior, and vulnerability to speculative bubbles. For 
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example, Hafner (2020) found evidence of bubbles and extreme volatility by testing 11 
of the largest cryptocurrencies. Meanwhile, Bariviera et al. (2017) analyzed the stylized 
facts of the Bitcoin market and found long memory in returns time series, indicating 
price predictability and market inefficiency. Moreover, Tan et al. (2020) assessed the vol-
atility of 102 cryptocurrencies using Garman-Klass volatility measures, demonstrating 
the complexity of understanding such assets.

The application of the WISMC model to the Bitcoin market shows that the algorithms 
are useful in the discretization of both the returns process and index. More specifi-
cally, the quantile approach works better for lower-frequency data, whereas the GMM 
approach is better suited for higher-frequency returns. In addition, the BIC score of the 
GMM approach allows for the automation of choosing the number of states.

The remainder of this paper is organized as follows. "The model" section describes the 
WISMC model’s theory, whereas "Discretization algorithms" section introduces four dis-
cretization approaches. "Application to financial data" section explores the challenges of 
the calibration process and shows the data along with the discretization results. Finally, 
"Conclusion" section concludes the paper.

The model
First, we introduce the semi-Markov processes from which the weighted-indexed semi-
Markov process is derived. They were first proposed by Levy (1954) and Smith (1955) 
independently and further studied by Pyke (1961a, 1961b) and Çinlar (1975). Subse-
quently, they found applications in many fields, from industrial to financial markets, and 
the theory has been further implemented and expanded (see, e.g., Vasileiou and Vassil-
iou 2006; Swishchuk et al. 2017; Pasricha et al. 2020). For an in-depth analysis, we refer 
the readers to Janssen and Manca (2006) and Barbu and Limnios (2009).

Semi-Markov processes can be viewed as a generalization of renewal processes and 
the Markov chain. Let us consider a finite state space E = {1, ..., k} and a probability 
space (�,F ,P) . The two random variables

where n ∈ N and 0 = T0 < T1 < T2 < . . . form a Markov renewal process (X, T) with a 
state space E × R+ if

Assuming that the process is temporally homogeneous, the probability

is independent of n, and Q is called a semi-Markov kernel. In general, 
Q(i, j, 0) = 0, ∀i, j ∈ E.

For each pair (i, j),

Xn : � −→ E Tn : � −→ R+,

(1)
P(Xn+1 = j,Tn+1 − Tn ≤ t|X0, . . . ,Xn;T0, . . . ,Tn)

= P(Xn+1 = j,Tn+1 − Tn ≤ t|Xn) a.s., ∀n ∈ N, j ∈ E, t ∈ R+.

(2)P(Xn+1 = j,Tn+1 − Tn ≤ t|Xn = i) = Q(i, j, t)

(3)lim
t−→+∞

Q(i, j, t) = P(i, j),
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where P(i, j) ≥ 0 and 
∑

j∈E P(i, j) = 1, i, j ∈ E . The quantities P(i,  j) are the transition 
probabilities of the Markov chain, {Xn}n∈N , with state space E.

Moreover, we can define the conditional waiting time distribution function as

which can be computed as

with the convention that G(i, j, t) = 1 if P(i, j) = 0 , and it can be proven that the incre-
ments Tn+1 − Tn are conditionally independent given the Markov chain Xn (see, e.g., 
Çinlar 1975).

In particular, when the state space E is composed of a single point, the increments are 
independent and identically distributed nonnegative random variables, and we obtain a 
renewal process.

We can now define the semi-Markov process with state space E and transition kernel 
Q(i, j, t) as a continuous-time parameter process:

This process can be considered the state at time t of a system that moves from one state 
to another with random sojourn times in between (Çinlar 1975). The sojourn interval 
[Tn,Tn+1) represents a random variable with a distribution that depends on the state 
being visited Xn and the next state to be visited Xn+1.

The semi-Markov process is called so because it cannot be fully considered a Marko-
vian process as it is not a memoryless process. In contrast, it follows the Markov prop-
erty only at jump instants. In addition, when sojourn times are exponentially distributed, 
the semi-Markov process becomes a continuous-time Markov chain. Instead, we obtain 
a discrete-time Markov chain if we ignore time variables.

The semi-Markov process can be further extended by including the memory of the 
process using high-order semi-Markov processes (see, e.g., (Limnios and Oprian 2003; 
D’Amico et al. 2013). However, this method requires the estimation of several parame-
ters. A more parsimonious model considers the dependence of the semi-Markov process 
on a third variable that considers the history of the process. This approach was initially 
considered in D’Amico (2011) and was further extended to financial applications in 
D’Amico and Petroni (2011, 2012b).

Let Un be a stochastic process with the values in R . This random variable represents 
the indexing process that stores the historical information of the semi-Markov process 
and can be expressed as D’Amico and Petroni (2021)

where f : E × N× R −→ R is a Borel measurable bounded function and U0 is known and 
non-random. The size of the vector of the parameters θ depends on the chosen function 
f.

(4)G(i, j, t) = P(Tn+1 − Tn ≤ t|Xn = i,Xn+1 = j),

(5)G(i, j, t) =
Q(i, j, t)

P(i, j)
,

(6)Yt = Xn for t ∈ [Tn,Tn+1).

(7)Un(θ) =

n−1

k=0

Tn−k−1

a=Tn−1−k

f (Xn−1−k ,Tn, a, θ))+ f (Xn,Tn,Tn, θ),
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Process Yt is said to be a WISMC if, ∀n ∈ N , the following equality holds true:

where the function Q is called the indexed semi-Markov kernel.
Condition (8) states that to assess the probability of the next state of the process, 

we only need knowledge of the last state i and the last value of the indexing process 
Un . Therefore, the triple process {Xn,Tn,Un} describes the system corresponding to 
any jump time Tn . Note that if the indexed semi-Markov kernel is constant in v, then 
it degenerates into a semi-Markov kernel, and the WISMC process becomes a semi-
Markov process.

Moreover, for each pair (i, j) and each value of the index, we have Q(i, j, 0, v) = 0 and

The quantities P(i,  j,  v) are the transition probabilities of the Markov chain, {Xn}n∈N , 
with state space E. These differ from the probabilities in (3) because they depend on the 
index level.

Moreover, the conditional waiting time distribution function includes dependence on 
the index level:

Discretization algorithms
We encounter several calibration issues when applying the WISMC or semi-Markov 
model to financial data. The first step at the beginning of the application is the discre-
tization of the price return, as the WISMC model is defined in discrete state space. In 
contrast, the returns we observe in real life are continuous. In their application, D’Amico 
and Petroni (2012b) relied on arbitrary discretization based on the visual observation 
of the returns histogram. Unfortunately, this approach cannot be used for automated 
routines. Therefore, we introduce four algorithms to deal with this discretization of price 
returns. The first two approaches are simple, as they are based on the statistical proper-
ties of returns. The first merely consists of splitting the observations into k quantiles, 
where k is the number of states. We refer to this approach as quantile discretization. 
Subsequently, by selecting the splitting point, we built the edges of the states. Although 
this discretization is easy to implement, it may present some issues. For example, if we 
select a high number of quantiles when dealing with a highly leptokurtic distribution, 
which is typical of a financial series, observations with a high frequency, typically the 
zero return, might be distributed between two contiguous states, thus resulting in non-
unique state edges.1

The second approach was proposed by De Blasis (2020) for the return series, and 
we refer to it as sigma discretization. The idea was to select the width of the states as 
the standard deviation of the observations. Then, based on the number of states and 

(8)
P(Xn+1 = j,Tn+1 − Tn ≤ t|X0, . . . ,Xn;T0, . . . ,Tn;U0, . . . ,Un)

= P(Xn+1 = j,Tn+1 − Tn ≤ t|Xn = i,Un = v) := Q(i, j, t, v),

(9)P(i, j, v) = P(Xn+1 = j|Xn = i,Un = v).

(10)G(i, j, t, v) = P(Tn+1 − Tn ≤ t|Xn = i,Xn+1 = j,Un = v).

1  An example is given in "Application to financial data" section.
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centering them to zero, that is, the null return, we build the edges of the states. If the 
number of states is odd, then the central bin contains all zero returns together with 
smaller returns within a half standard deviation radius from the zero return. Then, 
departing from this central state, the other bins are defined as the one standard devia-
tion distance from the others, leaving the extreme states up to the returns’ minimum 
and maximum values. In the case of an even number of states, the central zero return 
state is omitted, and we have only positive and negative return states.2 Table  1 shows 
the concept of both odd and even numbers of states. This approach is well designed to 
reproduce symmetric distributions of continuous returns, especially when choosing an 
odd number of states, as it can provide an immediate idea of the direction of returns and 
includes a portion of the market noise within the central bin.

The other two discretization approaches employ two popular clustering algorithms: 
k-means and GMM. The k-means algorithm is a simple unsupervised algorithm devel-
oped independently by Sebestyen (1962) and MacQueen (1967). The idea is to partition 
the observations so that the within-cluster sum of squares is minimized using an iterative 
algorithm.3 Once we define the number of clusters k, that is, the states of the WISMC 
model in our specific application, the algorithm returns the discretization with the asso-
ciation of each continuous return to a specific state, thereby minimizing the variance 
within the clusters. The advantage of this approach is that it is completely endogenous 
and follows an empirical distribution of price returns. By contrast, with many observa-
tions, the k-means algorithm can result in slow convergence. To speed up the algorithm, 
we use a variation called the mini-batch k-means introduced by Sculley (2010), which 
lowers the computational cost by using random samples of the full dataset, thus reduc-
ing the number of distances to compute at the cost of a lower quality of the clusters.

Because the k-means algorithm presents some limitations, see, for example, Li et al. 
(2021), we include a fourth discretization performed using the GMM algorithm, which 
is based on the assumption that the observations are generated by a mixture of Gaussian 
distributions with unknown parameters. The first studies in this direction were proposed 
by Wolfe (1963) and Scott and Symons (1971) and further studied by many other authors 
(see, e.g., Banfield and Raftery 1993; Fraley and Raftery 2002).4 Let us assume that the 
observations {z1, ..., zt} (i.e., the price returns) are realizations of a random vector Z ∈ R 

Table 1  Examples of the sigma approach with odd and even numbers of states

State 1 State 2 State 3 State 4

[min,−σ) [−σ , 0) [0, σ) [σ ,max]

State 1 State 2 State 3 State 4 State 5

[
min,−2 σ

2

) [
−2 σ

2
,− σ

2

) [
− σ

2
, σ
2

) [
σ
2
, 2 σ

2

) [
2 σ
2
,max

]

2  The zero returns can be included in either the positive or negative state.
3  For a review of the k-means clustering methods we refer the reader to Steinley (2006).
4  For a comprehensive review of the finite mixture clustering, we refer the reader to Bouveyron and Brunet-Saumard 
(2014) and Bouveyron et al. (2019).
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and the unobserved state labels {y1, ..., yt} are realizations of a random variable Y ∈ E . If 
we denote g as the probabilistic density function of Y, then the GMM is

where πi is the mixture proportion with the constraint 
∑k

i=1 πi = 1 and φ(z; θi) is the 
Gaussian density with parameter θi = (µi, σi) , which are generally estimated using the 
expectation-maximization (EM) algorithm, proposed by Dempster et al. (1977). One of 
the advantages of the GMM algorithm is that it allows us to select the optimal number of 
clusters based on the BIC criterion.

Application to financial data
The application to financial data requires the formalization of the functional form of 
the index Un(θ) . D’Amico and Petroni (2011) initially proposed using a moving average 
of the squared process, (Xn)

2 . Taking the square of the returns, the authors introduced 
the dependence of the process dynamics on volatility, which is an observed stylized fact 
in financial markets. In a later study, the authors opted for an exponentially weighted 
moving average (EWMA) of the squares of returns (D’Amico and Petroni 2012b). Using 
EWMA changes the function to

The output values of the EWMA function in (12) were continuous. Therefore, similar 
to price returns, the index values need to be discretized into finite states using the pro-
posed discretization algorithms in "Discretization algorithms" section.

Finally, to test the validity of the proposed approach for discretization, we performed a 
Monte Carlo simulation. We simulated a WISMC process using the following algorithm 
(D’Amico and Petroni 2012b): 

1.	 set n = 0 , X0 = i , T0 = 0 , U0 = v , horizon time = T

2.	 given Xn and Un , sample X from P(i, j, v) and set Xn+1

3.	 given Xn and Xn+1 , sample W from G(i, j, t, v) and set Tn+1 = Tn +W

4.	 set Un+1 using (7) and (12)
5.	 if Tn+1 ≥ T  stop, else set n = n+ 1 and go to 2.

To estimate the transition probability matrices P(i, j, v) and conditional waiting time dis-
tribution G(i, j, t, v), we refer the readers to Appendix B in D’Amico and Petroni (2018)

We then verify whether the simulated series follows the long-range serial correlation 
of the squared returns, which is typical of the financial returns series. We recall the auto-
correlation function of the squared returns:

(11)g(z; θ) =

k∑

i=1

πiφ(z; θi)

(12)f (Xn−1−k ,Tn, a, �) =
�
Tn−aX2

n−1−k∑n−1

k=0

∑Tn−k−1

a=Tn−1−k
�Tn−a

.

(13)�(τ) =
Cov(Y 2(t + τ ),Y 2(t)

Var(Y 2(t)
,
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where Y is the process of returns and τ is the time lag. We estimate �(τ) for the real and 
simulated returns and compute the root mean square error (RMSE) and mean absolute 
error (MAE) to compare the use of different parameter estimations.

We tested the validity of the discretization algorithm on Bitcoin spot data sourced 
from the Binance public website.5 We specifically selected Bitcoin data because the cryp-
tocurrency market is open 24/7; thus, there are no gaps in the time series. In addition, 
we chose the Binance exchange because it is the largest cryptocurrency exchange in the 
world and is less subject to market manipulation (De Blasis and Webb 2022).

Following the approach of D’Amico and Petroni (2012b), we sample the price returns 
at 1-min intervals using Bitcoin data from March 1, 2021, to February 28, 2022. In addi-
tion, we test the application on 1-s interval returns with data ranging from February 
21, 2022, to February 28, 2022. The date ranges vary because we aim to have a roughly 
similar number of observations in both samples. The summary statistics of the percent-
age log-returns are reported in Table  2. We observe a zero return on average with a 
standard deviation of 0.116% and 0.0153% for the 1-min and 1-s intervals, respectively. 
Both return distributions appear to be symmetric and follow the typical financial return 

Table 2  Summary statistics of the Bitcoin price (USD) and log-returns (%) for 1-min and 1-s intervals

1-min interval 1-s interval

Price Log-returns Price Log-returns

Obs 524680 634172

Mean 47501 0.0000 38269 0.0000

Std 9321 0.1160 1361 0.0153

Min 28868 − 5.9738 34330 − 0.3996

25% 39395 − 0.0519 37639 − 0.0016

50% 47320 − 0.0001 38435 0.0000

75% 56074 0.0507 39040 0.0008

Max 69000 4.8604 44219 0.4718

Skewness − 0.0266 0.3774

Kurtosis 84.6502 30.4025

Fig. 1  On the left: histogram of the percentage 1-min returns series. Data from 1 March 2021 to 28 February 
2022. The x-axis is limited between −1 % and 1%. On the right: histogram of the percentage 1-s returns series. 
Data from 21 February 2021 to 28 February 2022. The x-axis is limited between -0.06% and 0.06%

5  Available at https://​data.​binan​ce.​vision Accessed March 1, 2022.

https://data.binance.vision
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distribution, with high excess kurtosis and fat tails, as shown in Fig. 1. In addition, the 
1-s distribution presents a very high frequency around the null return.

As described in "Discretization algorithms" section, we discretize the continuous 
returns using four different approaches: quantile, sigma, k-means, and GMM discretiza-
tion. The only discretion is left to the choice of the number of states, which, in our appli-
cation, is set at three and five. The 4-state returns discretization is excluded from the 
analysis as an odd number of states would better follow the typical shape of the financial 
returns, which presents an almost symmetric distribution and a high frequency around 
the zero return. For space reasons, we report only the results of the 5-state discretiza-
tion, which, for the sigma discretization, is identified by one central state representing 
the zero return surrounded by two positive and two negative states, corresponding to 
positive and negative returns, respectively. Table  3 lists the edges of each discretiza-
tion bin for the four approaches. Panel A shows the discretization for the 1-min interval 
returns, whereas Panel B reports the edges of the bins for the 1-s interval returns. Note 
that the quantile discretization in this latter case fails because there is no way to attrib-
ute the continuous returns to State 0, State −1, or State 1. Therefore, we excluded this 
case from the subsequent analysis.

The results of the return discretization are also presented in Fig. 2, which shows the 
histograms built from the bins defined in Table  3. Quantile discretization is excluded 
from the charts as it results in a flat histogram. All discretizations present the highest 
frequency around the zero return; however, only the sigma discretization is symmetric 
around the zero return by construction. The k-means and GMM discretization of the 
1-min returns appear to be asymmetric, whereas the distribution results are more bal-
anced when using the 1-s returns. Moreover, the fourth state of the GMM discretization 
at the 1-min interval is minimal compared to the other states, which could result in a 
biased application. To this extent, we must highlight that the use of different discretiza-
tions leads to different distributions of WISMC processes, Yt , which could be in different 
states simultaneously for different discretizations.

Once the returns are filtered into discrete states, we compute the index using the 
EWMA function. This stage requires calibration of the � parameter using the technique 
discussed in D’Amico and Petroni (2012b) by minimizing the RMSE or MAE of the auto-
correlation function of the simulated and real squared returns. However, as reported by 

Table 3  Extreme values of the states bins for the four discretization approaches with 5 states 
applied to the Bitcoin returns

State -2 State -1 State 0 State 1 State 2

Panel A: 1-min interval

quantile [− 5.974,− 0.066) [− 0.066,− 0.018) [− 0.018,0.017) [0.017,0.065) [0.065,4.860]

sigma [− 5.974,− 0.174) [− 0.174,− 0.058) [− 0.058,0.058) [0.058,0.174) [0.174,4.860]

k-means [− 5.974,− 0.130) [− 0.130,− 0.022) [− 0.022,0.066) [0.066,0.247) [0.247,4.860]

GMM [− 5.974,− 0.065) [− 0.065, 0.076) [ 0.076,0.261) [0.261,0.325) [0.325,4.860]

Panel B: 1-s interval

quantile [− 0.4,− 0.005) [− 0.005, 0.000) [ 0.000,0.000) [0.000,0.005) [0.005,0.472]

sigma [− 0.4,− 0.023) [− 0.023,− 0.008) [− 0.008,0.008) [0.008,0.023) [0.023,0.472]

k-means [− 0.4,− 0.027) [− 0.027,− 0.006) [− 0.006,0.011) [0.011,0.043) [0.043,0.472]

GMM [− 0.4,− 0.034) [− 0.034,− 0.003) [− 0.003,0.003) [0.003,0.036) [0.036,0.472]
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the authors and tested in our samples, the optimum is reached when � varies between 
0.95 and 0.99, and the overall RMSE or MAE values do not change visibly within that 
range. Therefore, following D’Amico and Petroni (2012b), we fixed � = 0.97 for all our 
analyses, focusing our results mainly on the discretization algorithms. Furthermore, we 
note that when � = 1 , the EWMA function reduces to the moving average index pro-
posed in D’Amico and Petroni (2011).

As stated earlier, the index has values in R ; therefore, it must be discretized like 
returns. D’Amico and Petroni (2012b) discretize the index into five states, specifically 
low, medium-low, medium, medium-high, and high volatility, choosing manual bins 
based on the visual observation of the distribution. By contrast, we employ the discussed 
discretization algorithms. We exclude only the sigma approach because the distribution 
of the index is not always symmetrical. Moreover, we did not limit the index discretiza-
tion to five states.

Table 4 presents the RMSE values for comparing the simulated and real autocorrela-
tion values of the WISMC process. The MAE values are not reported for space reasons; 
however, they are equivalent to the RMSE values. The table reports two combinations 
of returns/index discretization, that is, 3-state returns and 3-state index, and 5-state 
returns and 5-state index. The 3-state GMM discretization for 1-min interval returns is 

Fig. 2  Sigma (top), k-means (mid) and GMM (bottom) discretizations of the percentage 1-min (left) and 1-s 
(right) returns series
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not reported, as the algorithm resulted in a 2-state discretization. Similarly, the 5-state 
quantile discretization for the 1-s interval has not been reported because of the ambigu-
ity of the state attribution, as described previously. The results show that quantile/quan-
tile discretization is better suited for lower frequency intervals, whereas GMM/GMM or 
similarly GMM/k-means discretization works better at higher frequencies. Overall, the 
quantile/quantile with five states applied to the 1-min interval appears to be the best fit. 
In addition, we note that when using GMM discretization for the returns, the discretiza-
tion of the index ceases to be relevant, leaving discretion over the choice of the algo-
rithm. The results also show that the sigma and k-means discretization for the returns do 
not produce good results compared to the other two approaches.

In addition, to better understand the effect of the discretization approaches, we plot-
ted the autocorrelation function of the simulated WISMC process using the best combi-
nations from our results and compared it to the autocorrelation function of the observed 
data. Figure  3 clearly shows that the 5-state quantile/quantile discretization applied 
to the 1-min interval data performs much better than the 3-state quantile-quantile 
approach. However, we note a slight deviation between the simulated and real autocor-
relation at low lags; more specifically, the simulated autocorrelation is underestimated 
up to the 20th lag. In contrast, the 3-state GMM/GMM discretization applied to 1-s 
interval data performs better than the 5-state GMM/k-means approach, which is the 
worst performer overall. In the GMM/GMM case, the simulated autocorrelations devi-
ate from the real ones only for high lag values. Thus, this discretization better captures 
the short autocorrelation.

The presented results depend on the choice of the number of states for returns and index 
discretization. However, because one of the advantages of GMM discretization is the possi-
bility of using the BIC score to choose the number of states and considering that the GMM 
works well for higher frequencies, we automate the selection of the number of states using 
the BIC score and apply this methodology only to the 1-s interval returns. First, we com-
pute the BIC score for the return discretization and choose the optimal number of states; 

Table 4  RMSE of the autocorrelation of the squared returns for different combinations of returns/
index discretization and number of states of the chain and of the index. Returns discretization is 
indicated by rows, index discretization by columns

Bold values indicate the combination of returns/index discretization with the lowest RMSE

1-min interval 1-s interval

Quantile k-means GMM Quantile k-means GMM

Panel A: 3-state returns; 3-state index

Quantile 0.015 0.0194 0.0189 0.0385 0.0673 0.052

Sigma 0.0187 0.0279 0.0291 0.044 0.0454 0.0464

k-means 0.028 0.0269 0.0309 0.0637 0.0591 0.0465

GMM – – – 0.01  0.0103 0.0103
Panel B: 5-state returns; 5-state index

Quantile 0.0065 0.0137 0.0185 – – –

Sigma 0.0554 0.0124 0.0312 0.0525 0.0488 0.0485

k-means 0.0332 0.0212 0.0271 0.0686 0.0461 0.0417

GMM 0.066 0.0271 0.0414 0.0725 0.0374 0.0468
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Fig. 3  Autocorrelation function of the simulated WISMC process against the real process. The discretization 
combinations are: quantile 3-state returns, quantile 3-state index 1-min interval (top-left); GMM 3-state 
returns, GMM 3-state index 1-sec interval (top-right); quantile 5-state returns, quantile 5-state index 1-min 
interval (bottom-left); GMM 5-state returns, k-means 5-state index 1-sec interval (bottom-right)

Fig. 4  States selection based on the BIC scores. Returns discretization on top and index discretization at the 
bottom
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then, given the selected number of states for the returns, we compute the BIC score for the 
index discretization. The state selection is shown in Fig. 4, where the top chart indicates 
the optimal number of states for the returns, and the bottom chart indicates the optimal 
number of states for the index. The return discretization clearly reports the best score for 
the 3-state GMM approach, and this result appears to be in line with the RMSE results, 
where the 3-state discretization performed better than the 5-state one. Therefore, we fixed 
the number of states for the returns to three and proceeded with selecting the number of 
states for the index. In this case, we cannot directly choose the optimal BIC because its 
values appear to decline with the increment of the states. Note that adding states will result 
in estimating additional parameters, such as transition probabilities and sojourn time dis-
tribution. Therefore, we employ the elbow method to select the optimal score. We observed 
a significant drop in the BIC score from two to three states, followed by another smaller 
drop when four states were reached. Subsequently, from four to nine states, the decrease 
is reduced. Thus, we can easily select a 4-state GMM discretization for the index as a good 
trade-off between improving model performance and reducing the number of parameters 
to be estimated. Figure 5 compares the autocorrelation functions of both the simulated and 
real WISMC processes between the 3-, 4-, 5-, and 9-state index discretization. In all cases, 
short-run autocorrelation was well-fitted by the simulated data. However, we note that the 
4-state discretization performs slightly better than the 3-state one, but adding more states 
to the index discretization does not significantly improve the performance of the model.

Fig. 5  Comparison of the GMM index discretization given a 3-state GMM Returns discretization. Returns 
at 1-s interval. 3-state index (top-left), 4-state index (top-right), 5-state index (bottom-left), 9-state index 
(bottom-right)



Page 14 of 16De Blasis ﻿Financial Innovation            (2023) 9:35 

Conclusion
We proposed new calibration approaches to the WISMC model by D’Amico and Petroni 
(2012b). Specifically, we tested four different discretization methods for price returns: 
quantile, sigma, k-means, and GMM discretization. In addition, we use the same 
approaches, excluding sigma discretization, to discretize the volatility index, which rep-
resents the core part of the WISMC model. We tested different combinations of returns/
index discretization on Bitcoin prices and found that the quantile/quantile approach 
works better for lower-frequency returns, whereas the GMM/GMM approach is better 
suited for higher-frequency data.

Moreover, we tested different combinations of number states for returns and indices. 
However, although selecting the number of states is generally left to the researcher’s dis-
cretion, we showed that this choice could be automated when using GMM discretiza-
tion. We propose selecting the number of states for the returns and the index based on 
the BIC score. The results reported by the comparison of the autocorrelation functions 
show that this methodology could be useful when implementing the WISMC model for 
high-frequency financial data. Overall, the model, with the inclusion of the automation 
of the discretization of the returns and volatility index, can reproduce the long-range 
serial correlation typical of financial markets.

This study presents some limitations that should be addressed in future research. For 
example, the model was validated by testing its ability to reproduce the autocorrelation 
of a financial time series. However, future studies could address other applied problems, 
such as price prediction, option pricing, and market and credit risk assessment, which 
are important problems in financial applications. Moreover, the choice of cryptocur-
rencies, which are financial assets traded 24/7 without breaks, helped reduce poten-
tial problems derived from trading halts due to possible price jumps. Therefore, a test 
of different assets is required to prove the validity of the model under different trading 
conditions. Further research might compare the model’s results with other macro-to-
micro approaches, such as the generalized autoregressive conditional heteroskedastic-
ity model. Finally, the discretization approaches might be extended, employing more 
advanced clustering algorithms from the machine learning literature, see, for example, 
Li et al. (2021), and evaluate their performances with a multiple criteria decision making 
approach as in Kou et al. (2014).
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