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Abstract 

Plastics fragmentation into smaller debris, namely, micro- and nano-plastics (MPs and NPs), is a matter of global 
concern because of their wide distribution in terrestrial and marine environments. The latest research has focused 
mainly on aquatic ecosystems, and fragmentation of bioplastics into micro- and nano-particles (MBPs and NBPs) is not 
considered. The distribution, concentration, fate and major source of MPs, NPS, MBPs and NBPs in agroecosystems still 
need to be understood. The use of composts and sewage sludge from the organic fraction of municipal solid waste 
(OFMSW) treatment plants as soil amendments is likely to represent a major input of these debris. The present review 
provides insights into the current evidence of pollution from micro- and nano-particles of both fossil- and bio-origin 
in the OFMSW treatment, and aims at evaluating if the recycling of organic waste and its application as a soil fertilizer 
outweigh the risk of pollution in terrestrial environments. Huge unpredictability exists due to the limited numbers of 
data on their quantification in each source of possible solution. Indeed, the major hurdles arise from the difficult to 
quantify the micro-, especially the nano-, particles and subsequently assess the concentrations in the environments, 
as well as bioaccumulation risks, and toxic effects on organisms.
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Introduction
Plastics have played a crucial role in the development of 
modern society due to their material properties, afford-
ability and ease of manufacture [1] in a wide range of 
applications. Global annual plastics production in 2019 
reached 370 Mt, while in Europe, it was 58 Mt (Plas-
ticsEurope, 2020). Plastics are often complex compos-
ites made of organic polymers and chemical additives, 
such as bisphenols, phthalates and flame retardants [2]. 
Their complex nature makes plastics hard to recycle and 
often non-biodegradable; almost half of the post-con-
sumer plastic waste is sent for energy recovery, while the 
remaining 32.5% is sent to recycling and 24.9% ends up 
in the landfill (PlasticsEurope, 2020, Conversio Market & 
Strategy GmbH). Nevertheless, a large amount of plastic 
polymers is still abandoned in the environment [3] or not 
properly managed. Therefore, plastic pollution is consid-
ered a relevant threat for ecosystems around the globe 
and all the related organisms [4].

Biodegradable plastics were introduced as a possible 
solution to the ecological and environmental impacts 
associated with conventional fossil-based plastics. These 
bio-based alternatives are often biodegradable and/or 
compostable under certain conditions and comprise a 
family of materials with different properties and appli-
cations (EuropeanBioplastics, 2020). Today, the market 
of bioplastics is constantly growing with a strong diver-
sification of materials, applications and products, and 
the global annual production capacity is around 2.11 Mt 
[5]. Bioplastics waste can be managed in the same way 

as conventional plastics waste, such as mechanical or 
chemical recycling, incineration, landfill, or it can fol-
low specific end-of-life options, such as energy or organic 
recovery. However, some plastics labelled as biodegrad-
able may disintegrate only or cannot be completely bio-
degraded [6].

Recent studies have focused on the fragmentation 
of plastic and bioplastic materials into smaller debris 
which can be classified according to their diameter 
into micro-plastics (MPs) and nano-plastics (NPs). 
While MPs are defined as particles sized from 1 μm to 
5 mm [7, 8], debate is on-going for the characterization 
of NPs. Some studies defined NPs as fragments with 
diameters between 1 and 100 nm [2, 9], whereas others 
adopted the whole nanometer range from 1 to 1000 nm 
[2, 10]. In this review, we consider NPs the particles 
with diameter ranging from 1 to 1000 nm. Due to their 
ubiquity, MPs and NPs have become a global con-
cern. NPs are potentially more hazardous than MPs as 
they may permeate biological membranes [11]. Latest 
research has often focused on marine environment and 
reported severe impacts on aquatic ecosystems, such as 
the accumulation of harmful pollutants, the release of 
chemicals and the transport of pathogens [7, 12–14]. 
However, the impact of both MPs and NPs from con-
ventional fossil-based plastics and from bio-based plas-
tics (MBPs and NBPs) in agroecosystems is a growing, 
but often overlooked, concern. Particularly in soils, lit-
erature bears fragmentary information. We know that 
agroecosystems are the most plastic-contaminated 
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terrestrial ecosystem after landfills, urban spaces [15] 
and beaches [16]. However, the most abundant polymer 
type and size still need to be clarified. The size and the 
shape of the residues may influence their fate and sta-
bility in the environment, since these properties corre-
spond to a different surface being exposed to chemical, 
physical and biological biodegradation factors. Differ-
ent additives and chemical components are associated 
with each type of polymer, and their respective MPs, 
NPs, MBPs, and NBPs may have various effects in soil. 
MPs as possible contaminants in agriculture are not 
currently on the regulatory agenda and little is known 
about the released of  toxic substances and their con-
sequences for sustainability and food security [17]. In 
2016, the EFSA Panel on Contaminants in the Food 
Chain raised a number of questions about bioaccumu-
lation and biomagnification of these materials after the 
adsorption by various organisms [18]. The role of MPs, 
NPs, MBPs and NBPs as vectors for the transmission of 
microorganisms, including pathogenic ones, and their 
ability to increase gene exchange between different spe-
cies is another concern [13, 14]. This is a new research 
topic that is worth expanding due to the biological 
invasion and severe ecotoxicological impacts that these 
particles can cause [19].

Particles < 5  mm can enter the soil directly from 
atmosphere and through irrigation, or indirectly 
through the degradation of large pieces of plastic, such 
as plastic mulch [7]. The agriculture use of composts 
and sewage sludge from the organic fraction of munici-
pal solid waste (OFSMW) treatment plants is likely to 
represent a major input of micro- and nano-plastics 
and bioplastics to agroecosystems [20]. The presence of 
these fragments in such amendments has already been 
documented in literature, but the distribution, concen-
tration, fate and major sources of MPs and NPs as well 
as MBPs and NBPs in soils still needs to be understood. 
Based on these facts, in our review we will briefly ana-
lyze the different waste management practices for fos-
sil- and bio-based materials at the end of their use. 
Later we will deal with the degradation mechanisms 
that lead to the formation of micro and nano fragments. 
Subsequently, the OFMSW composition and manage-
ment processes will be investigated as a possible source 
of major introduction of MPs, NPs, MBPs and NBPs 
in the agroecosystems. The present work will contrib-
ute to the evaluation of the existing evidence of MPs, 
NPs, MBPs and NBPs pollution in compost and sewage 
sludge from OFMSW treatment. Moreover, it provides 
a starting point to evaluate if the recycling of organic 
waste and its application as a soil fertilizer outweigh the 
risk of pollution from plastics and bioplastics. It thus 

may serve to build upon the knowledge of plastic and 
bioplastics fate and effects in terrestrial environments.

Plastics degradation processes: form macro 
to micro, from micro to nano
The degradation of both conventional plastics and bio-
plastics is a combination of abiotic [21] and biotic [8] 
processes, including physical, chemical, biological syner-
gies [22], hydrolytic degradation and mechanical disin-
tegration [3]. As summarized in Fig. 1, when released to 
the marine environment and water bodies, conventional 
plastics weather and degrade leading to fragmentation, 
mechanical abrasion and/or formation of cracks [23, 24]. 
However, the degradation processes and products should 
be better understood, and some attention must be drawn 
to additives, persistent organic pollutants and chemicals 
generated during the exposure to sunlight, oxidants and 
physical processes in water. Indeed, fossil-based plastics 
exposed to sunlight or ultraviolet radiations undergo the 
process of photo-oxidation, namely, the transformation 
of the polymers into monomers by bond scission. A high 
level of solar radiation results in the damage of the plas-
tic materials, breaking their chemical bond, losing tensile 
strength and molecular weight and turning into small 
fragments [25]. UV damage to plastics, such as mulch-
ing materials, is a matter of global concern, especially in 
tropical areas which receive intense sunlight [26]. Other-
wise, the visible spectrum drives to heating and thermal 
degradation, resulting in thermal oxidation of polymer 
chains [27]. Hydrolysis is another chemical factor lead-
ing to the degradation of plastics [28]. To improve their 
properties, polymers are often blended with some addi-
tives/fillers, such as heavy metals (HM) and organome-
tallic compounds. These recalcitrant additives are not 
chemically bound within the polymers and can thus be 
progressively released in the environment [29].

Microorganisms play a pivotal role in plastics adsorp-
tion and degradation processes. Indeed, plastic debris 
provides a colonizable substrate which can support the 
growth of microbial biofilms that may comprise also 
potential pathogens [13, 30]. Biological degradation 
pathways include the mechanical action of organisms 
that develop and proliferate in breaks of polymer sur-
face; and enzymatic pathways which can hydrolyze the 
polymer into oligomers and monomers [22, 31]. Indeed, 
the polymer bio-degradation potential depends on the 
hydrolysable or non-hydrolysable nature of the polymer. 
Non-hydrolysable polypropylene (PP), polyethylene (PE) 
and polystyrene (PS) have stable backbones and are hard 
to degrade, while hydrolysable polyethylene terephtha-
late (PET), polyurethane (PU) and polycarbonate (PC) 
are more vulnerable to catalyzing enzymes. Moreover, 
microbial degradation of plastic polymers is also affected 
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by other polymer characteristics, such as molecular 
weight or morphology [32] In the last years, there has 
been growing interest in the role of microorganisms in 
the degradation of plastics polluting the environment, 
with many efforts aimed at using them as a solution to 
pollution. There are many studies in the literature con-
cerning the potential of certain microorganisms to bio-
degrade conventional plastics, such as PET [33–37], PE 
[38, 39], PS [40, 41] and PU [42]. Moreover, environmen-
tal factors, such as light, heat, moisture, and pH, enhance 
bond scissions leading to an increase in sites for micro-
bial action on the polymer chains [21, 32].

Bioplastics also undergo (bio)deterioration leading to 
material fragmentation into MBPs and NBPs. The dam-
aged surface shows weakness, discoloration, erosion signs 
and polymer splitting [43], and subsequently depolymeri-
zation processes will produce oligomers and monomers. 
As reported in Fig. 1, different abiotic and biotic factors 
are involved [44]. The abiotic factors include mechani-
cal, physical and chemical factors. The mechanical ones, 
such as stresses and weathering, cause damages, whereas 
temperature among the physical ones can cause partial 
melting and change the organization of chains. This reor-
ganization may facilitate the accessibility to chemical and 
biological degradation [45]. Moreover, oxygen, among 
the chemical factors, induce the degradation by attacking 

covalent bonds and producing free radicals, while water 
breaks the polymers into ethers, esters, anhydride, etc. 
[23]. Finally, as for conventional plastics, UV radiation 
causes chemical weathering [46], whereas pH and salt 
concentration may affect the degradation of bioplastics 
by providing suitable environments for microbial growth 
and by controlling catalytic enzymes [47]. Considering 
the biotic factors, as mentioned above, biofilm forma-
tions produce disruption and erosion of the polymer 
surface, but also penetrate into the fractures and pores 
[48]. Furthermore, enzymes play a key role as responsi-
ble for the breaking of specific bonds. Plastic-degrading 
enzymes were classified into two categories, namely, 
extracellular, with oxidative and hydrolytic functionality, 
and intracellular [49]. However, not much information 
is available on the biochemical properties and structural 
characteristics of these enzymes [32]. Marine and terres-
trial organisms can interact with MPs, NPs, MBPs and 
NBPs facilitating surface biodeterioration and microbial 
colonization [50]. Organisms may fragment particles by 
scraping or chewing activities [51] leading to increase 
surface area for microbial attack. Therefore, bioaccumu-
lation of organic compounds deriving from plastic and 
bioplastics fragments may provide favorable conditions 
for polymer biodegradation and depolymerization by 

Fig. 1  Examples of abiotic and biotic pathways from plastics and bioplastics to MPs, NPs, MBPs and NBPs (“P”, plastics; “B”, bioplastics; dot lines refer 
to secondary interactions between factors)
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exoenzymes and microorganisms in the gastrointestinal 
lumen [52].

The degradation of macro (> 5  mm) into micro- and 
nano-particles is often a result of a combination of the 
above-discussed factors (Fig. 1). However, an incomplete 
biodegradation or physical–chemical degradation of pol-
ymers can lead to the generation of MPs and MBPs and 
subsequently of NPs and NBPs resulting in their release 
into different environments. The latter are of even greater 
concern due to their dimensions and their ability to be 
ingested by humans by the food web and, afterwards, to 
translocate across the gut epithelium into the lymphatic 
system, potentially affecting human health [3].

Fossil‑ and bio‑based plastics end‑of‑life: waste 
management strategies
Omnipresence of plastic materials [53] led to a genera-
tion of considerable amount of waste, and to the unavail-
ability of proper methods of treatment, management, 
and disposal in some countries [54]. Uncollected waste 
may be dumped in landfills or drained into sea or envi-
ronment. The disposed plastic persists unvaried for the 
longer time, posing a major threat to plants, wildlife and 
human beings. However, each country has its own regu-
lation tailored to its own needs. Since 2018, Europe has 
adopted the “European Strategy for Plastics in a Circu-
lar Economy” (EU, 2018) to deal with plastic waste. The 
Strategy includes improvements in the quality of plastic 
recycling, protection of the environment and citizens, 
and restrictions of the intentional use of microplastics. 
However, a report by Plastics Europe Market Research 
Group (PEMRG) and Conversio Market & Strategy 
GmbH (2018) suggest that only the 42.6% was sent to 
energy recovery and the 32.5% to recycling. At the heart 
of the current plastic waste management in the EU lies 
“The Prevention”, i.e., avoiding creation of the waste in 
the first place, and, in an ideal world, this is the most pre-
ferred option. For the waste that needs to be managed, re-
use options (from most to least preferred) are recycling, 
recovery and disposal (EC, 2017). Mechanical and chemi-
cal recycling are the most common recovery options 
for conventional plastics, while disposal is carried out 
through landfill and incineration regardless of the plas-
tics’ origin. There are, however, some preferential routes 
for the recovery of the biodegradable bio-based plastics 
(e.g., organic recycling options—aerobic composting 
and anaerobic digestion). Non-biodegradable bio-based 
plastics on the other hand can be managed through 
mechanical and chemical recycling to avoid landfilling 
and incineration options. Recovery through mechanical 
recycling is still an option also for the bio-based biode-
gradable plastics, but only when it is separated from the 
other types of bio-based plastics and free of chemical 

contamination (EC, 2017). Definition of proper man-
agement and the end-of-life alternatives for the correct 
treatment and the disposal options of bio-based plastics 
is crucial: specific valorization alternatives of biobased 
plastics for the circular economy are of utmost impor-
tance for the recirculation of the biobased plastics into 
valuable resources [55]. However, the true potential of 
plastic wastes recycling and their re-introduction back to 
manufacturing remains largely unexploited in the Euro-
pean Union due to collection and treatment costs [56]. 
The main plastics and bioplastics waste management 
options along with their respective advantages and disad-
vantages, which may vary according to local conditions, 
are presented in Table 1.

Most bio-based plastics, when labelled as compostable, 
are collected with the OFMSW and recovered through 
organic waste biological treatments at industrial scale. 
However, no specific category exists for bio-based waste 
and no statistics exist in EU or US [55]. Introduction of 
fossil-based plastics and larger items is often avoided 
through mechanical pre-treatments prior to the biologi-
cal processes, which generally consist of sieving and/or 
shredding [66]. In addition to removing plastics and bio-
plastics before the operations, the pre-treatment also 
shreds the OFMSW to obtain a homogeneous pulp. 
However, these operations can generate micro- and 
nano-fragments from both the materials [67]. While 
MBPs and NBPs may degrade during the biological treat-
ments, fossil-based particles will end up directly in the 
final products, becoming a major source of contamina-
tion in agroecosystems.

MPs, NPs, MBPs and NBPs in agroecosystems: 
the Trojan Horse effect
While the presence of large amounts of MPs and NPs 
in freshwater and marine ecosystems is almost ubiqui-
tous, the knowledge of their behavior, fate and impacts 
in terrestrial environments is still poor. In addition, the 
amount of plastics debris in terrestrial ecosystems is 
much higher than in that of marine ecosystems [68, 69]. 
However, since the problem of MPs in soils was identi-
fied [51], increasing consideration was given to pollution 
issues [15, 70–75]. These materials can enter the agro-
ecosystems either directly (e.g., from atmospheric depo-
sition, irrigation water or biofertilizer application), or 
indirectly (in situ degradation of large pieces of plastic, 
such as mulch films) [76–78]. It is now well known that 
the main sources of micro and nano particles (of both 
fossil- and bio-origin) entering agricultural soils includes 
plastic mulch films, biowaste fermentation and compost-
ing and biosolids (sewage sludge and anaerobic digestate 
disposal as soil amendments) [67, 68, 79–83].
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MPs, NPs, MBPs and NBPs in agroecosystems may 
play a particularly important role in soil through their 
impact on soil physico-chemical properties and micro-
bial communities. MBPs in soil may also alter plant 
growth and performance by increasing the bioavailable 
C as they decompose, thus affecting the plant-microbes 
competition for nutrients [84]. A recent case study on 
Chinese farmlands by Wang et  al. found that the types 
of MPs present in fields were closely related to land-
use types. Wheat and rice fields were found to be con-
taining fibrous shapes and large MPs particles, while 
orchards and woodlands were likely to have fragmented 
shapes and smaller sized MPs [85]. The residual plas-
tic mulch film damages the structure of soil aggregates, 
reducing aeration, water permeability, root growth and 
overall plant productivity [86, 87]. Even though biode-
gradable options are seen as promising alternative to 
low-density polyethylene (LDPE) to minimize plastic 
debris, MPs of both types were found to have depleting 
effects on aggregate-associated soil carbon and nitrogen 
stocks [88]. In another recent work by Liu et al. (2021), 
the composition, diversity, and metabolic function of the 
rhizosphere bacterial communities together with Soil 
Organic Carbon (SOC), Total Organic Carbon (TOC) 
and Soil Organic Matter (SOM) levels were found to be 
affected by common plastic mulch in the long term [89]. 

Furthermore, it was also found that MBPs may alter soil 
ecological functioning and biogeochemical cycling in the 
so called “microplastisphere”, by stimulating C and nutri-
ent turnover by creating microbial hotspots [90]. Cur-
rent findings suggest that these changes are soil organic 
matter dependent and there seems to be a potential risk 
to agroecosystem’s soil stability associated with organic 
matter additions [91]. Moreover, in a recent study it was 
highlighted the need to consider potential interactive 
effects of land use and management with plastic particles 
[92]. Some authors suggest that it might be even sound 
to use fossil-based plastics as biobased plastic’s degrada-
tion process may be compromising the already delicate 
balance of soil nutrients, biodiversity and physiochemical 
properties.

Another significant input of microplastics has been 
identified in the application of sewage sludge containing 
synthetic fibers or sediment microplastics from house-
hold products [93]. The application of sewage sludge as 
fertilizers represents a significant source of nanoparticles 
in the environment [80, 94]. The sewage treatments are 
efficient in removing the majority of microplastics, but 
many are also retained in the sludge [95]. In Europe, the 
sewage sludge is commonly composted and pasteurized 
for use as agricultural fertilizer [68]. Despite more than 
4 Mt dry weight of sewage sludge are applied to arable 

Table 1  Summary of the main plastic and bioplastics waste management operations (P, plastics; B, bioplastic)

End-of-life option Suitable for Advantages Disadvantages Refs.

Landfilling and Incineration P Economically sound
Volume minimization
Rapid disposal
Minimum land requirement
Technology not required
Contaminated and toxic material can be 
treated
Electricity generation

Environmental problems, such as air, soil 
and water pollution
Shortens the lifespan of the plastics
Lots of energy required
Gases released as a byproduct can be dan-
gerous and their exposure to living beings 
may result in breathing disorders
Generation of toxic leachate of hazardous 
nature
Disposal in landfills results in deterioration 
of land and increase the risk of consump-
tion of plastics by animals

[54, 57–60]

Mechanical Recycling P > B Same material can be recycled up to 7 
times before it degrades to the point that 
mechanical recycling is not an option 
anymore

Needs sorting and labor intensive: the 
resins must also be separated, and 
single-polymer waste stream is needed to 
optimum efficiency
Causes material and quality loss
Contaminated plastics cannot be treated
Low efficiency, recycled materials are 
downgraded
It occurs at about 200–300 °C resulting in 
emission of toxic gases

[59, 61, 62]

Chemical or Feedstock Recycling B > P Recycled material quality is higher than 
mechanical recycling option as polymers 
broken into monomers
Mixed and contaminated material can be 
used without sorting, thus offers a potential 
for household wastes and bioplastics

Economic feasibility needs to be assessed
Some technologies are still being develop-
ment, and some have high energy use, 
costs, and technology demand

[63–65]
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land every year [96], there are no regulations yet on MPs 
as harmful substances within sludge [68]. High concen-
trations of synthetic microfibers were found in sewage 
sludge applied soils, and their presence was also reported 
after 15  years of last application, suggesting also a seri-
ous problem of accumulation [93]. Qi et  al. estimated a 
topsoil contamination level of ca. 4–150 particles/kg for 
each year of application of biosolids, assuming an aver-
age microplastics contamination of 104 particles/kg and a 
land application rate of 1–15 t/ha/y. Whereas it has been 
recognized that biosolids may contain metals and pol-
lutants [7, 97, 98], it is recently becoming clear that they 
may also contain amounts of plastics and bioplastics. 
However, current literature focuses mainly on the pro-
cesses to which bioplastics undergo, and less on the pres-
ence of MBPs and NBPs in them [15, 52].

Despite the awareness that plastics of all sizes are wide-
spread within agroecosystems, there is a dearth of studies 
on debris quantification. Due to difficulties in separat-
ing, extracting and, subsequently, quantifying micro and 
nano-plastic and bioplastic particles from soils [99], the 
effects and the effective concentration in agroecosystems 
are still poorly understood. Even though NPs have the 
potential to be taken into cells, they are rarely quantified, 
and their uptake still not has been evaluated from a risk 
assessment perspective. Depending on the plastic shape, 
the types of MPs and NPs can be divided into fibers, frag-
ments, thin films, and particles. Fibers often represent 
the main form if they enter soil from biosolids or irriga-
tion waters from municipal wastewater [100, 101]. Glob-
ally, the most frequently fossil-based polymers found in 
the soil environments are PE and PP from fossil origin 
[7], while biopolymers are still taken little into consid-
eration. Indeed, these materials are labelled as dispos-
able with organic waste and, therefore, undergo the same 
management processes. However, in recent years, many 
studies reported recalcitrance problems associated with 
these biopolymers [102, 103]. Soil, compost, sediment 
and sewage sludge are solid heterogeneous matrices with 
a high content of organic matter that should require a 
higher consideration as possible source of pollution in 
agroecosystems [104]. It’s evident that understanding 
the sources, abundance and composition of debris pre-
sent in this OFMSW process is remains a huge challenge. 
Therefore, next sections are dedicated MPs, NPs, MBPs 
and NBPs pollution in compost and sewage sludge from 
OFMSW treatment only; from its characteristics to two 
possible management options, namely, the anaerobic 
digestion and aerobic composting.

The organic fraction of municipal solid waste 
(OFMSW): composition and characterization
The organic fraction of municipal solid waste (OFMSW) 
represents almost 50% of the global generated waste 
[105], and it is predicted to rise from current 2 Bt to 3.40 
Bt by 2050 [106]. Population growth, increased consump-
tion, economic development, and rapid urbanization 
are main drivers of increasing rate of OFMSW genera-
tion [107, 108]. Efficient waste transformation approach 
is needed as the OFMSW is a non-edible and plentifully 
available resource which can be transformed and valor-
ized for bioenergy and biomaterials recovery [109]. The 
use of renewable energy sources can aid to reduce nega-
tive environmental impacts, e.g., GHG emissions [110]. 
Policymakers are accordingly increasingly moving in this 
direction.

The definition of OFMSW differs regionally and nation-
ally, and its composition and production depend on 
geographic region, number of habitants and their socio-
economic activities, food habits, climatic conditions and 
collecting systems [111, 112]. Moreover, the municipal 
waste generation rate depends directly on overall devel-
opment of a Country [107]. The OFMSW can comprise 
heterogeneous scraps from gardens, parks, households, 
restaurants, catering, retail and food industry. It is usually 
composed of food waste, yard waste, paper, newspaper 
and other organic wastes. Each of these fractions have 
different characteristics of particles size, calorific value 
and density, C:N ratios, pH, and humidity content [105, 
113]. Due to its high moisture content and organic bio-
degradable matter, it is suitable to valorization processes 
[114]. Integrated waste management is composed of a 
set of principles for handling waste in an environmen-
tally and economically sustainable manner [115, 116] and 
the aims are to control all its resulting solid, liquid, and 
gaseous emissions. This approach holds principles which 
allow locales to develop their own systems in response 
to their contexts. In the following section we will discuss 
about the disposal of the OFMSW and its management.

Disposal and management options for OFMSW: a focus 
on the fate of plastics along the anaerobic digestion 
and composting processes
The OFMSW was disposed in landfills for years, but 
due to its environmental impacts, the actual trend is to 
reduce, reuse, recycle, recover and treat the waste [117]. 
The domestic separation of organic waste and the recy-
cling was initially promoted in 90  s [118]. Nowadays, 
researchers, companies and governmental agencies are 
aiming to find OFMSW energy recovery alternatives to 
convert the organic matter into valuable products, such 
as biogas and compost. However, the OFMSW manage-
ment depend on institutional capacities and on local 
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waste characteristics, which change with cultural, cli-
matic and socioeconomic variables [119]. Among the 
total quantity of municipal waste generated, 74% in 
Japan, 54% in Denmark, 50% in both Switzerland and 
Sweden are still incinerated [120, 121], whereas globally 
more than 130 Mt/year are treated to generate electricity 
(ISWA, 2012). Developed countries, such as Netherlands, 
Belgium, Denmark and Germany, prefer to use recycling/
composting techniques [122]. In contrast, many develop-
ing countries have not yet fully recognized the potentials 
of waste to energy technologies [107]. This is influenced 
not only by economic necessities and energy recovery, 
but also by the environmental regulatory compliance 
requirements of the concerned area [107]. Moreover, the 
international differences in social attitudes, education 
and investment in waste management lead to dispari-
ties and variations between waste generation and dis-
posal [68]. Therefore, from next section on, this review 
focus on anaerobic digestion and composting as two of 
the main OFMSW recovery and recycling techniques in 
Europe.

Anaerobic digestion
Anaerobic digestion of OFMSW is a viable alternative 
for waste stabilization and renewable energy recovery, 
e. g. biogas and digestate [105, 123]. A wide range of dif-
ferent raw materials are suitable for anaerobic digestion. 
This biological conversion process is based on micro-
bial decomposition of the organic matter in the absence 
of oxygen, accompanied by series of phases. Hydroly-
sis is the initial stage, in which the complex organic 
compounds, such as carbohydrates, proteins and fats 
are converted into soluble organic materials. The sec-
ond stage is fermentation, where the organic molecules 
break into acetic acid, H2 and CO2. The final stage is the 
methanogenesis, in which CH4 developed. The anaerobic 
digestion can be “wet”, with 10–15% of dry matter con-
tent and more liquid waste, or “dry”, with 24–40% of dry 
matter [124, 125]. The types of processes, of the reac-
tors and methane yield, depend on the region, quality of 
the feedstock and product requirements [107, 108]. The 
anaerobic digestion is the most promising and sustain-
able process for the treatment of food and yard wastes, 
because, compared with incineration or landfilling, this 
renewable source of energy may be used as a fuel to mini-
mize carbon emissions and reduce air pollution [107, 
126–128]. On the other hand, the recovery allows to pro-
duce a nutrient rich digestate which may be processed or 
distributed to fields directly as a fertilizer [124, 129]. Not 
stabilized digestate is usually composted to ensure that 
the product is suitable for agricultural application [130]. 
This provides the reduction of consumption of mineral 
fertilizers and the minimization of water pollution [131]. 

It is essential to know the OFMSW characteristics and 
composition to evaluate its toxicity towards agroecosys-
tems [132, 133]. Co-digestion of municipal solid waste, 
sewage sludge and food waste is often used to reduce 
the toxicity of digestates [134, 135]. This may lead to 
the simultaneous presence of non-biodegradable waste 
(plastics, metals, glass, and other packaging materials) 
and biodegradable waste (eggshell, biobags, and bones). 
Bio-based plastics, labelled as compostable according to 
EN 13,432, are not certainly biodegradable under anaero-
bic conditions [136]. To avoid these physical impurities 
that can have a negative influence on the process, the 
on-site grinding, chopping and mechanical separation 
are applied which in return may negatively contribute 
to the defragmentation of plastics and bioplastics into 
MPs, MBPs, NPs and NBPs [137]. Moreover, plastic bags, 
packing materials and voluminous garden wastes are 
considered as harmful materials for the anaerobic diges-
tion, delaying the biogas production process [123, 138, 
139].

Composting
Due to its easy implementation and operation, com-
posting is the most common method worldwide for the 
recovery and valorization of organic waste [140, 141]. 
The OFMSW, and other organic solid wastes, fit this val-
orization process which aims at biological stabilization of 
the organic substrate under controlled aerobic conditions 
[114]. During composting, oxygen is consumed by micro-
organisms, while CO2, heat and water vapors are released 
in the atmosphere [55]. The anaerobically digested 
sludge is composted with other organic wastes, such as 
agricultural wastes. The coupling of anaerobic digestion 
and composting represent a well-established process for 
waste management in Europe, and aims to improve qual-
ity and stability, to control water content and contamina-
tion by pathogens, and to lowering the metals amount 
[142]. However, each Member State follow different 
approaches for the characterization of the final product 
[143]. The properly processed compost can be used in 
soil conditioning and nutrient supply [144]. Microbial 
activity, temperature, moisture and feedstock are impor-
tant for the correct composting process [145, 146] and 
may influence the final organic matter content [147–150] 
and its phytotoxicity [151]. Since OFMSW must be con-
tained in compostable bio-based bags [152], their dis-
posal occurs together with the collected bio-waste and 
undergo the same treatments. Although there are many 
compostability standards for bioplastics, the literature 
data showed good performance at industrial composting 
when proper conditions are respected [55]. On the other 
hand, fossil-based plastics ending up in the composting 
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process may influence the parameters reported in Table 2 
and have the potential to decrease compost quality.

Finally, both plastics and bioplastics have a high prob-
ability of ending up in the OFMSW management process, 
but their fate and disintegration into micro- and nano-
particles must still be clarified. Indeed, it is recognized 
that MPs in the composts obtained from OFMSW are a 
source of pollution that may pose a threat to agroecosys-
tems [153]. Furthermore, it is important to understand 
the consequences of the presence of fossil plastics that 
are not retained by the initial separation, or the opposite, 
to avoid plastic waste streams contaminated by organic 
waste, which create serious problems to the mechanical 
recycling process. It is crucial to understand the impact 
of these materials on the compost quality and the whole 
energy recovery process [154].

The OFMSW treatment as a possible source 
of plastics pollution in agroecosystems.
It should not be underestimated that compost obtained 
from the OFMSW treatment may be a primary source 
of contamination by MPs, NPs, MBPs and NBPs in the 
agroecosystems, leading to negative impact on soil 
organic carbon (C) and nitrogen (N) cycling, on micro-
bial activity and nutrients transfer [161, 162]. In Italy, 

starting from 2011, the OFMSW must be collected in 
compostable bio-bags [152] which should be degraded 
by composting and/or anaerobic digestion. Their bio-
degradation rate depends on different factors, such as 
time, temperature and humidity of the process, type of 
source and physicochemical properties of the materi-
als. This leads to highly variable biodegradability rate 
data in literature, also because this statement depends 
on the standards applied. Indeed, for labeling composta-
ble material, European standards specifications, such as 
EN 13432:2000 [163] and EN 14995:2006, and interna-
tional and American standards define different essen-
tial requirements to be met for organic recycling. The 
various standards on compostability of materials are 
similar in some aspects, but differ in details. The disin-
tegration behavior of a products is mainly demonstrated 
by standard test methods performed at laboratory scale, 
pilot-scale, or under short timescales, while fewer stud-
ies focused on real conditions [164]. However, bioplas-
tics labelled as compostable are expected to enter the 
anaerobic or aerobic biological treatments that lead to 
end-products applicable in agriculture, such as sewage 
sludge and compost. Some treatments conditions (e. g. 
low temperature and humidity of the operations) can 
slowdown the degradation process and be responsible 

Table 2  Summary of anaerobic digestion and aerobic composting as two of the main OFMSW treatment operations

Parameters Effects of plastics Effects of bioplastics Refs.

Anaerobic Digestion Dry matter content of the substrate 
(dry, wet and semi-dry digestion)
Average temperature and fermen-
tation process (psychrophilic, meso-
philic and thermophilic processes)
Loading system for substrate (con-
tinuous or batch)
Number of reactors (one-stage or 
multi-stage technologies)
Type of reactors (vertical, horizontal, 
mixing technology)

Increased surface area 
of plastics led to greater 
reduction in biogas yields
Accumulation at the liquid 
surface of the digester
Stretch out the process
Clog the pumps
Wrap around stirrers
Lowering of sewage sludge 
quality due to the presence 
of MPs
Reduced contact of 
microbes and food waste
Release of plasticizers, stabi-
lizers, and flame retardants 
in sludge
Plasticizers negatively affect 
hydrolysis, acidification, and 
methanogenesis
Modification of microbial 
communities involved

Decrease in biogas yields
Stretch out the process
Clog the pumps
Wrap around stirrers
Lowering of sewage sludge quality 
due to the presence of MBPs
Modification of microbial commu-
nities involved

[55, 102, 103, 155–159]

Composting Feedstock properties (moisture 
content, C/N ratio, density)
pH value
Temperature
Aeration/oxygen supply
CO2 production
Odor generation

Lowering of compost 
quality due to the presence 
of MPs
Need for sieving, manual 
sorting or magnetic 
separation before or after 
composting
Modification of microbial 
communities involved

Lowering of compost quality due to 
the presence of MPs
Need for sieving, manual sorting or 
magnetic separation before or after 
composting
Modification of microbial commu-
nities involved

[103, 159, 160]
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for the generation of micro- and nano-particles in the 
final product, but their decomposition is not given much 
consideration. In fact, even though biodegradability 
standards were met, a recent study reported the release 
of micro- and nano-particles from biodegradable plastic 
under composting process [165]. Although the regulation 
restricts the use of fossil-based bags for the organic waste 
collection, these still enter to waste streams in organic 
treatment plants. This problem is addressed by mechani-
cal pre-treatment to separate larger pieces [66], but, as 
reported in the following section, MPs, as well as NPs, 
residues were found in the anaerobic sewage sludge and 
in the aerobic compost.

Moreover, standards for compost quality vary between 
Countries. In Italy the regulations require that plas-
tics > 2  mm comprise < 0.5% of compost weight mass, 
considering the smaller size pieces assimilable to com-
post. Germany has one of the strictest regulations on fer-
tilizers worldwide, allowing up to 0.1 weight % (wt %) of 
plastics. In other countries, such as Spain and New Zea-
land, the threshold limit is 10 to 15 mm, while in some 
other European countries plastics are not mentioned in 
the requirements for impurities. However, in regulations, 
particles smaller than 2  mm are not even considered 
[166].

Given the literature data previously discussed and 
the evidence that even in composts and sewage sludge 
micro- and nano-residues from plastics and bioplas-
tics can be present [67], the current standards for their 
assessment and the lack of quantification does not take 
properly into account agroecosystems pollution problem. 
Globally, there is a lack of research on the relationship 
between MPs, NPs, MBPs, NBPs in OFMSW feedstock, 
compost or sewage sludge and their effect on soil struc-
ture, physical and chemical properties, organisms and 
plants. To assess whether the compost and the sewage 
sludge obtained from the treatment of OFMSW can be 
a source of MPs, NPs, MBPs, and NBPs pollution in the 
soil, we evaluate the available quantitative data in litera-
ture on micro- and nano-particles of both fossil- and bio-
origin plastics during the whole process.

From the OFMSW to the compost: current data 
of MPs, NPs, MBPs and NBPs.
Our literature research revealed that most works are still 
focusing on finding methods for the separation and the 
quantification of micro-particles from both fossil- and 
bio-based plastics in organic matter. This is even more 
difficult for the nano-sized fragments. There is still no 
established method, applicable to different matrices, 
for identifying and quantifying MPs, NPs, MBPs and 
NBPs, resulting in a lack of data. Indeed, micro- and 
nano-plastics may aggregate themselves or with other 

organic particulate materials increasing in size, density 
and sedimentation rate [167]. Furthermore, the growth 
of bacterial biofilms on their surfaces may again increase 
particles weight and density [168], leading to several dif-
ficulties in the method.

In Table 3, we have summarized the few quantitative 
data reported in the literature concerning the OFMSW 
as a possible source of agroecosystems pollution, cover-
ing the organic fraction feedstock, the process, and the 
final products. Considering the evidence that MPs, NPs, 
MBPs and NBPs are present in the end-products from 
the OFMSW treatment [169, 170], the evaluation of the 
incoming feedstock is of utmost importance. To our 
knowledge, there is still a lack of studies that quantify 
MPs, NPs, MBPs, and NBPs presence in the OFMSW. 
However, in a recent work, samples of food waste pulp 
after shredding pre-treatment in an anaerobic digester 
in Italy were investigated [171]. As reported in Table 3, 
a high number of micro-particles from Mater-bi, cello-
phane, PE and PS were retrieved, concluding that the 
current threshold of 2  mm for plastics quantification 
should be lowered, as the MPs smaller than this size 
are almost the double that of items ≥ 2  mm. Nizzetto 
et  al. estimated between 63,000 and 430,000 metric 
tonnes of MPs in sewage sludge from wastewater treat-
ments applied annually on European lands, resulting 
in 473,000–910,000 metric tonnes released annually 
within continental environments [68]. The estimates for 
North America ranged from 44,000 to 300,000 tonnes 
of microplastics annually, whereas between 2800 and 
19,000 tonnes of MPs are applied each year to Austral-
ian agroecosystems through biosolids [20]. According 
to Wang et al., application of sewage sludge as fertiliz-
ers represents one of the significant sources of NPs in 
the agroecosystems. Otherwise, composts application 
in agroecosystems should enhance soil fertility, but at 
the same time it is also a source of contamination by 
MPs, which are not totally removed during the com-
posting process [172]. As reported by Cesaro et  al., in 
the compost obtained from the OFMSW treatment 
from industrial Italian plants, the content of plastics 
exceeded the threshold limit value, but no quantita-
tive data are reported. The reason may be the quality 
of the input waste, and this can be easily improved by 
up-stream strategies acting on separating collection 
methods.

In recent years, compost and sludge have been scarcely 
investigated [104], and the few available data are shown 
in Table  3. These organic amendants for soils should 
be given greater consideration as major vehicle for the 
entry of MPs, NPs, MBPs and NBPs in agroecosystems 
[67]. In fact, the collected data lead to serious concerns 
about the overall deposition, retention, and accumulation 
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of plastics and bioplastics debris in agroecosystems, and 
large amounts of these contaminants may be also trans-
ferred to marine environments causing further dam-
age. Moreover, these fragments, if ingested, may pose a 
greater risk to organisms and subsequently this may sup-
port additional transfer and accumulation along food 
chains [173]. Another of the major gaps in literature is 
the understanding of micro- and nano-sized plastics and 
bioplastics particles effects on soil microbiome [20]. This 
may provide insights into the long-term implications of 
these contaminants in agroecosystems.

Conclusions and further perspectives
Due to the possible long-term threat to the environment, 
food security and human health, MPs, NPs, MBPs, NBPs 
pollution in agroecosystems is an emerging issue which is 
gaining increasing scientific attention. However, the larg-
est gap in current research relies in their environmental 

fate and ecological impact in agroecosystems. Huge 
unpredictability exists because of the limited numbers 
of data regarding their quantification in each possible 
source. Indeed, the major hurdles arise from the difficult 
to quantify these tiny particles and subsequently assess 
the concentrations, the bioaccumulation risks and toxic 
effects in the environments and organisms. To evaluate 
the true risk, a global investigation of these materials in 
agricultural soils is urgently required. Furthermore, a 
greater understanding of any potential source of these 
pollutants to agroecosystems is crucial.

Based on the existing literature, we collected data on 
contamination by MPs, NPs, MBPs, NBPs in OFMSW 
and during its transformation into compost and sewage 
sludge. This review provided insights into the distribu-
tion of MPs, NP, MBPs and NBPs in compost and sewage 
sludge from OFMSW as a possible source of contamina-
tion of agroecosystems, but also provided some remarks 
for protection and governance of terrestrial ecosystem’s 

Table 3  Summary of the main studies on MPs, NPs, MBPs, and NBPs in the OFMSW treatment, covering different origin and sources 
within the whole process

Selected studies were those which quantified micro- and nano-plastics and bioplastics in the OFMSW, in the anaerobic digestion, in the composting process and in 
the final end-products (sewage sludge and composts)

Polymer’s type Source/origin Amount Dimension/size Refs.

Mater-Bi OFMSW after shredding pre-treatment, 
anaerobic digester

8.4 ± 0.5 MBPs/10 g  < 2 mm [171]

PE, Cellophane, PS OFMSW after shredding pre-treatment, 
anaerobic digester

5.4 ± 1.7 MPs/10 g  < 2 mm [171]

PES, PE, PP, PET, Cellulose-based polymer, 
PVC, PA, PUR, etc.

Quality-controlled, certified biowaste com-
post sieved through 8 mm meshes

20 MPs/ kg dry weight 1–2 mm, 2–5 mm [67]

PES, PE, PP, PET, Cellulose-based polymer, 
PVC, PA, PUR, etc.

Quality-controlled, certified biowaste com-
post sieved through 15 mm meshes

24 MPs/ kg dry weight 1–2 mm, 2–5 mm [67]

PES, PE, PP, PET, Cellulose-based polymer, 
PVC, PA, PUR, etc.

Mature compost from household biowaste 
digester

70 MPs/ kg dry weight 1–2 mm, 2–5 mm [67]

PES, PE, PP, PET, Cellulose-based polymer, 
PVC, PA, PUR, etc.

Mature compost from household biowaste 
digester

122 MPs/ kg dry weight 1–2 mm, 2–5 mm [67]

PES, PE, PP, PET, Cellulose-based polymer, 
PVC, PA, PUR, etc.

Fresh digestate-fertilizer from household 
biowaste digester

146 MPs/ kg dry weight 1–2 mm, 2–5 mm [67]

PES, PE, PP, PET, Cellulose-based polymer, 
PVC, PA, PUR, etc.

Liquid fertilizer for agricultural use from 
commercial biowaste digester (waste from 
local markets, food and drink industries)

895 MPs/ kg dry weight 1–2 mm, 2–5 mm [67]

Heavy plastics Municipal solid waste composts 1.2% dry matter 5–30 µm [172]

Light plastics (PE films) Municipal solid waste composts 0.3% dry matter 5–30 µm [172]

LDPE film fragments Sludge from a biogas plant Not mentioned 1 mm [174]

Polyester, PP, PE Compost from rural domestic waste 2533 ± 457 MPs/kg dry weight 1–3 mm [175]

Polyester, PP, PE Compost from rural domestic waste 2267 ± 115 MPs/kg dry weight 0.1–0.5 mm [175]

PE, PP Compost from municipal organic waste 21 ± 31 MPs/kg 1–2 mm [176]

PE, PP Compost from municipal organic waste 1750 ± 930 MPs/kg 30 µm–2 mm [176]

– Compost 2.38–1200 mg plastics/kg - [79]

– Sewage sludge 1000–24,000 plastic items/kg - [79]

– Compost 1200 mg/kg - [177]

Plastics and fibers Sieved compost from municipal bio-waste 1.35 ± 0.59 g items/kg 5–25 mm [178]

Plastics and fibers Sieved compost from municipal bio-waste 1357.9 ± 596.0 mg/kg 1–5 mm [178]
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health. Collaboration among scientists and policy mak-
ers is necessary to help ease environmental accumulation 
of MPs, NPs, MBPs and NBPs. Moreover, it is crucial to 
evaluate the spatial scale of the problem, predicting the 
carrying capacity of agroecosystems, and putting the 
results into a wider context.

Based on the current evidence we have outlined some 
points for future research:

Biodegradable is not always biodegradable
Biodegradability must be assessed according to the dis-
posal environment, pre-treatments, time and tempera-
ture conditions. Highest efficiency is only possible with 
upstream and downstream balance within the system 
through a strong communication between biopolymers 
producers and end-of-life managers. A huge number of 
studies indicated that the conditions applied at indus-
trial scale are not sufficient to biodegrade the biopoly-
mers used, indicating the discrepancy between industry 
and standards, and their distance from bioplastics man-
agement systems.

The release of MBPs and NBPs is often overlooked 
and underestimated
Additional investigation and calls for longer field test-
ing are needed to ensure the complete biodegradation. 
The knowledge gap on the fate of these polymers dur-
ing the OFMSW treatment as a possible management 
operation needs to be addressed as only few studies 
report the actual residues of MBPs and NBPs. A lack 
of knowledge about the fate of biodegradable residues 
once transported in soils through composts or sewage 
sludge, too, is certainly of concern.

OFMSW’s collection and treatment at recycling facilities 
should be tailored
Plastics and bioplastics content within the processed 
organic waste in terms of quantity and size is crucial 
to determine if the final sieving step is sufficient to 
obtain an adequate compost. It is important to pre-
dict whether the market-share increase of the bioplas-
tics that are labelled as “disposable within the organic 
waste” can cause operational problems in plants and in 
the final compost.

Amounts of MPs and NPs as quality criteria of the final 
compost and sewage sludge
No critical limits for MPs and NPs pollution in soil have 
been determined yet. The composting and monitor-
ing processes usually rely on parameters enabling the 

indirect control of the evolution, while maturity and 
microbial stability are evaluated only on the final prod-
uct. The control of the progress of degradation reactions 
may help to better characterize the compost. The use of 
compost and sewage sludge obtained from the OFMSW 
treatment is a very important strategy to comply with 
the “end-of-waste" policy in Europe, but Regulations still 
show heterogeneity and blind spots in the characteriza-
tion of the quality. Moreover, there is the strong need 
to lower the threshold size for plastics quantification in 
compost, which is currently set by European legislations 
at 2 mm.

Nano‑plastics and bioplastics particles are considered 
as emerging contaminants, but their environmental fate, 
ecosystem toxicity and potential risks have so far been 
less explored
A wider view of their impact on the agroecosystems 
and their role as a novel habitat for microbial coloniza-
tion, and as a vector for pathogens, organic contami-
nants and metals must be urgently required. Due to their 
ubiquity, once introduced, complete removal of MPs and 
NPs is impossible. It is critical to understand what long-
term effect they have on both the compost and the soil 
in which they end up, as well as their biotransformation 
and bioaccumulation. To evaluate their effect on enzyme 
activity, microbial diversity, crop yield and crop quality, 
more ecotoxicological studies are needed. In addition, 
plasticizers and other contaminants must be considered.

In agroecosystems, the most abundant polymers, their 
sizes and the extent of contamination is unknown
It is necessary to standardize the techniques for the sepa-
ration and the detection of these materials, and to define 
size, shape, composition, crystallinity and contaminants 
criteria. Therefore, more standards and quantitative 
methods are needed. This is only a starting point to quan-
tify the present and the future degree of environmental 
damage caused by MPs, NPs, MBPs and NBPs pollution.

Bioplastics are the new troublemakers for the OFMSW
New strategies are necessary, also at local level, to better 
manage OFMSW that is variable in composition, quan-
tity and complexity. Public health, resource recovery, and 
environmental protection should drive cities and coun-
tries to improve their waste management systems.

To prevent pollution into the terrestrial environment, it 
is essential that each possible route of contamination 
to agroecosystems is analyzed in details
This literature review revealed that many studies on sew-
age sludge refer exclusively to the wastewater and its 
treatment plants. Literature bears only a limited number 
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of researches on the fate and quantification of MPs, NPs, 
MBPs and NBPs during the OFMSW management cycle. 
In addition, most of the work focuses on the marine envi-
ronment or other waste management options, such as 
landfills.

Communication is another gap in this long process
Consumer awareness about the problems that may arise 
from improper handling of these materials is still low and 
consumer confusion contributes to the contamination 
from fossil-based plastics in OFMSW collection plants, 
or the opposite. Misperception of “biodegradability” may 
cause disposal of these items in the environments with-
out accompanied guilt. Items labelled as biodegradable, 
are strictly related to the environment conditions, and 
these materials does not necessarily degrade in natural 
habitats quickly.
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