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ABSTRACT
A constitutive model and a finite element formulation for viscoelastic anisotropic materials subject
to finite strains is expounded in this paper. The composite material is conceived as a matrix reinforced
with stiff fibres. The constitutive relations are obtained by defining a strain energy function and a
relaxation function for each constituent. By means of this approach, the viscoelastic properties of
the material constituents can be taken into account and therefore different time dependent behaviour
can be assigned to the matrix and to the reinforcing fibres. The response provided by this kind of
constitutive formulation allows for the description of mechanical behaviour for either natural
anisotropic tissues (such as tendons and ligaments) and for the composite materials which are currently
adopted for tissue reconstruction. The main features of those mechanical properties observed in an
ideal uniaxial test are: a non linear stress-strain response and a time dependent response which is
observed in relaxation of stresses for a prescribed constant stretch and in a moderate strain rate
dependence of the measured response.

1. INTRODUCTION
Ligaments and tendons are biological structures
with a relevant load-bearing role during the
relative movements of body parts. Even if the
roles of these two kinds of structure are distinct,
they display a qualitatively comparable
mechanical behaviour. Experimental studies
conducted on both kinds of tissue show non-
linear force-displacement response and a
viscoelastic behaviour. Moreover, cyclic loading
are characterised by a pre-conditioning stage
followed by a stationary response [1]. An
important subject of research, in this field, is the
clinical treatment of tissue reconstruction in case
of rupture. One of the possible technique to
recover the functionality is the implantation of a
totally new ligament or tendon made of
composite material. For a clinically successfully
implantation a fully biomechanically compatible
prosthesis should be conceived [2]. To this end
the mechanical behaviour of composite materials
for prostheses and of natural tissues are compared
with particular reference to their viscoelastic
properties.  This paper aims at studying the
viscoelastic constitutive laws for composites
subjected to finite deformations that simulate the

behaviour of ligaments and tendons. A computer
implementation will be used for predicting the
mechanical response of artificial devices and the
influence of the kinematic and mechanical non-
linearities on the global behaviour will be
addressed. A large number of theoretical and
numerical studies have been presented for
biological tissues and, in particular, the papers
by [3-5] were dedicated to ligaments and tendons.
All those models describe, through different
approaches, the common behaviour of such
tissues: the non-linear stress strain response and
the time dependent behaviour. The proposed
theories can be classified in three main classes:
general continuum theories, phenomenological
approaches and structural approaches. The
continuum theory is based on the extension of
continuum based theory to the viscoelastic case.
[6] presented the extension to the finite strains
range of the quasi-linear viscoelasticity presented
for the first time by [1].   Phenomenological
approaches are developed by means of
formulations that describe the mechanical
response in the simplest possible way and by
fitting experimental results. As last, the structural
approaches are based on the knowledge of the
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mechanical response of each material constituent
[7-8].  In this paper a continuum approach with
a structural interpretation has been used for the
description of the viscoelastic behaviour of
composite materials, here analytical aspects and
the finite element implementation are
investigated. A possible time integration scheme
of the presented viscoelastic model is presented
in [9]. This model is the extension of the
constitutive laws, formulated in [2], to the case
of the viscoelastic response. The structural
approach to the viscoelastic constitutive laws
presented in this paper relies on the assumption
that fibres and matrix can exhibit different time
dependent properties in terms of relaxation
spectrum and total relaxation ratios. As such, this
model can be regarded as a quasi-linear model,
where linear viscoelasticity is associated to a non-
linear mechanical response.

2. THEORETICAL DEVELOPMENTS AND
NUMERICAL IMPLEMENTATION
Theoretical developments of the viscoelastic
material description are presented on the basis
of the constitutive equations suited for time
independent mechanical behaviour of anisotropic
materials, subject to finite deformations, which
was reported by the Author in [2].   Such
constitutive equations were based on the
assumption of an elastic potential for each
composite constituents, namely for the matrix
and the fibres. The interaction between the two
components was taken into consideration when
assuming a perfect bond between those two
materials and therefore by setting up a kinematic
relationship between fibre stretch and matrix
deformation.   In a three-dimensional Cartesian
space, let the current and the reference body
configuration is denoted by [ and; respectively.
In a Lagrangean description, where the reference
configuration is the initial undeformed state of
the body, the deformation tensors are the right
and left Cauchy-Green stretch tensors defined as:
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where the superscript T denotes the transpose. A
set of reinforcing fibres, parallel to the vector N
in the reference configuration, are considered.
The fibre stretch l

f
 can be obtained if the perfect

bond between fibre and matrix is assumed:
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The elastic potentials adopted for the matrix W
m

and the Kth  family of fibres W
fk
 are:

                                                                   (4)

                                                                   (5)

where I
C 
 and II

C
 are the first and second invariant

of tensor C, while, a, b, E
f
 and q are material

parameters.

The Cauchy stress components for a time
independent behaviour are:
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The structural approach to viscoelasticity for
composites is based on the knowledge of the
viscous properties of each constituent. The
behaviour of the composite will be obtained by
summing up the contribution of all the
constituents.   In a small strains setting and for
problems with incompressible materials, a linear
viscoelastic response can be modelled by means
of time integration as follows:
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This equation states that the deviatoric stress
components at a time instant t is obtained by
integrating over the time interval s = 0,t all the
previous elastic deviatoric stress components
weighted by the function G(t). It is implicitly
assumed that the deformation process starts at
time instant t = 0, and that at previous time
instants the body was in the undeformed and
unstressed state.  This function G(t) is a relaxation
function which provides a fading memory to the
material. By means of this function, recent events
have more influence on the state at the current
time than older ones.   The constant p in equation
(8) represents the hydrostatic stress components,
which are related to the volumetric deformation,
which is assumed not subject to viscous effect.
Equation (8) is the starting point for the
description of the viscous effects in the matrix
of the composite material. A generalisation to the
finite strains is however required. This
generalisation should take into consideration that
rigid rotations of a body particle do not contribute
to viscous behaviour [9,10]. Equation (8) can be
generalised for use in the finite strain range, as
in [6], in the following way:

                                                                    (9)

During the deformation process the body particle
is subjected to a finite rotation determined by the
tensor ( )W5 , which satisfies the relation

,55 =7 . The rotation tensor 5 is obtained by
applying the multiplicative decomposition of the
deformation tensor C as follows:

585& �7=                                                                    (10)

The equation (10) states that the a deformation
tensor can be decomposed in a pure stretching
represented by the positive definite tensor U and
a rigid rotation represented by the orthogonal

matrix R. The effects of those rigid rotations,
which do not influence the viscous behaviour of
the material, can be eliminated by rotating the
Cauchy stress tensor to a fixed reference system.
It is obtained by means of the double product of
the elastic deviatoric stress components

( )VG

HP
s by the matrices RT and R, (see the inte-
gral argument of the right-hand side of the equa-
tion (9).  The stress components modified by the
viscous effect can be reoriented to the current
reference system by means of a further double
product by R and RT. Equation (9) represents the
time dependent effects given by the viscous
behaviour of the matrix which depends on the
relaxation function G(t)/G(0). This is a mono-
tonic decreasing function of the time which starts
from G(t)/G(0)|t=0 =1 and has an horizontal as-
ymptote attaining the value denoted as G(� )/
G(0), that is the ratio between initial and long
term stress of an ideal relaxation test.   The vis-
cous effect of the reinforcing fibre is now taken
into consideration. It must be considered that
rigid rotation of fibres does not have any vis-
cous effect on the fibre itself. If a fibre is subject
to rotation only, without getting stretched, the
stress components in fibre direction do not
change and therefore do not give any contribu-
tion in the time integral which can be written in
the following form:
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In equation (11), H

Is  is the Cauchy stress com-
ponent in the current fibre direction. The viscous
effect given by the fibres will be described by
the relaxation function ���W� �FF , which is a
monotonic decreasing function. It starts from a
value given by ( ) ( ) ��

�
=

=W
_W FF and has an hori-

zontal asymptote at a value denoted as

( ) ( )�FF � .   The total stress tensor for com-
posite viscoelastic solids is:
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The hydrostatic component p(t), included in the
formulation in order to account for the
incompressibility condition, is not known
beforehand and it will be determined by means
of equilibrium considerations.   The elastic stress
components of matrix and fibres are obtained by
using equation (7).   The proposed model has,
therefore, the double advantage to put together,
in a unified constitutive theory, the mechanical
non-linearity and time dependent properties of
materials. The formulation can easily be adopted
for three-dimensional problems by
implementation into a finite element code. In the
following sections, the finite element
formulations, a comparison between analytical
and numerical results and a boundary value
problem for a time dependent behaviour will be
presented.

2a Finite Element Formulation

A commercial finite element code has been
adopted for the implementation of the previous
expounded constitutive relations. It has been
accomplished by adding a user�s subroutine to
the computer code (ABAQUS). The subroutine
provides to the finite element package the Cauchy
stress tensor at each given gradient tensor F and
the tangent operator CS. This latter is defined as
the corotational variation of the Cauchy stress
tensor components with respect to the strain
components:
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where e is the deviatoric strain rate defined as:
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Note that the spatial derivative of the
displacement field is taken with respect to the
current spatial co-ordinate system (x

1
, x

2
, x

3
)

because an updated Lagrangian formulation is
adopted. Therefore the reference configuration
is the last converged equilibrium configuration
state. In the case of incompressible materials
subject to finite strains, the Cauchy stress
variation is obtained by summing up the
contribution of the corotational variation and the
contribution given by the rigid rotation of the
body particle :
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In the previous formula, Cs accounts for the
corotational components of stress variation and
the skew tensor W takes into account of the rigid
rotation of the elementary volume. For
incompressible homogeneous materials modelled
through the Mooney Rivlin constitutive equations
the tangent operator Csm takes the expression:
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where the apex m denotes matrix and the matrixes
H are:
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The Second Piola Kirchhoff stresses induced in
the medium by the fibres is obtained by
differentiating the fibre elastic potential with
respect to the kinematic variables, i.e.:
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The Cauchy stresses are obtained by the usual
transformation:
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The tangent operator or elasticity tensor can be
obtained by making the second derivative of
second Piola Kirchhoff tensor stresses with
respect to the strain components. Let us denote
by CK the following partial derivatives:
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The tangent operator that relates the corotational
increments of the Cauchy stress sf to the
kinematic quantities can be obtained as follows:

N

PQSTOTNSMQLP

VI

LMNO &))))
-

&
�

=

H
&

&H
&

�
�

�

�

�
�

=
�
�

= I

I

II
VI

l

l
�

and in the index form it becomes:

NKML

I

I

I

I

I

IVI

LMKN QQQQ
::

-
&

æ
æ
ç

å

Ö
Ö
×

Õ

�

�
+

�

�
-=

�

�� �

lll
l

Where apex f denotes fibres.   In the case of m =
1 and q = 2 of formula (3), the tangent operator
for the fibres is:
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The total tangent operator that takes into account
of both the matrix and the fibres is obtained by
summing up their contributions as follows:

N
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N
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The discretisation in the time domain allows for
a step by step calculations of stresses and tangent
operator [9].

2b numerical tests

Some numerical experiments have been
performed in order to validate the implementation
of the stress-strain relation and the tangent
operator within the finite element code by
comparing numerical and analytical solutions.
Only analytical solutions for time independent
problems were available.   Numerical tests carried
out on a single element model have shown a fairly
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Fig. 1(a) :top view of the three-dimensional finite
element model, (b) :simplified geometrical model of a
composite tendon reinforced by using helicoidal fibres

good agreement between theoretical and
numerical results.   A more complex geometrical
model has been used for comparing analytical
and numerical solutions in the case of non-
uniform deformation field. The model consists
of an hollow cylinder of composite material
obtained by reinforcing a matrix with a double
helicoidal fibre pattern. The fibres form an angle
with the longitudinal axis, which is variable with
the distance from the centre according to the
following formula:

%$5Q

I +=qWDQ                                                                     (29)

where A, B and n are constants and R is the radial
distance from the axis.   The geometric model of
the composite tendon is shown in Fig.1 [b,c]. The
inner and outer surfaces of the model are free of
stresses and the two end transversal sections are
subject to a uniform field of displacements in
longitudinal direction (z direction) in order to
simulate a uniaxial tensile test. The analytical
solution of this boundary value problem is
available in [2]. The cylinder is subject to a
uniform state of stress and strain in the
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longitudinal direction, whereas in the radial
direction gradients of stress and strain arise.
Symmetry considerations allow modeling only
one quarter of the whole solid. The top view of
the finite element model is shown in Fig.1 [a]. A
20-node brick element with quadratic
displacement interpolation functions has been
used.   Hybrid element formulation with linear
hydrostatic pressure approximation can take into
consideration the incompressibility condition
imposed on the matrix material.   A finite element
simulation has been performed by using the
parameter values in table 1.

The longitudinal force obtained by integrating,
along the current transversal area the s

zz
 stress

component, provided by the finite element model,
are in good agreement with the values given by
the analytical solution (Fig. 2).   The stress
components s

rr
, s

zz
 and sqq  also exhibit a rather

good agreement with the analytical results
(Figures 3-5). In Fig. (3) the stress components
along the radial co-ordinate of the cylinder for

a��03D b��03D (I���03D $��PP�� %

���� ���� ��� ���� �����

Table 1: Mechanical properties of materials used in the
tube model.

two different values of the stretch ratio (l =1.04
and l =1.1), are shown. The model and the
boundary conditions adopted for results
validation have already been considered as a
simple model of an artificial ligament in Vena et
al. 1998. The above composite has been supposed
to be used to replace damaged ligaments. In fact,
preliminary numerical studies for evaluating the
mechanical behaviour of such prosthetic devices,
suggest that a suitable choice of constitutive and
geometrical parameters could lead to the required
mechanical response.

3 APPLICATIONS: NUMERICAL
RESULTS OF THE TIME DEPENDENT
CONSTITUTIVE   MODEL
Biological tissues are complex structures made
of collagen fibres organised in a more or less
parallel pattern. Those fibres are initially crimped
and, as the deformation process develops, they
tend to straighten and to exhibit increasing
stiffness. Those complex microstructural
arrangements and complex interaction
phenomena between fibres and the surrounding
matrix make ligaments and tendons biological
structures exhibiting a complex mechanical
behaviour.  If an ideal uniaxial pull test is
performed on a tendon sample, which can be

Fig. 2 :Longitudinal force in the extension of the tube model: analytical and finite element results.
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assumed to as a uniaxial structure, a typical
stress-strain curve is observed. This curve is
characterised by two distinct regions: an initial
region displaying low stiffness and non-linearity
is followed by a rather linear region, which
exhibits higher stiffness. Those two regions are
separated by a transition zone denoted as toe
region. The stiffening effect is given by the
progressive straightening and recruitment of
crimped fibres.   Moreover, experimental results
taken from the literature [11] show a time
dependent behaviour such as relaxation of
stresses, creep and strain rate dependence.

Fig. 3 :Radial Cauchy stress in the tube model, analytical and finite element results.

Fig. 4 :Cauchy stress in the tube model, analytical and finite element results.

Relaxation experiments carried out on natural
ligaments have shown that the total stress
relaxation can reach the 40% of the initial stress
in hundreds of seconds and that a fraction of the
total relaxation is obtained in the very first period
of the test. Obviously this is only a qualitative
description of the viscous behaviour of ligaments.
From a quantitative point of view, the results
show some scatter due to the fact that samples
taken from natural tissues are always different if
observed at a microscopic level.   The theoretical
description of the constitutive behaviour of the
previous section can in principle be used both
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for natural ligaments and artificial composites
conceived for ligaments replacements. These
latter must be manufactured with materials such
that their mechanical behaviour is comparable
to the one exhibited by natural tissues.

Let us consider a strip of composite material
reinforced by fibres initially oriented with angle
+q and -q  with respect to the X

1 
axis as in fig. 6.

Such composite is subject to stretching in the X
1

direction while the displacements in the
remaining two directions are free. Equilibrium
conditions impose that faces with normal directed
in the X

3 
and X

2
 directions are stress free. The

mechanical response of such boundary value
problem, in the case of time independent
constitutive equations (6), is already described
in [2]. In this problem the Cauchy stress
components related to the matrix are always
referred to a Cartesian reference system which

Fig. 5 :Circumferential Cauchy stress in the tube model, analytical and finite element results.

Fig. 6 :Geometric model of the composite strip.

remains parallel to the main reference system
drawn in fig. 6. Therefore the rotation matrix R(t)
of equation (12) is the identity matrix I. On the
other hand the fibres are subject to stretching and
rigid rotation. The fibre stretch l

f
 is obtained as

follows:

                                                                    (30)
where l

1
and l

3 
are stretch ratio in the X

1
 and X

3

directions obtained by equilibrium
considerations.   In the present application the
relaxation functions where assumed as series of
exponential terms for both the matrix and the
fibres as follows:
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Fig. 7 :Relaxation function with two elements of the exponential series.

Fig. 8 :Purely elastic and viscoelastic response in a numerical tension test.

with the conditions:
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The choice of exponential series for relaxation
function implicitly assumes a discrete relaxation
spectrum [12]. In fig. 7 the normalised relaxation
curve is shown. It has been obtained by using
two terms of the series as indicated in the graph.
The physical meaning of those parameters is that
a maximum decay of 40 per cent of the total stress

is obtained at 200 seconds but the 75 per cent of
the total relaxation is already obtained in the first
50 seconds. The higher is the number of terms in
the series, the more continuous is the relaxation
spectrum.   The application of this model to the
boundary value problem sketched in fig. 6
brought to results that put in evidence a complex
interaction between viscous behaviour of the
matrix and of the fibres.   Fig. 8 shows the
mechanical response in two cases: the
viscoelastic behaviour and the elastic behaviour
of the material. The elastic response is obtained
as a viscous material with an extremely short
relaxation time. The two curves clearly exhibit
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the typical non-linear (toe-region) behaviour of
ligaments or tendons, whereas stress relaxation
is observed for the viscous case.   The results of
a stress relaxation test performed for a maximum
stretch ratio of  l =1.5 is shown in (Fig. 9). The
three curve are related to a test where the viscous
properties are given to: a) both the matrix and
the fibres, b) to the fibres only and c) to the matrix
only. As expected, a larger amount of stress
reduction is reached if both matrix and fibres are
subjected to viscous effects.   The effect of the
maximum stretch ratio on a relaxation tests is
shown in (Figures 11,12).  Fig.11 is related to
the case of both matrix and fibres subject to

Fig. 9 :Relaxation phase for different viscous properties.

Fig. 10 :Strain rate effect.

viscous effects, whereas fig. 12 is related to the
case in which only the matrix is subject to stress
relaxation. The global behaviour of the material
is different in the two cases and a complex
interaction of the viscous effect can be observed.
The behaviour is non-linear since the stress
relaxation is not proportional to the maximum
imposed stretch.   Moreover, a small strain rate
sensitivity is observed (Fig. 10). This sensitivity
is however largely dependent on the value of the
total stress relaxation and the range of rates taken
into consideration.
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4. CONCLUSIONS
A theoretical and computational description of
the non-linear viscoelastic behaviour for fibre
reinforced materials was presented in this paper.
An original structural approach has been
formulated, which is characterised by two
independent visco-elastic models for the matrix
and the fibres. The effect of the kinematic non-
linearities was also taken into account by using
suitable stress and strain measures.   The model
response displays both the mechanical non
linearity exhibited by those materials, their
anisotropic and visco-elastic behaviour. The
relaxation function has been assumed as an

Fig. 11 :Normalised relaxation curves for different maximum stretch (both fibres and matrix
have viscosity).

Fig. 12 :Normalised relaxation curves for different maximum stretch (only matrix has viscosity).

exponential series such that a general relaxation
spectrum could be described. The model shows
a complex interaction between viscous properties
of fibres and viscous properties of matrix, thus
resulting in a non-linear viscous behaviour.   The
implementation of such viscoelastic constitutive
equations into a finite element code is already
ongoing. A coupled numerical-experimental
analysis is now required for establishing the
suitability of such model for the description of
the behaviour of real ligaments and for
identification of the model parameters.
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