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ABSTRACT

Idealized model experiments investigate the advance warning for malaria that may be presently possible

using temperature and rainfall predictions from state-of-the-art operational monthly and seasonal weather-

prediction systems. The climate forecasts drive a dynamical malaria model for all of Africa, and the pre-

dictions are evaluated using reanalysis data. The regions and months for which climate is responsible for

significant interannual malaria transmission variability are first identified. In addition to epidemic-prone

zones these also include hyperendemic regions subject to high variability during specific months of the year,

often associated with themonsoon onset. In many of these areas, temperature anomalies are predictable from

1 to 2 months ahead, and reliable precipitation forecasts are available in eastern and southern Africa 1 month

ahead. The inherent lag between the rainy seasons and malaria transmission results in potential predictability

in malaria transmission 3–4 months in advance, extending the early warning available from environmental

monitoring by 1–2 months, although the realizable forecast skill will be less than this because of an imperfect

malaria model. A preliminary examination of the forecasts for the highlands of Uganda andKenya shows that

the system is able to predict the years during the last two decades in which documented highland outbreaks

occurred, in particular the major event of 1998, but that the timing of outbreaks was often imprecise and

inconsistent across lead times. In addition to country-level evaluation with district health data, issues that

need addressing to integrate such a climate-based prediction system into health-decision processes are briefly

discussed.

1. Introduction

Despite a reduction in range over the past century and

a significant scale-up of control measures over the past

decade, malaria remains a disease with a heavy health

burden. The life cycles of the malaria parasite and its

mosquito vector are affected by climate, principally

temperature and rainfall (Craig et al. 1999). Thus, in ad-

dition to other factors such as land cover, human migra-

tion, interventions, and socioeconomic conditions that can

alter the local disease prevalence significantly (Koram

et al. 1995; Martens and Hall 2000), year-to-year fluc-

tuations in climate can lead directly to variability in the

intensity of malaria transmission. The malaria-parasite

development time in both host and vector results in a

temperature-dependent lag of approximately 1–2 months

between the onset of suitably wet conditions for vector

proliferation and symptomatic cases (e.g., Teklehaimanot

et al. 2004; Bomblies et al. 2009). Thus, accurate real-time

monitoring of temperature and rainfall conditions could

provide useful information concerning malaria trans-

mission in malaria early-warning systems (MEWS) 1–2

months in advance.Worrall et al. (2008) proclaim the cost

effectiveness of well-planned interventions and empha-

size the subsequent need for effective MEWS.

Mabaso and Ndlovu (2012) extensively reviewed ar-

ticles that considered the relationship between climate

and malaria in Africa and in particular those that at-

tempted to employ the resulting information in MEWS

through climate monitoring and/or forecasting. In par-

ticular, Rogers et al. (2002) highlighted the potential

role of satellite monitoring of climate conditions in
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early-warning systems for malaria and called for im-

provements in disease-modeling capabilities to fulfill

this potential. Hay et al. (2003a) also affirmed that

rainfall monitoring could lead to improved planning

potential. This was demonstrated in a case study for the

Kenyan highlands, which also showed that the seasonal-

forecast models at the time were inadequately skillful to

extend the advance warning provided by rainfall obser-

vations (Hay et al. 2003b). The study also emphasized the

fact that malaria case monitoring provided inadequate

advance warning to implement mitigation actions, be-

cause outbreaks were only detectable once under way.

Grover-Kopec et al. (2005) subsequently introduced

a MEWS that was based on rainfall monitoring from

satellite retrievals. The difference in advance warning,

sometimes referred to as a forecast lead time, provided by

case monitoring, climate monitoring, and climate fore-

casting was contrasted in Ceccato et al. (2007), empha-

sizing the additional potential gain in time for planners if

skillful climate forecasts could be developed and suc-

cessfully integrated into health-planning policy.

If the key environmental variables of temperature and

rainfall could be accurately predicted using weather

forecasts, warning of malaria outbreaks could poten-

tially be provided earlier and on a regional or even

continental scale. Until the most recent decade, the

inaccuracy of dynamical forecasts of the weather in

Africa precluded their effective use, but this situation has

improved with the latest-generation systems (Kim et al.

2012). Jones et al. (2007) assessed past climate forecasts

(hindcasts) conducted for the DEMETER project

(Palmer et al. 2004; a list of many common acronyms is

available at http://www.ametsoc.org/PubsAcronymList)

to show that they could potentially have been used to

predict the 1997 and 1998 highlands outbreaks in north-

western Tanzania. A landmark study by Thomson et al.

(2006) also used the DEMETER hindcasts to drive

a simple statistical model for malaria that was trained

with country-averaged cases in Botswana and showed

positive skill for this index in a cross-validation exercise

up to 6 months in advance. In Africa, Botswana is

a country with relatively high seasonal predictability be-

cause of strong teleconnections to El Ninõ–Southern
Oscillation. The country was also chosen for the study

because it has a long multidecadal health dataset for

malaria, which is needed to derive the statistical model

and is a rarity on the continent. Jones and Morse (2010)

advanced this work by substituting the statistical malaria

model with a more complex dynamical model, the Liv-

erpool malaria model (LMM; Hoshen and Morse 2004),

which was driven for a grid of points covering Botswana.

Jones and Morse (2010) showed that the malaria fore-

casts demonstrated positive skill and economical value, in

particular for low-malaria years. The lack of initial con-

ditions for themalariamodelmeant that the LMMhad to

be ‘‘spun up’’ from idealized initial conditions, potentially

reducing the system skill.

Jones and Morse (2012) repeated this study, using

amore recent set of climate hindcasts that were conducted

for the ENSEMBLES project (Weisheimer et al. 2009)

and focusing this time on points in central andWestAfrica

that are subject to high year-to-year variability, where

climate is likely to play a more significant role in in-

terannual transmission variations. The integrations were

compared with malaria-model runs driven by the 40-yr

European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis, and thus the validation was re-

ferred to as a ‘‘tier-2’’ validation (Morse et al. 2005), be-

cause it does not directly compare the malaria model with

health or entomological data and thus maximizes the re-

ported skill by not accounting for malaria-model error.

Although forecast skill was absent in many regions, skill

was positive and linked to temperature variability in the

highlands of Cameroon and rainfall variability was key in

parts of Niger and Nigeria in West Africa.

In this paper, the work of Jones andMorse (2010, 2012)

is advanced in several ways. First, the previous studies all

used stand-alone one-off hindcast datasets, including

forecast systems that were not necessarily operational but

rather were used for research purposes. Here, we con-

struct an African malaria forecast system that is based on

a fully operational, state-of-the-art weather and climate

prediction system, combining monthly and seasonal

forecasting systems together in an attempt to maximize

climate prediction skill. Second, this system realistically

initializes the dynamical malaria model rather than

spinning up themodel, again tomaximize prediction skill.

Third, we extend the analysis of Jones and Morse (2010,

2012) spatially by examining the skill across the continent

of Africa in a single system. As in Jones and Morse

(2012), the focus is on areas of high interannual variability

in transmission, where climate plays a key role.

After using reanalysis-driven malaria integrations to

define the regions of high interannual variability in

malaria, the article reviews these malaria integrations to

examine the maximum potential advance warning that

could be achieved in malaria predictions using this pre-

diction system in an operational context and then relates

these results to the prediction skill in temperature and

rainfall. Theword ‘‘potential’’ is emphasized to stress that

this is an idealized investigation whereby the skill of the

climate-forecast-driven malaria model is evaluated using

reanalysis-driven malaria integrations (a tier-2 evalua-

tion). Thus, the skill of the malaria forecasts refers to the

‘‘maximum potential predictability,’’ because it effec-

tively neglects the effect of errors in the malaria model,
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which would reduce the actual skill below that reported

in these investigations. This approach is adopted in

this initial study because no continent-wide malaria-

incidence dataset exists that can be used to evaluate

malaria forecasts. One purpose of this study is thus to

identify regions of the continent where the system

demonstrates particular potential usefulness that can

then be examined in future country-specific, focused

studies that use the District Health Information System/

Software (DHIS) and other health data.

2. Methods

a. Overview of the malaria-prediction system and
description of the weather-prediction model

Our MEWS consists of two modeling components:

a weather-forecasting system and a dynamical malaria

model (Fig. 1). For the first 32 days of the weather fore-

cast, the systemuses temperature and precipitation that are

provided by a high-spatial-resolution weather-prediction

system. These forecasts extend the 15-day ensemble pre-

diction system (EPS) out to 32 days once (recently in-

creased to twice) per week, and at ECMWF is officially

termed the extended-range forecast (Vitart et al. 2008).

From day 33 onward, the forecasts of the lower-resolution

and longer-range system-4 seasonal-forecasting system

(Molteni et al. 2011) are used for the remainder of the

4-month forecast. Toemphasize thedifference in time scales

of the two systems, they will be referred to respectively

as the monthly and seasonal forecasts hereinafter. Both

weather-forecast systems provide 51 individual forecasts

starting from slightly different initial conditions so as

to sample forecast uncertainty. Further details of the

weather-forecasting systems that contribute to this

seamless system are given in the appendix.

Temperature from both systems is adjusted using cor-

rection of the mean bias as a function of location, calen-

dar month, and forecast lead time with respect to the

analysis data and is subsequently statistically downscaled

to 27-km resolution using a fixed lapse-rate correction to

FIG. 1. Schematic of the forecast-system setup, with boxes representing models, triangles

showing processes, and diamonds used for products. The operational NWP reanalysis of

temperature and rainfall is used to drive the malaria model to provide a malaria analysis of

epidemiological and entomological indicators, which are used as initial conditions for the

forecast. The malaria forecast uses climate information from the high-resolution monthly EPS

climate forecasts in the first month (m1, consisting of days 1–32), which is seamlessly combined

with the seasonal-forecast system for m2–4. Both precipitation and temperature are rescaled,

and temperature is calibrated before application to the malaria model, which then provides

forecasts of PR and EIR.
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account for the topography (Giorgi et al. 2003). This

resolution is adequately fine to allow aggregation for

comparisonwith district-level health data if required. The

precipitation is also downscaled to this resolution using

first-order conservative remapping [described in Jones

(1999)]. One weakness of this first-generation system is

that the precipitation forecasts are not currently bias

corrected, implying that the mean simulated malaria

transmission will be subject to systematic biases that

can be caused by misplaced monsoon locations [e.g.,

see analysis of the earlier third release (‘‘system 3’’) of

the ECMWF operational coupled seasonal-forecast

system (SYS3) in Tompkins and Feudale (2010)] or

mistimed rain onsets [Diro et al. (2012) examined

SYS3 performance in the Horn of Africa]. Current

research is investigating the relative performance of

approaches that use matching of cumulative distribu-

tion functions (Piani et al. 2009; Hempel et al. 2013) vs

approaches that are based on empirical orthogonal

functions (Feudale and Tompkins 2011; Di Giuseppe

et al. 2013a,b).

The above system produces daily precipitation and

temperature forecasts. These forecasts are then used

to drive the vectorborne disease community model of

the International Centre for Theoretical Physics (re-

ferred to as VECTRI; Tompkins and Ermert 2013),

a dynamical malaria model that is described briefly

in the next section, to produce an ensemble of fore-

casts of a range of epidemiological and entomological

measures.

b. The malaria model

A key component of the malaria-forecasting system is

the VECTRI dynamical malaria model. It is fully de-

scribed in the open-access paper by Tompkins and Ermert

(2013); thus, only brief details are given here. The math-

ematical model solves a set of equations using a daily

time step that describe the life cycles of the key vector

Anopheles gambiae and the Plasmodium falciparum

malaria parasite. Processes such as the gonotrophic

cycle and the parasite and vector larvae-development

rates are temperature sensitive, as are the mortality

rates of the vector in the larval and adult stages. The

combination of these temperature effects results in the

model reproducing the observed nonlinear relationship

between temperature and malaria, whereby malaria

increases with temperature until a peak is reached be-

tween 258 and 308C and decreases thereafter (e.g.,

Craig et al. 1999; Lunde et al. 2013).

Rainfall drives a simple representation for the frac-

tional coverage of a grid cell by temporary water bodies,

in a so-called pond parameterization. In the current

version of the model, no spatial representation of

permanent (year-round) open water bodies or wetlands

is included. Although these certainly can be important

local hotspots of year-round disease transmission (Carter

et al. 2000; Bousema et al. 2012), it is recalled that they

are unlikely to lead to year-to-year variations in malaria

in response to climate, which is the focus of this study. In

the majority of locations, the malaria season is strongly

associated with the rainy season with a 1–2-month lag,

indicating that the temporary ponds that are represented

in the model are the key determinant of breeding-site

availability.

The relationship between rainfall and malaria is

strongly nonlinear: while rainfall drives the creation of

temporary water bodies, the model also includes a rep-

resentation of the flushing effect whereby intense rainfall

increases the mortality of early-stage larvae (Paaijmans

et al. 2007). Thus, in locations with low rainfall amounts,

the intensity of malaria transmission increases with

rainfall, but above a certain threshold the malaria trans-

mission decreases with rainfall, as observed in Malawi

and Botswana, for example (Thomson et al. 2005; Lowe

et al. 2013). Note that the value for monthly rainfall at

which transmission peaks will vary significantly both in

time and space according to the subseasonal variability in

rain events—rain falling in one or two extreme events

separated by a dry break will promote far less trans-

mission than the same rainfall amount falling evenly over

a month. This effect is captured in the model, which op-

erates on a daily time step, but this fact does imply that

the model will be sensitive to the representation of the

simulated daily rainfall distributions.

Similar to the LMM (Hoshen and Morse 2004), the

VECTRI model uses a multicompartmental approach to

resolve the key model processes. This is done because

representing the delay between the onset of rainy con-

ditions and the malaria-transmission season is important

for forecasting purposes.One key feature of theVECTRI

model is that it explicitly accounts for the human pop-

ulation density in the calculation of biting rates and host-

to-vector and vector-to-host transmission probabilities

for the parasite.

The key model-predicted variables are the parasite

ratio PR and the entomological inoculation rate EIR

(the number of infectious bites per person per time). For

the skill assessment of the malaria forecasts, we use the

natural logarithm of the EIR, however, rather than the

EIR itself. The logarithm of EIR is relevant because it

has been demonstrated to relate proportionally to mor-

bidity in infants (Smith et al. 1998) and thus represents

the nonlinear relationship between EIR and expected

cases. In western and eastern Africa, a considerable

number of isolated field studies have measured these in-

dicators. Direct comparison with these field studies in
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West Africa and the Malaria Atlas Project analysis for

2010 (Gething et al. 2011) shows that the VECTRI dy-

namical malaria model used in this forecast system can

approximately reproduce the spatial distribution of

EIR (see Tompkins and Ermert 2013) although the

model simulation obviously cannot produce observa-

tions exactly because the model only accounts for cli-

mate, topography, and host population density and has

no knowledge of interventions made to reduce trans-

mission. Moreover, EIR measurements are often taken

at single times and locations and are subject to large

uncertainty that results from the sampling and calcu-

lation method.

Although VECTRI is a complex spatial model and

was in fact the only fully dynamical model employed in

two recent malaria-model intercomparison studies for

future climate scenarios (Piontek et al. 2013; Caminade

et al. 2014), several processes are neglected. There is

currently a lack of treatment of host immunity; this

lack is less important in areas where climate drives

high year-to-year variability and host immunity is

limited but remains a caveat on the results in in-

termediate transmission zones. Another simplification

in the model is that it assumes bites received per per-

son are randomly distributed, thus neglecting hetero-

geneities in the distribution of breeding sites relative

to human habitations within a grid cell and also in host

attractiveness to vectors (e.g., Knols et al. 1995), which

changes the dynamic between EIR and PR (Smith

et al. 2005). In summary, evaluation of the malaria

model is ongoing, and, although preliminary evalua-

tions of this new model are promising, the caveat that

malaria-model inaccuracies will reduce actual malaria-

forecast skill below the potential maximum should be

kept in mind.

To assess forecast skill in predicting the metric of

ln(EIR), we adopt the approach frequently used in NWP

of comparing the forecast with the analysis (Simmons and

Hollingsworth 2002). A direct comparison with clinical

case numbers on a continental scale is not feasible be-

cause of the complexity of accounting for underreporting

and misdiagnosis of fever cases, changes in identification

(fever, microscopy, and rapid diagnostic test kits) over

time, and differences in reporting systems among coun-

tries and the lack of access to such data in many countries

(Checchi et al. 2006; Nankabirwa et al. 2009; Okiro and

Snow 2010). Thus, here the aim is to present an analysis of

the potential skill of the system on a pancontinental scale,

with the emphasis on potential highlighting the neglect of

malaria-model error that would result in lower effective

skill. Areas with high potential skill can subsequently be

examined on a country level using district-level case data.

Results of such an undertaking conducted for the system

in Uganda and Rwanda will be reported in a separate

article.

c. Malaria-model initial conditions

One difference between this study and the work of

Jones and Morse (2010, 2012) is that here the malaria

model is initialized from realistic initial conditions. Any

prediction of the future state of a system necessarily

depends on the state conditions at the initial time.

Therefore, to initialize the malaria-modeling compo-

nent correctly the malaria-forecasting system requires

an assessment of the important entomological and epi-

demiological variables such as vector adult and larvae

density, circumsporozoite protein rate (CSPR), and PR

in addition to the surface hydrological state, which gives

the availability of breeding sites. Without this step, the

malaria model would suffer from so-called spinup in the

first weeks of the forecast as the model adjusts from

idealized initial conditions, and valuable information

concerning the climate conditions prior to the forecast

start would be lost.

Borrowing the terminology widely used in the at-

mospheric numerical weather prediction (NWP) com-

munity, we refer to this assessment as the ‘‘malaria

analysis.’’ It is important to stress that, in contrast to

atmospheric analysis systems, the malaria analysis does

not incorporate health or entomological observations.

This is because direct observations of entomological

variables are not generally available, given that they

are collected in isolated research projects, and in any

case are not available in near–real time, as is required

for an operational framework.

We designed the analysis system using temperature

and precipitation information from the operational

ECMWF interim reanalysis system (ERA-Interim; Dee

et al. 2011) to drive the malaria model and to provide

malaria analyses of the relevant variables for each day

from 1981 to the present. In common with all flux

variables, precipitation is not directly available in the

analysis and is thus derived from a short-range 24-h

forecast starting from each 0000 UTC analysis cycle.

The resulting analyses are used to provide initial con-

ditions for each malaria forecast. Thus, if a forecast

starts midway in a wetter-than-usual season, for ex-

ample, the initial conditions will reflect this situation in

terms of greater vector and larvae densities and more

breeding sites available. The skill of the malaria fore-

casts is consequently not only affected by the skill of

the climate forecasts but also in part derives from the

knowledge of the climate anomalies that occurred prior

to the forecast start that is contained in the malaria-

analysis system. To our best knowledge, this is the first

such dynamical forecasting system that attempts to
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fully initialize the malaria-model component from an

analysis system.

The choice of using reanalysis for this task was made

with operational requirements in mind. First, it combines

the available sparse, in situ measurements with the con-

tinuously changing remotely sensed information into

a self-consistent assessment of the atmospheric state, thus

maximizing continuity over timewhile ensuring continual

spatial coverage and near-real-time operational delivery.

For temperature, in situ measurements are sparse in

many regions in Africa or are not available on the Global

Telecommunications System in real time. Satellite

retrievals of surface temperature are not available on

a daily time scale or for long periods and can be subject

to substantial errors over land (Li et al. 2013). The

precipitation of the reanalysis is more reliant on

the model’s representation of moist physical pro-

cesses. Nevertheless, many satellite-derived rainfall

products are not available on a daily time scale or in

near–real time. At the time that the system was con-

structed, the commonly available near-real-time,

daily satellite products such as Famine Early Warn-

ing Systems (FEWS) Network rainfall estimates

(Love 2002), the Climate Prediction Center morphing

technique (CMORPH; Janowiak et al. 2005), and Tropi-

calRainfallMeasuringMission ‘‘3B42’’ (Kummerowet al.

1998) were not available for the entire 19-yr period to

initialize the hindcast suite.1 In any case, despite docu-

mented biases in the distribution of rainfall intensity

and the rainfall mean, the reanalysis-derived rainfall is

nevertheless capable of representing the intraseasonal

variability over Africa, with Thiemig et al. (2012)

demonstrating its competitiveness with some satellite-

based products. Dutra et al. (2013) found that ERA-

Interim rainfall could be successfully used in drought

monitoring.

3. Results

a. Identifying target zones

Previous efforts to provide early warnings have

pinpointed a selection of locations subject to sporadic

epidemics or irregular short transmission seasons where

adult immunity is lower (Doolan et al. 2009) and the

intermittent transmission implies that health facilities

may not be adequately prepared for significant out-

breaks (Thomson and Connor 2001; Abeku et al. 2004;

Cox and Abeku 2007). Jones and Morse (2012) also

focused on areas with high year-to-year variability.

This is important because in many locations climate

variability will have a limited impact on year-to-year

variability in malaria-transmission intensity. First, the

relationship of the proportion of vector that survive

sporogony as a function of temperature [e.g., see box 1

of Craig et al. (1999)] peaks in the range of 268–338C.
The range of the peak depends on the vector in ques-

tion and assumptions about mortality that are in the

model (Lunde et al. 2013), but it is clear that in this

range the malaria transmission will be relatively in-

sensitive to temperature anomalies on the order of

a degree, as compared with similar perturbations at the

cooler or warmer limits of transmission, where malaria

transmission probability changes more rapidly with

temperature. Moreover, in highly endemic areas where

the infant PR starts to saturate at high values, host

dynamics are much more relevant for year-to-year

variability, reducing sensitivity to interannual changes

in climate (Hay et al. 2001). Thus, even if the un-

derlying climate predictions prove to be accurate in

highly endemic areas, climate-driven malaria forecasts

are likely to be of limited usefulness. There is also the

question as to howmalaria forecasts would be of use for

health planning in districts that are familiar with coping

with regular seasonal transmission. The first step is

therefore to locate areas and calendar months with

high variability in malaria prevalence, using the daily

malaria-analysis system.

The standard deviation of the PR for each calendar

month provides insight to the modes of variability of

malaria transmission, with Fig. 2 showing four example

months. In each month examined, the standard de-

viation of PR shows three distinct modes. There is

a mode at zero PR, which simply identifies malaria-free

zones. The second mode identifies regions where the

year-to-year standard deviation is nonzero but is less

than ;10%, with the upper bound changing slightly

from month to month. This mode is associated with

endemic zones, where transmission regularly occurs in

those months each year.

The last mode encompasses the remaining higher

values of standard deviation exceeding 10%. The high-

est standard deviations belong to locations where

transmission is very intermittent and does not occur

every year but occurs instead in occasional epidemic

outbreaks. Such events are termed a ‘‘true’’ or ‘‘classic’’

epidemic in the respective notations of Worrall et al.

(2004) and Kiszewski and Teklehaimanot (2004). This

mode also includes locations where transmission is

regular each year but the transmission season is irregular

in the particular month in question—for example,

1 The second version of the FEWS Africa Rainfall Climatology

product (ARC2) now covers the period 1983–present, although

there are limited studies to evaluate the accuracy of this product,

which does not use microwave information.
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occurring later or earlier according to variability in the

onset of monsoon rains. Thus, this mode also encom-

passes situations of ‘‘unusual seasonal transmission’’

(Worrall et al. 2004) and may include mesoendemic and

hyperendemic zones.

On the basis of this analysis of the variability of rates

of malaria prevalence, we subsequently identify all lo-

cations where the standard deviation of PR for a par-

ticular month exceeds 10% of the population to identify

the epidemic model. To relate prevalence more closely

to expected cases, an additional filter is applied to ex-

clude months in which transmission intensity is minimal

and no new cases are expected. This is accomplished

by excluding months for which the EIR falls below 0.01

per month. The locations are then subdivided into two

categories. The first category includes the hypo- and

mesoendemic zones where immunity is likely to be

lower and the malaria hazard affects the entire pop-

ulation. The second category concerns the hyperen-

demic regions, where children under age 5 are most at

risk. Most holoendemic locations are excluded by the

PR variability threshold since the interannual variation

is low for all calendar months. This subdivision is made

because malaria interventions and preparations are

likely to differ in the two transmission environments.

The separation of hypo/mesoendemic from hyperen-

demic regions is made using the common threshold of

0.5 for annual mean PR (Hay et al. 2004). This threshold

can be applied to the whole population since the model

neglects immunity, which increases rates of parasite

clearance in adults relative tomalaria-naive children but

which also implies that the model will overestimate the

area of the hyperendemic region relative to the lower

transmission classes.

The resulting map in Fig. 3 identifies where and when

a reliable malaria forecast would have a higher potential

value to the decision maker. The map identifies epidemic

regions such as the Sahel fringe, the East African

highlands, and the southernmost transmission regions

skirting through Botswana, southern Africa, and Mo-

zambique. In each region the malaria model’s repre-

sentation of the vector and parasite life cycles results in

a peak malaria transmission that is lagged with respect

to the rainy season by 1–2 months. Using ‘‘Afripop’’

(Linard et al. 2012) population-density figures scaled to

reproduce 2011 continent-total population estimates,

82.6 million people are estimated to live in epidemic

regions. This number is lower than previous estimates

(Snow et al. 1999;Worrall et al. 2004) as a proportion of

the total population because of the VECTRI model’s

neglect of immunity, which in turn results in a positive

bias in prevalence rates (Table 1). This population is

divided almost equally between the Sahel region north

of 108N and the highland areas in the east and south of

the continent.

It is in these zones that the indication of an outbreak

by a reliable forecast could trigger a range of in-

tervention strategies, depending on the status of the

national malaria-control program in question (control,

elimination, or postelimination surveillance). It is em-

phasized that this assessment is only for the theoretical

climate-related variability of malaria and may not fully

reflect the situation in reality. If control measures have

led to local eradication, for example, then indication of

heightened hazard due to climate anomalies may serve to

tighten surveillance and response measures to imported

cases in the region in question to prevent explosive

growth of secondary cases (Moonen et al. 2010). Like-

wise, this assessment obviously neglects zones prone to

epidemics as a result of nonclimatic factors such as forced

population movements and breakdowns of health ser-

vices as a result of conflict.

In addition to these epidemic zones, the map also re-

veals considerable areas with regular seasonal trans-

mission but high variability in prevalence in certain

months of the year, for example, in a band spanning the

northern half of the Ivory Coast, Ghana, Togo, and

Benin in West Africa during April and May. In these

regions, malaria transmission variability is highest dur-

ing the rain-season onset (also in April–May at these

latitudes) and is associated with the interannual fluctu-

ations of the monsoon cycle, which are highly variable

FIG. 2. Probability density function of the standard deviation of

the PR for four representative months of the year. The vertical

dashed line represents a standard deviation of 10% used as

a threshold in the analysis to identify high-variability regions.
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from year to year (Sultan et al. 2003). In these hyper-

endemic zones, health services are likely to be geared up

to handle regular malaria transmission, unless funding

shortages or breakdown of health structures preclude

this. A skillful forecast could still be useful for ensuring

timely mobilization of intervention actions involving

insecticide-treated nets and/or indoor residual spraying

(IRS) to maximize their impact (Worrall et al. 2008;

Beier et al. 2008; Yukich et al. 2008). There could be

significant cost savings associated with such planning-

policy interventions when the considerable population

of 400 million living in this area is considered (Table 1).

Our subsequent analysis uses this analysis (Fig. 3) to

exclude locations for each calendar month at which cli-

mate is deemed less relevant for interannual malaria-

transmission variability.

b. Potential predictability of malaria

The skill of the forecast is examined for both the cli-

mate and malaria forecasts using the operational

forecast-system output for 2012. We analyze the fore-

casts of 2012, and the 18 years of hindcasts, giving an

TABLE 1. Estimated 2011 population (millions) living in identi-

fied endemic regions subject to high-variability transmission

1month ormore per year, or epidemic regions. Regions are defined

as north (lat. 108), south (lat,2108), central west (jlatj, 108 and
lon , 208), and central east (jlatj , 108 and lon . 208).

Africa North South Central west Central east

Epidemic 82.6 37.9 19.2 1.35 24.1

Endemic 404 137 48.0 118 101

FIG. 3. Locations of high variability in parasite prevalence are shown for each calendar month of the year, sub-

divided into endemic (hyper- and holoendemic; red) and epidemic (hypo- and mesoendemic; green) transmission

zones.
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evaluation period of 1994–2012. Although ideally one

would evaluate an ensemble system using probabilis-

tic skill scores, the small ensemble size of the hindcast

(five members) prevents this, and thus the analysis is

made for the skill of the ensemble mean anomaly

correlation (Murphy and Epstein 1989). Temperature

and calibrated precipitation are validated against the

ERA-Interim reanalyses. We identify the locations at

which skill in predicting malaria transmission is sta-

tistically significant 1–4 months in advance (referred

to hereinafter as potential malaria-prediction skill)

for each calendar month (Fig. 4). In addition to ma-

laria, we show the skill in predicting anomalies of

rainfall and temperature to identify which of these

variables generate any identified malaria-prediction

skill.

In examining first the shorter-range predictions 1

month in advance (Fig. 4, left column), it is encourag-

ingly seen that there is model skill in malaria predictions

in the target prediction zones throughout the calendar

year. In some regions the predictability derives from

correctly forecasting variations in temperature, but in

southern Africa in a band stretching from Botswana

through to Malawi and also across eastern Africa there

are wide areas in which malaria-prediction skill is de-

rived from both rainfall and temperature; for these

areas, the analysis does not show which variable con-

tributes most to the skillful malaria prediction. In these

regions, rainfall predictability tends to be higher be-

cause of stronger teleconnections with the El Niño
phenomenon (Ropelewski and Halpert 1987). Outside

these regions, skill in precipitation prediction appears

to be limited in the areas of interest for malaria fore-

casting, in broad agreement with studies using the

predecessor of the seasonal forecast (SYS3) (Tompkins

and Feudale 2010; Vellinga et al. 2012). This is con-

firmed in the analysis of the first-month rainfall skill in

comparison with satellite retrievals conducted in the

appendix.

In some locations the malaria forecasts are not sig-

nificantly skillful, as marked by a limited number of

black points where predictions of all variables fail, or by

blue, purple, or red points, which indicate skill in climate

prediction but not malaria prediction. In the northern-

most Sahel belt spanning Senegal, Mali, and Niger in

July and August, wide areas display skill in temperature

only (red colors) while in some points rainfall is also

correctly predicted (purple colors) but no potential

malaria-prediction skill ensues. In this northernmost

zone of the Sahel, rainfall variability and the northern

extent of the monsoon limit malaria transmission

(Thomson et al. 2004). Thus, where rainfall predictions

are inaccurate, a frequent shortcoming in atmospheric

models (Roehrig et al. 2013), malaria predictions will

also fail. Where both rainfall and temperature are

skillfully predicted, the failure to translate this into

accurate malaria prediction could be related to the

nonlinear relationship between transmission and rain-

fall in which intense rain events flush early-stage-larvae

breeding sites (Paaijmans et al. 2007) and monsoon

breaks lead to puddle desiccation (Gianotti et al. 2009).

This nonlinearity is fully sampled by the high day-to-

day variability of rainfall in the tropics; thus, significant

skill in predicting seasonal rainfall anomalies may not

be sufficient if subseasonal rainfall variability is poorly

represented.

Analyzing the potential malaria-prediction skill for

longer lead times of 2-4 months (Fig. 4, columns 2–4), it

is seen that the climate-prediction system exhibits

a sharp drop in skill at predicting rainfall and tem-

perature 2 months in advance relative to 1 month.

Despite this, there are wide areas for which the pilot

MEWS still has significant skill for malaria prediction

in months 2 and 3 and, in smaller regions, even 4

months ahead. This is due to the inherent lags between

the rainfall anomalies and the resulting malaria-

transmission season, such that the skill in predicting

malaria transmission in the second and third months

derives from the climate information contained in the

forecast initial conditions and the first-month forecast

of climate. This highlights the crucial role that the

malaria-analysis system has in correctly initializing the

malaria-modeling system. In areas where rainfall and

temperatures are predictable beyond 1 month, such as

in eastern Africa, the malaria-prediction advanced

warning is extended beyond the 3-month range. The

analysis thus indicates that by driving the malaria

model with dynamical climate forecasts, useful in-

formation regarding the future transmission season in

epidemic regions and seasonally variable endemic re-

gions can potentially be delivered at least 1 and, in

limited regions, 2–3 months earlier than would other-

wise be the case using climate observations, which

themselves provide more advance warning than the

direct monitoring of symptomatic malaria cases

(Thomson et al. 2006).

c. Uganda and Kenya highlands

To illustrate the potential value of the system in

a real epidemic scenario, we examine the past perfor-

mance over the East African highlands. The outpatient

data of highland regions of southwestern Uganda

and western Kenya have received considerable atten-

tion in the literature. In fact, in their comprehensive

review of articles examining the relationship between

climate and malaria, Mabaso and Ndlovu (2012) found
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that this region was the most studied. Table 2 gives

a qualitative and brief summary of the key malaria-

transmission anomalies in highlands of western

Kenya and/or Uganda between 1995 and 2010. The

summary of the data is that a significant epidemic

occurred in early 1998 across the region in the high-

lands that has been extensively described and has

been linked to the major El Niño event of 1997–98

FIG. 4. Composite plot of temperature (red), precipitation (blue), and malaria [ln(EIR); green] forecast anomaly-correlation co-

efficients that are statistically skillful at the 95% confidence level for issuing warnings for (left) 1, (left center) 2, (right center) 3, or (right)

4 months in advance (lead time) for each calendar month of the year. White points mark cells with skill in all three variables; black points

mark cells without any skill. See legend for color definitions of intersecting categories.
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(Lindblade et al. 1999; Githeko and Ndegwa 2001;

Alonso et al. 2011). The other articles cited described

evidence of more minor anomalies in transmission

during 1994–95, 2002, 2005, 2006, and 2009–10, with

the term ‘‘minor’’ employed in a broad sense to

variously imply short-lived, less intense, or geo-

graphically restricted outbreaks.

To make an initial qualitative comparison with the

forecasting system, the average normalized value of the

ensemble-mean predicted ln(EIR) is analyzed for all

FIG. 4. (Continued)
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points at heights exceeding 1500m (the results were

insensitive to this altitude threshold) in a region span-

ning 288–368E and 28S–28N, with each month considered

separately to remove the annual cycle of malaria trans-

mission. A runningmean of 5months is also applied.2 The

forecast time series is then classified into three alert levels,

where an amber alert signifies an upper-tercile event and

a red alert signifies a value that exceeds the 90th percen-

tile.We emphasize that these tercile thresholds are chosen

because they are commonly employed in meteorological

forecasting circumstances but may have little relevance to

the decision-making process of, for example, a national

malaria-control program. A full cost–loss analysis of

suitable interventions is required to determine suitable

thresholds for action, and thus the alert levels should be

strictly viewed as indicative and illustrative.

The resulting time series (Fig. 5) is encouraging be-

cause it clearly shows that the major outbreak starting in

February of 1998 is predicted 4 months ahead and is by

far the most significant event predicted during the pe-

riod 1995–2012, in qualitative agreement with the ob-

servations. In addition, all forecast lead times indicate

lesser events occurring in 1995, 2002, 2005, 2006, and

2009–10. On closer examination, however, it is clear that

the timing of the predicted events is often inaccurate.

The main 1998 event is predicted to reach the highest

alert level in February–March 1998, but the event ap-

pears to last too long, with the alert level remaining

throughout 1998. Likewise, the event in 2005 appears to

be well predicted 4 months in advance but is weaker and

too early in the shorter-lead-time forecasts. High levels

of transmission in 2006 appear to continue into 2007,

which does not appear to be confirmed in the literature.

Moreover, in general, there is a tendency for epidemic

alerts to occur earlier in time in the shorter-range fore-

casts (e.g., 2002, 2005, 2006–07, and 2010). This could be

related to a drift in the bias characteristics of the forecast

precipitation, which is presently not bias corrected in the

system. In summary, although the system shows promise

at predicting during which years epidemic conditions are

likely to occur, there remains much to be done to improve

the representation of subseasonal fluctuations in trans-

mission, while again emphasizing the highly qualitative

nature of this initial comparison, which amalgamates all

highland areas inUganda andwesternKenya into a simple

single index.

4. Discussion: Integrating climate information into
health planning

We have introduced a pilot dynamical forecasting

system for malaria that is the first available on a con-

tinental scale that uses the highest-resolution monthly

and seasonal ensemble prediction systems to drive

a dynamical malaria model that is realistically initial-

ized. These results have demonstrated the potential for

skillful malaria predictions up to 4 months in advance

over wide areas that were identified to have highly

variable transmission for specific months of the year.

This shows for the first time that climate forecasts may

usefully extend the early warning available from en-

vironmental monitoring on a continental scale and

reaffirms the potential importance of accurate climate

information in Africa (Thomson et al. 2011). It is im-

portant to emphasize that this study is a first step and is

TABLE 2. Summary of selected literature that discusses epidemic conditions in the highlands of Uganda, west Kenya, or Tanzania.

Year Reference Summary

1994 Alonso et al. (2011) Higher than usual transmission indicated in Kenyan highlands

1998 Lindblade et al. (1999) Epidemic starts in Feb in Ugandan highlands; authors associate outbreak with rainfall anomalies

1998 Githeko and Ndegwa (2001) Epidemic in Kenya from Feb 1998, but high incidence also reported in Jun–Jul 1997

1998 Jones et al. (2007) Epidemic in Tanzania highlands from Feb to Jun 1998, and high incidence also reported in

summer of 1997

2002 Hay et al. (2003a) Epidemic identified in Nandi and Kericho in Jun–Jul, with conditions returning to normal in

August; normal transmission occurred in the Kisii and Gucha districts

2005 Cox et al. (2007) Examines DHIS data from 2002 to 2006 for Kabale and identifies outbreaks in 2005 (timing not

described) and 2006 (centered on Jun) but questions the authenticity of the latter outbreak by

using confirmed data from a sentinel site

2010 Ototo et al. (2011) Report vector densities over the period from Sep 2009 to Apr 2010, reporting peak vector

densities in Jan–Feb 2010; no long-term dataset is available to determine whether conditions

were anomalous

2010 Yeka et al. (2012) Describes general transmission in Uganda; smear-positivity rates for children under 5 show

relative peaks in Kanungu District (Kihihi) for Oct–Dec 2009 and May–Jul 2010 (their Fig. 4);

no anomalies in selected high-transmission zones

2 This simple smoothing using a centered filter window could not

be applied in real-time forecasting scenarios because the future

months are not available.
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limited to identifying the potential skill in such a sys-

tem. Actual skill of the operational forecasts will be

lower because of the use of an imperfect malaria model,

and uncertainties in health data will also reduce the

assessed skill. In another sense, the assessment also

represents a lower threshold of potential skill, since

improvements in the climate and malaria observations

and modeling systems will increase skill. As examples,

Dutra et al. (2013) recently introduced a bias correc-

tion for analysis rainfall that dramatically improved

seasonal forecast skill of a standardized precipitation

index that will be introduced to the system that is

presented here. Physics improvements to the forecast

system (e.g., Jung et al. 2010) and malaria model will

also increase skill over time. For the current system,

a preliminary analysis in the East African highlands

indicated that the potential skill may translate into

demonstrable skill at predicting real outbreaks.

The next phase is under way, in collaboration with two

health ministries in Africa, in which a detailed evalua-

tion of the system at the health-district level is conducted.

Such endeavors are complicated by the relatively short

and often incomplete records ofmalaria cases available in

most countries. Although case-confirmation percentages

have improved through uptake of rapid diagnostic test

kits (Zhao et al. 2012), there remains the need for im-

proved clinical datasets for the comprehensive evaluation

of MEWS required for their uptake. This interactive

process will likely highlight areas of themalaria-modeling

system in need of further development.

There is also the need to consider the integration of

forecast information into the current decision-making

FIG. 5. Time series of ensemble-mean-normalized forecasts of the natural logarithm of the

EIR averaged for altitudes exceeding 1500m in the highlands of Uganda and Kenya with the

annual cycle subtracted. Advance warnings (forecast lead time) of 1–4 months are shown. For

example, the 4-month advance warning for June 2000 corresponds to a forecast that would be

initialized at the beginning of March and issued shortly after, the issuing delay being due to the

time necessary to run the forecast system and postprocess the results. A running mean is ap-

plied of 5 months to smooth the alert levels. For illustrative purposes the time series are

nominally classified according to their mean percentile categories, with amber signifying an

upper-tercile event and red indicating a 90th-percentile occurrence. The colored boxes below

the plot indicate the indicative warning level that might be communicated to a decision maker

at these four different advance-warning lead times.
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process. Guidance is required on the forecast products

that are most useful at district and national levels and

also on how best to communicate forecast uncertainty to

decision makers to effectively complement existing plan-

ning strategy. Despite the wide evidence cited earlier that

climate information could increase advance warnings and

the cost effectiveness of malaria interventions (Worrall

et al. 2008), earlier demonstrations of MEWS that were

based on climate monitoring have not been widely

adopted in an operational environment to assist planning

in African health ministries. To a large extent, health

decisions concerning drug distribution and interventions

are still based on long-term-mean malaria-prevalence

maps (Omumbo et al. 2013). The possible reasons for this

state of affairs are many and include the fact that health

ministries often follow the strategy of increasing the effi-

ciency of disease-monitoring systems so as to improve the

reaction time to the onset of epidemics (DaSilva et al.

2004; Checchi et al. 2006). The operational paradigm of

using climate or other information sources to predict

outbreaks in advance is often unfamiliar. Moreover, using

climate information to predict outbreaks implies the in-

corporation of uncertainty into the decision-making pro-

cess and the risk of costs associated with a prediction

failure (termed a forecast miss). The potential benefits of

such informationmay be deemed to be outweighed by the

perceived risk to the decision maker of implementing

a superfluous and costly preemptive mitigation action on

the basis of incorrect or inaccurate guidance.

The above considerations serve to emphasize that

integrating climate-forecast information into the decision-

making process will require extensive, country-level

evaluation of system past performance, including cost–

loss analysis of potential intervention actions taken on

the basis of the information (Murphy 1977). To carry out

such an analysis adequately, improvements in the rep-

resentation of model uncertainty and increased ensem-

bles sizes will be necessary, since the current system

uses a single weather-forecast-ensemble system to drive

a single malaria model. Additional climate-forecasting

systems and malaria models should improve the repre-

sentation of model uncertainty (Hagedorn et al. 2005).

A further consideration is that appropriate actions

that are based on forecast information will also depend

on a country’s malaria-intervention phase (malaria

control, progress toward elimination, or postelimination

surveillance). While forecasts may have such use in

guiding timely interventions in hyperendemic zones

where earlier-than-usual malaria transmission is pre-

dicted, here the emphasis has been on epidemic regions.

There, one can envisage forecast information aiding

a wide range of district-level management decisions in

countries still in the phase of malaria control, such as

ensuring adequate drug supply to clinics and reassigning

IRS teams to at-risk districts (Cox and Abeku 2007).

District offices could also use forecast information to en-

hance information campaigns to vulnerable populations to

increase bite-avoidance behaviors such as ensuring the use

of nets supplied in previous mass-distribution campaigns,

possibly through established local-level volunteer net-

works such as that of the International Federation of the

Red Cross. This may involve combination of the malaria-

hazard forecasts with high-spatial-resolution modeling of

population vulnerability (Thomson and Connor 2001),

which can change dramatically over small spatial scales

(Carter et al. 2000). An example of a decision-support tool

intended to serve such a purposewas recently presented by

Kienberger and Hagenlocher (2014).

Consideration of societal vulnerability involves a

plethora of different factors that require attention. One

approach to consider these factors could be to divide the

vulnerability factors into a three-tier sequential process

as depicted in the schematic of Fig. 6, which is based on

the framework of Kienberger and Hagenlocher (2014).

Given a local transmission intensity as measured by the

FIG. 6. Schematic of vulnerability considerations that could be

considered as a three-tier process when combining with a climate-

driven malaria-hazard forecast to determine local-scale population

risk. The diagram emphasizes the coupled nature of the vector-

borne disease. By lowering the local parasite burden, interventions

that reduce a population’s vulnerability also act to reduce sub-

sequent climate-related hazard.

534 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 54



EIR, the first ‘‘phase’’ would be to consider an individual’s

vulnerability to receiving an infectious bite, which entails

their housing quality, their clothing choice, and their spe-

cific attractiveness to the mosquito vector (Burkot 1988;

Lindsay et al. 1993; Knols et al. 1995). In the VECTRI

dynamical malaria model this probability is considered to

be equal for all members of society, but this is obviously an

oversimplification. Furthermore, interventions such as IRS

and the use of bednets are designed to greatly reduce an

individual’s exposure, the second element that contributes

to overall risk.

In the final links of the risk chain, the vulnerability of

an individual relates to the probability of an infective

bite leading to a clinical manifestation of the disease.

This is primarily determined by the individual’s immune

status, itself a function of previous exposure, in addition

to age, presence of cross infection, nutrition, or the state

of pregnancy (Doolan et al. 2009). Thereafter, one must

consider the coping ability of the individual, connected

to their potential to receive adequate and timing

treatment in the case of a serious manifestation of the

disease. These indicators are primarily economic or

poverty related, essentially determining the overall

cost to individuals to obtain treatment for themselves

or their children. It is obvious that poverty ultimately

determinesmany of the vulnerability factors in all three

phases.

The schematic also underlines how both the trans-

mission hazard and the societal vulnerability combine to

determine the overall risk in a given location and thus

the prevalence rate, which then affects future trans-

mission hazard in a feedback because of the fully

coupled nature of the system. This indicates that con-

sidering social vulnerability separately from hazard

modeling in a so-called offline approach, as is often

implemented in other fields, may not be adequate and

that a fully integrated modeling system may be re-

quired to assess overall risk at the local level. A full

consideration of the integration of climate information

into health decision-making processes will be the

natural next step.
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APPENDIX

Seamless Weather and Climate Prediction

Most operational forecasting centers run multiple

forecasting systems to provide climate information at

the relevant lead time for the varying sectors (e.g., hy-

drology, energy, health, or agriculture). A short-range

high-resolution forecast usually provides deterministic

predictions for several days ahead, whereas ensembles

of lower-resolution, coupled models provide seasonal

predictions up to 6 months or more in advance.

Some centers, such as ECMWF, bridge the gap be-

tween the two with an extended-range ensemble pre-

diction system (Vitart et al. 2008). The system at

ECMWF originally provided 51 forecasts for the next 32

days once per week each Thursday, which has recently

been increased to a frequency of 2 times per week, and is

referred to as the monthly system. Each 51-member

‘‘real time’’ forecast ensemble made in the present is

matched with an additional set of forecast ensembles

that start on the same day for each of the previous 18

years, referred to as hindcasts. For example, if a forecast

(ensemble) is made starting on 1 June 2013, the system

also runs an ensemble of hindcasts initialized on 1 June

1995, then 1 June 1996, and on to 2012. Because of the

computational cost, the hindcast ensemble employs

5 members only, much fewer than the 51members of the

real-time forecast (and also somewhat less than the

hindcast datasets available in the DEMETER and

ENSEMBLES projects). This set of hindcasts allows the

real-time predictions to be bias corrected and calibrated,

since, although the ECMWF forecasting systems are

considered to be state of the art in terms of their pre-

dictive skill (Hagedorn et al. 2012), they are neverthe-

less subject to systematic biases.

In the development of the seasonal-malaria-forecast

system, rather than using only the seasonal-forecast

system to drive the malaria model, it was decided to

substitute this information with the monthly system for

days 1–32 of the forecast. This is because the latter sys-

tem is presumed to have superior forecast skill for cli-

mate parameters relative to the seasonal system for

several reasons. The first is that the shorter forecast al-

lows the monthly system to employ higher horizontal

resolution, which, statistically for many forecasts, has

been shown to improve ECMWF model skill (e.g., Jung

et al. 2006, 2012; Magnusson and Källén 2013). In

addition to the higher resolution, another reason to

employ the monthly system is that, in common with the

10-day deterministic forecast, it takes advantage of

regular updates and improvements to the physics pa-

rameterizations and analysis systems. These occur three
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or four times per year, and this implies that the system is

always fully state of the art (Jung et al. 2010). In con-

trast, the numerical cost of the hindcast suite prohibits

this for the seasonal-forecast system, which is updated

only every 3–5 years. Thus, depending on the date of

the most recent seasonal-forecast-system update, the

physics and associated climate biases can be consider-

ably different between the two systems. Last of all, but

potentially the most important, is that the more fre-

quent issuing of the monthly forecasts gives them

a considerable lead-time advantage. Using only the

seasonal forecast system implies that forecast in-

formation can be updated at most once per month. In-

stead, use of the monthly system means that refreshed

forecast information can be issued at least once per week.

A forecast issued in the lastweek of themonth has at least

a 3-week lead-time advantage over the most recent sea-

sonal forecast, for example. Note that for the forecast

start dates chosen in this study (the first Thursday of each

calendar month) this lead-time effect is limited to ap-

proximately 3 days.

To demonstrate the difference in skill for themonthly

system relative to the seasonal system for days 1–32, we

calculate the difference in anomaly correlation for

temperature and precipitation for the 12 forecast dates

used in this study. To do this, the exact 32 days from the

seasonal forecast are extracted that match the monthly

system. The rainfall is evaluated against FEWS ARC2

daily precipitation (Love 2002), and temperature is

compared with ERA-Interim reanalysis data (Dee

et al. 2011).

The temperature anomaly correlation lies in the range

of 0.5–0.8 throughout most of Africa in the monthly

system (Fig. A1a), which is statistically skillful. The in-

crease in anomaly correlation gained by using the

monthly system rather than the seasonal-forecast system

is considerable (Fig. A1b), with a positive impact seen

throughout much of the continent and the increase ex-

ceeding 10% in places. The rainfall skill is much lower,

as expected, with correlations of zero in regions of the

central Sahel and throughout the Congo. The latter may

not be simply due to a poor forecast, since the lack of in

FIG. A1. Day 1–32, five-member ensemble-mean hindcast anomaly-correlation statistics averaged over the 12 start dates in 2012 (first

Thursday in each month) for the 19-yr period 1994–2012: (a) temperature monthly system validated with ERA-Interim, (b) monthly system

minus seasonal system 4, (c) precipitation monthly system validated with FEWS ARC2, and (d) monthly system minus seasonal system 4.
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situ observations also leads to high uncertainties in re-

trieval products over this region (Washington et al.

2013). Correlations are higher over parts of southern

Africa, and in particular for the Horn of Africa, ap-

proaching values of 0.5. This agrees with the conclusions

drawn using ERA-Interim data in the main analysis of

this paper. Note that statistical models also have success

in predicting seasonal rainfall in this region (Mutai et al.

1998; Philippon et al. 2002; Hastenrath et al. 2004), al-

though their output cannot be used to drive the dy-

namical disease models that require daily-time-scale

input. For precipitation, the gain obtained by using the

monthly system for the 12 start dates selected is less

systematically positive than for temperature. Averaged

for the region selected, the gain is a more modest value

of approximately 0.02.
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