CORRIGENDUM

MARIO MARCELLO MIGLIETTA

Institute of Atmospheric Sciences and Climate (ISAC), Italian National Research Council (CNR), Lecce/Padua, Italy

RICHARD ROTUNNO

NCAR,* Boulder, Colorado

Incorrect versions of Figs. 5 and 9 were published in Miglietta and Rotunno (2009). The correct figures are shown below.

The authors regret any inconvenience this error may have caused.

REFERENCE

Miglietta, M. M., and R. Rotunno, 2009: Numerical simulations of conditionally unstable flows over a mountain ridge. *J. Atmos. Sci.*, **66**, 1865–1885.

E-mail: m.miglietta@isac.cnr.it

DOI: 10.1175/2009JAS3304.1

^{*} The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Mario Marcello Miglietta, CNRISAC, Strada Provinciale Lecce-Monteroni, Km 1.200, 73100 Lecce, Italy.

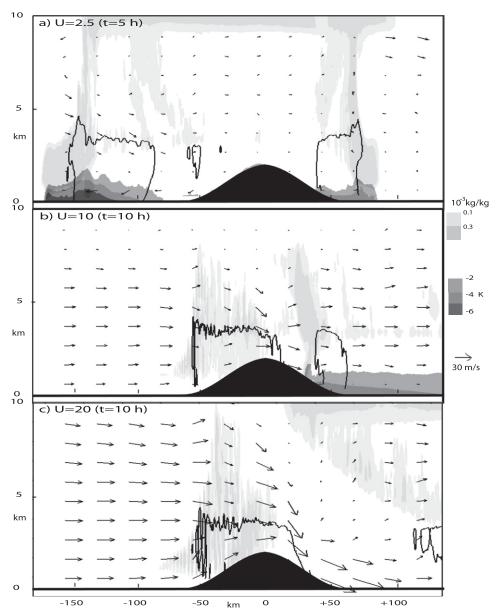


FIG. 5. Vertical cross sections (extending from the ground up to 10 km) of the y average of potential temperature perturbation (dark shaded areas), cloud water plus ice content (light shaded areas), rainwater content (contour line for 0.2×10^{-3} kg kg⁻¹), and wind speed (arrows) for the experiments shown in Fig. 3. The results are shown (a) after t=5 h and (b),(c) at the final integration time t=10 h.

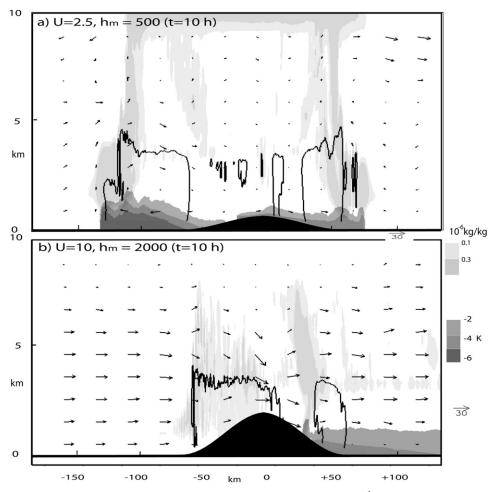


FIG. 9. As in Fig. 5, but for experiments with a=30 km and (a) U=2.5 m s⁻¹ and $h_m=500$ m and (b) U=10 m s⁻¹ and $h_m=2000$ m. The two experiments correspond to the same value of $h_m N/U$.

Copyright of Journal of the Atmospheric Sciences is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.