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ABSTRACT

The estimation of rare frequency rainfall is an essential prerequisite for the design of engineering struc-
tures and to determine risk areas. Index-based methods are among the most applied for regional frequency
analysis of hydrological variables such as discharge and rainfall and comprise two stages: the mapping of a
scale or “index” factor and the derivation of rainfall growth curves. The underlying hypothesis of these
methods is that cumulative distribution functions of a certain random variable can be assumed homoge-
neous on a given region, except for the index factor, which varies spatially in that region and is often
represented by the expected value of the random variable itself at a given location. Methods either to single
out homogeneous regions or to evaluate the index factor can be purely statistical and physically based.

In this paper a robust and transferable physically based methodology is proposed to estimate the index
factor for rainfall in mountainous regions referred to in the following text as “index rainfall.” Index rainfall
is defined as the expected value of annual rainfall maxima recorded in a fixed time window: a time window
of 1 h is used. Reliable estimates of the index rainfall are obtained at ungauged sites by applying a
relationship, based on a multivariate linear regression obtained at gauged sites, of rainfall and selected
synthetic descriptors for atmospheric climate and orography. An extended and general set of descriptors is
chosen from parameters that are considered in the literature to affect rainfall intensity. The relevant relief
descriptors, defining slope, elevation, orientation, etc., at a given location, are extracted from digital eleva-
tion models (DEMs). A 2D Fourier series analysis of the DEM is performed and a spectral analysis is
carried out to single out the components with the highest morphological information content. The synthetic
relief descriptors are evaluated along different cross sections of the 2D truncated Fourier series to single out
the role of the prevailing convection direction of extreme rainfall-producing meteorological patterns. The
optimal descriptor subset for the study area is then extracted to maximize transferability of the method.
Application to the Italian and French Alps and the Apennines shows encouraging results. Descriptor subset
extraction has been tested and validated on independent subsets of index rainfall estimates in the regions.
Results demonstrate that the proposed method is robust, transferable, and reliable for the evaluation of the
index rainfall in ungauged sites.

1. Introduction

A frequency analysis on hydrometeorological vari-
ables, such as rainfall or river discharge, has a number
of applications in the field of environmental and civil
engineering and hydrometeorology, ranging from risk

assessment (Kuligowski and Barros 1998; Bocchiola et
al. 2003; Siccardi et al. 2005) and hydraulic structure
design (Chow et al. 1988) to the improvement of the
understanding of extreme rainfall hydrometeorology
(Boni et al. 2006). In a frequency analysis, regional pro-
cedures are the most robust, since they minimize the
estimation error due to sample size. Among them, in-
dex-based methods are the most used (Bobee and Ras-
mussen 1995). The main assumption underlying index-
based methods is that hydrological variables at differ-
ent sites within a “homogeneous” region follow the
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same probability distribution except in a scale or “in-
dex” factor. The latter is represented by the expected
value of the variable itself at a given location. Methods
to contour homogeneous regions have a long history
and are quite well established and several good ex-
amples can be found in literature (Cavadias 1990;
Nathan and McMahon 1990; Cunnane 1987; Fiorentino
et al. 1987; Gabriele and Arnell 1991; Bobee and Ras-
mussen 1995).

Despite its relevance in risk assessment and hydraulic
structure design, as testified by some recent studies
(Dalrymple 1960; Reed 1994; Faulkner and Prud-
homme 1998; Stewart et al. 1999; Weisse and Bois 2001;
Renard and Langa 2007), less attention has been paid
to the problem of index factor evaluation, often solved
through purely statistical methods adapted to each test
case.

The influence of topography on precipitation can be
attributed primarily to localized disturbances of the
vertical structure of the atmosphere. Moreover, the air-
flow over a topographic barrier leads to the ascent of
water-rich, relatively warm air from low elevations. The
forced ascent of moist air triggers condensation, the
formation and growth of clouds, and ultimately, pre-
cipitation events at high elevations, especially along the
windward slopes of topographic barriers (Barros and
Lettenmaier 1993, 1994). Therefore, in this study we
want to provide a general and robust methodology for
a rainfall index factor estimation in mountainous re-
gions.

Mountains are characterized, from the hydrological
point of view, by small steep river catchments that, after
intense and short-duration rainfall events (Kuligowski
and Barros 1998; Ferraris et al. 2002; Siccardi et al.
2005), can generate flash floods in just a few hours.
Therefore, for practical applications, rainfall frequency
analysis focuses on annual rainfall maxima recorded in
short time windows (e.g., one or few hours).

Following Rosso and Burlando (1996), we introduce
the definition of annual rainfall maxima in a rigorous
mathematical framework. Let us consider R(x, t) the
random variable describing the continuous process of
the rainfall rate at time t measured at a point in space x
at a gauged site. The accumulated rainfall recorded
over a given time interval d can be defined as

Rd�x, t� � �
t�

d

2

t�
d

2 R�x, �� d�. �1�

The maximum value of Rd(x, t) in a time period of one
year, that is, the annual rainfall maxima recorded in
time window �, is

Hd�x, t� � max�Rd�x, t�: t0 � t � t0 � ��, �2�

where � � 1 yr. Here, the index parameter, or “index
rainfall,” is defined as IRd � E(Hd) and its spatial pat-
tern is what we want to estimate.

In literature, efforts have been made in mapping av-
erage daily, monthly, or seasonal accumulated rainfall
depths in areas with complex orography. These map-
ping methods vary from simple geostatistical methods,
like the inverse distance technique (Tabios and Salas
1985) and kriging (Journel and Huijbregts 1978), to
more complex techniques that, ever since the pioneer-
ing work of Spreen (1947), have investigated the rela-
tionships between precipitation and landscape proper-
ties (i.e., altitude, slope, distance from the coastline,
and exposure).

Such mapping methods can be classified into two
main categories: 1) purely morphological and 2) based
on meteorological and morphological ingredients. Ex-
amples of the former, which relates rainfall variability
in space only to terrain morphology, are provided by
Basist and Bell (1994) who studied statistical relation-
ships between approximately 10 topographic variables
and the spatial distribution of mean annual precipita-
tion over distinct mountainous regions around the
world, while Wotling et al. (2001) provided a method to
interpolate hourly rainfall accumulations for a given
threshold [peak overthreshold sampling (POT)] on the
volcanic island of Tahiti. Their method uses a regres-
sion algorithm based on the principal component analy-
sis of a digital elevation model able to supply a limited
set of synthetic variables describing the topographical
environment. Methods relying on meteorological and
morphological considerations introduce a dependency
of rainfall climatology spatial patterns on meteorologi-
cal factors. Daly et al. (1994) presented a climate analy-
sis system, named the Parameter-elevation Regressions
on Independent Slopes Model (PRISM), which uses
point data, a digital elevation model (DEM), and other
spatial datasets to generate gridded estimates of
monthly and annual rainfall amounts over the western
United States by using a combination of climatological
and statistical parameters for the analysis of orographic
precipitation. Johansson and Chen (2003) studied the
influence of wind and topography on daily precipitation
distribution in Sweden and proposed a statistical
model, accounting for topographic influence, by using
approximately 20 regression variables (morphological
and meteorological), to describe basic patterns of pre-
cipitation distribution.

All the described methods focus on variables and
aims, which differ from those of regional rainfall fre-
quency analysis in mountainous regions. They are very
efficient at describing spatial patterns of average rain-
fall accumulated during long time windows (i.e., day,
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month, season), since the main goal is the description of
rainfall climatology in the study region. Moreover, they
are designed for the specific test case and thus, they
cannot be easily applied to other locations. However,
they represent an excellent starting point for the analy-
sis presented here.

In the regional frequency analysis of Hd, the need of
IRd maps for ungauged sites, requires, especially in
mountainous areas where the station density is low, the
investigation of the relationships in precipitation, ex-
treme meteorological events, climatology, and topogra-
phy. The aim of this study is to develop a general and
robust mapping method for IRd over mountainous ar-
eas by using a general descriptor set extracted from
easily accessible information about topography and in-
tense rainfall climatology. A first general set of descrip-
tors is chosen from climate parameters, which are con-
sidered in the literature to affect rainfall intensity in
complex orography areas. This choice is supported by
examining in detail the scales of the different terms
involved in the advection-convection model of Smith
and Barstad (2004). Since extreme rainfall is of con-
cern, we focus on descriptors related to high-intensity
orographic rainfall and in particular to the sample mean
of annual rainfall maxima Hd defined by (2).

In section 2, we describe the criteria used for the
selection of this first set. The innovation of the method
is that this first set of descriptors, general in their nature
for orographic precipitation, is sampled through an ob-
jective procedure, based on the regression between IRd

and each descriptor. The form of the regression func-
tion and the elements of the subset are defined on the
basis of the observed IRd, estimated by the sample
mean of local Hd at a rain gauge site. This allows us to
obtain an optimal descriptor subset for the study area.
This procedure maximizes the transferability of the
method and provides suggestions about the physics of
the orographic rainfall in the study area, by speculating
on the relations between the general set and the opti-
mized one. Section 2 also describes how to obtain a
general form for the regression function focusing on the
duration d � 1 h. Section 3 presents the method pro-
posed for the extraction of the relevant relief descrip-
tors, defining slope, elevation, orientation, etc., at a
given location. Section 4 provides details about the test
cases. The procedure is defined and validated by using
the observed IR1, in four different study areas: the Lig-
uria region, the Piedmont region, and the northern and
southern French Alps, which are characterized by dif-
ferent Hd regimes (Parodi and Boni 2001; Boni and
Parodi 2002; Boni et al. 2006). Results are provided in
section 5 and discussed in section 6. Conclusions are
provided in section 7.

2. Definition of the set of descriptors

The occurrence of extreme rainfall over complex
orography is often associated with a combination of
synoptic, mesoscale, and microphysics ingredients.
Sawyer (1956) suggests that the amount and distribu-
tion of orographic rain, at the event scale, can be ex-
plained by considering meteorological processes on
three different spatial scales.

• First, synoptic factors determine the characteristics of
the air mass that is crossing the hills (i.e., its wind
speed and direction, as well as its stability and hu-
midity).

• Second, the dynamics of air motion over and around
hills determines the depth of the airmass layer af-
fected by the uplift.

• Third, the microphysics of clouds and rain determines
the amount and the state of the water that reaches the
ground.

Barros and Kuligowski (1998) studied the evolution
of precipitation features during a severe wintertime
rainfall and flooding event associated with a cold front,
which crossed the central Appalachians, through the
analysis of radiosonde, rainfall, and streamflow gauge
data and the Weather Surveillance Radar-1988 Dopp-
ler (WSR-88D) images. Their work provides striking
evidence of a linkage between heavy precipitation cells
and orography at the event scale.

Lin et al. (2001) synthesized, again at the event scale,
a few common synoptic and mesoscale scenarios prone
to heavy orographic rainfall on the basis of the study of
some U.S., Alpine, and East Asian test cases. They
singled out the following common synoptic and meso-
scale ingredients leading to heavy orographic rainfall:
1) conditionally or potentially unstable airstream im-
pinging on the mountains, 2) a low-level jet stream, 3)
a steep mountain, and 4) a quasi-stationary synoptic
system slowing down the convective system over the
threatened area.

Rudari et al. (2004) found that extreme rainfall in
northwestern Italy is produced by a few easily identifi-
able large-scale meteorological patterns associated to
the orographic uplift of moist air.

So far, several theories of orographic precipitation,
often relying on the simple synoptic, mesoscale, and
microphysical ingredients outlined before, have already
been proposed in literature: from the early works of
Hobbs et al. (1973), Collier (1975), and Smith (1979),
which introduced the idea of upslope model, to the
more recent linear theory of Smith and Barstad (2004)
and Barstad and Smith (2005), which extends that for-
mulation by including airflow dynamics, condensed wa-
ter, and downslope evaporation.
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According to these theories, rainfall amounts Rd(x, t),
in a generic location, depend, at the event scale, on
several topographic and meteorological factors. Meteo-
rological factors are those that introduce time depen-
dence for Rd(x, t). They are large-scale wind velocity
(at 700 hPa) of magnitude U and direction 	, (U, 	) �
U(x, t) (Holton 2004), stability frequency N(x, t), the
characteristic time scale for cloud water conversion into
hydrometeors �c(x, t), and the characteristic time scale
for hydrometeor fallout �f (x, t).

Studying the interactions between moist airflow dy-
namics and relief, Smith and Barstad (2004) found that
the role of the relief height Z can be summarized in the
nondimensional mountain height, M � ZNm /U, where
Nm is the moist stability frequency. For M 
 1 the moist
air will flow over the relief and the forced ascent pro-
cess is very efficient, conversely the moist air will
flow around the hill and flow splitting will result.
Reasonable parameter values for the Alpine region are
U � 10 m s�1 and Nm � 0.0025–0.005 s (Buzzi and
Foschini 2000; Barstad and Smith 2005; Smith et al.
2003). The height threshold for forced ascent results in

Zt � 2000–4000 m and suggests the relevance of a relief
height Z(x, t) parameter over the whole Alpine area.
The importance of the horizontal scale of orography
L(x) (interpreted as the distance from floodplain/
coastline) and local slope S(x) was underlined by Jiang
(2000, 2003) and Smith and Barstad (2004). When L(x)
increases, the vertical motion penetrates more deeply
into the atmosphere thus increasing the condensation
efficiency. Furthermore, as the scale increases, more
condensed water is able to convert into hydrometeors
and to fall out, before being carried to the leeside re-
gion of descent, thus increasing the precipitation effi-
ciency. Such consideration supports the choice of L(x,
	) as the relevant regression parameter and its evalua-
tion along the dominant wind direction 	.

The relevant effect of mountain slope S(x, 	), evalu-
ated along the dominant wind direction, on the precipi-
tation spatial distribution has been validated by several
studies (Spreen 1947; Smith 1979; Barros and Letten-
maier 1993; Daly et al. 1994; Roe 2005).

We can summarize all the reported results with the
following expression:

Rd�x, t� �
. . . � f �Z�x�, S�x, ��, L�x, ��, U�x, t�, N�x, t�, �c�x, t�, �f �x, t�� � ��x, t�. �3�

The error term �(x, t) accounts for the second-order
effects due to neglected parameters. Therefore, the
orographic precipitation can be considered as a func-
tion of three groups of ingredients: large-scale uphill-
directed flow containing enough water to easily reach
saturation, dynamics determining the pattern of vertical
motion over the topography, the condensation pro-
cesses and microphysics involving the conversion of
condensate into hydrometeors, and the subsequent fall-
ing of the hydrometeors to the ground. When annual
maximum values of Rd(x, t), evaluated according to Eq.
(2), are of concern, we can reasonably assume that
IRd(x, t) � E[Hd(x, t)] depends on the climatologic
values of the variables in (3), therefore time depen-
dence disappears. In this framework, the interannual
and decadal variability in hydrometeorological regimes
controlling extreme events has been ignored due to the
limited extension in time of the samples, whose dura-
tion, though considerable when compared to those of
other regions, is too limited to allow here any reliable
conclusion on multiannual variability (Frei et al. 2000;
Frei and Schar 2001).

Meteorological factors affecting expression (3) de-
serve a separate discussion when IRd are considered. A
regional frequency analysis in Alpine regions singles
out homogeneous regional areas whose size rarely ex-

ceeds 104–105 km2. Climatic studies performed by Frei
and Schar (1998), Frei et al. (2000), and Rudari et al.
(2005) demonstrate that climatological values of U, N,
�c, and �f related to extreme rainfall events have spatial
scales of variability of about one order of magnitude
larger than the dimension of the homogeneous regions
detected in mountainous areas. Therefore, since an
analysis is performed for each homogeneous region, we
assume that U, N, �c, and �f do not affect the spatial
variability of IRd. However, the climatological value of
large-scale wind direction, 	 cannot be neglected, since
it affects the values of S(x, 	) and L(x, 	), as “seen” by
the air flux. We propose for IRd the following general
expression:

IRd � f �Z�x�, S�x, ��, L�x, ��� � ���x�. �4�

Therefore, we assume that Z(x), S(x, 	), L(x, 	), and 	
compose the most general set of variables describing
IRd spatial variability. The functional form of Eq. (4)
has to be investigated. In it no hypothesis about the
form of the dependence of IRd on the selected set of
variables is made. By examining the Smith and Barstad
(2004) advection-convection model, a linear depen-
dency of the source of condensed water on Z(x),
S(x, 	), and L(x, 	) can be assumed.
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Here, we extend the linear dependency to rainfall
and assume a linear form for Eq. (4):

IRd�x, �� � �ZZ�x� � �SS�x, �� � �LL�x, �� � �. �5�

The method can be further generalized, without any
loss of its robustness and transferability, by adding
other variables to the general set [e.g., for areas where
neglected meteorological variables appearing in Eq. (3)
show significant variability in the homogeneous re-
gion]. In this case, the method is complicated by the
need to have climatological values of the variables for
each gauged site.

3. Estimating topographic parameters

The relevant variables affecting IRd and singled out
in Eq. (5) call for a general procedure to filter out local
topographic parameters.

The analysis of rain gauge data performed by Frei
and Schar (1998) to map the mean patterns of annual,
seasonal, and monthly precipitation over the Alps
shows the presence of relevant peaks of rainfall accu-
mulation over the southern slopes with a spatial scale
much smaller than the entire Alpine massif, even
though much larger than individual river valleys. This
suggests that small-scale orographic features do not
greatly affect mean rainfall spatial patterns. The filter-
ing procedure must, therefore, be able to extract large-
scale features of orography, containing higher morpho-
logical information, while neglecting small-scale pertur-
bations. According to Sawyer (1956), such a procedure
should describe to some extent how the air mass “sees”
the relief structures and, therefore, how the dynamics
of the air motion is on average affected by orography.
Here we propose a filter, when applied to a DEM,
which filters out features that produce second-order ef-
fects on rainfall. The filtering procedure proposed is
based on a 2D Fourier series analysis of orography.

The Fourier transform is a linear operator that maps
functions to other functions. Broadly speaking, the
Fourier transform decomposes a function into a con-
tinuous spectrum of its frequency components, while
the inverse transform synthesizes a function from its
spectrum of frequency components. By defining z(x)
the elevation at a generic location x � (x, y), its discrete
Fourier transform P is given by the following equation:

P�i, j� �
1

MN 
x�0

M�1


y�0

N�1

z�x, y� exp��2	i� ix

M
�

jy

N��.

�6�

The numbers M � M1 and N � N1 of the components
are analyzed to evaluate those that include, in the

power spectrum PS � P � conj(P), the higher “energy”
content, interpreted here as “morphological” informa-
tion content. The inverse discrete Fourier transform is
applied to the M1 and N1 components only and the
filtered DEM is obtained by converting back to the
spatial domain:

zf �x, y� �
1

M1N1

u�0

M1�1



�0

N1�1

P�i, j� exp�2	i� ix

M1
�

jy

N1
��,

�7�

where zf represents the filtered orography.
From the filtered DEM, the parameters Z(x), L(x, �),

and S(x, �) at a given location x0 are extracted as fol-
lows:

Z�x0� � zf �x0�

L�x0, �� � |x0 � xmin|

S�x0, �� � �zf �x0� · D���

xmin|zf �xmin� � 0 m �coastline�

xmin|zf �xmin� � 500 m �floodplain�

D��� � �cos�, sin��. �8�

4. The case studies

a. Datasets

The methodology outlined in the previous section
has been applied to sample IRd for d � 1 h (IR1 in the
following). Values have been estimated by using the
sample mean of H1 recorded at gauged sites. The study
region is shown in Fig. 1. The observed H1 were pro-
vided for Liguria and Piedmont by the Italian Hydro-
logical Service, for the French Alps by the Electricité
de France (EDF), Météo France, the Service Régional
d’Aménagement des Eaux (SRAE), the Institut de Re-
cherche pour l’Ingenierie de l’Agriculture et de
l’Environnement (CEMAGREF), and the Direction
Departementale de l’Equipement et de l’Agriculture
du Cher (DDAF). The number of rain gauge sites con-
sidered varied from region to region: 89 for Liguria, 67
for Piedmont, 47 for the southern French Alps, and 49
for the northern French Alps. The record length Ni for
each rain gauge site varied from 10 to 66 yr.

Moreover, the high density of the rain gauges net-
work available in this study (on average a rain gauge
every 50 km2) allowed the provision of reliable esti-
mates of the regression parameters relevant for the
mapping of the rainfall index in ungauged sites. In par-
ticular, according to the Nyquist frequency, the adopted
network allowed an approximate 30–40-km minimum
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spatial-scale resolution. Consequently, albeit crudely,
the smaller scales of orography can be resolved and
there is ground to state that smaller scales are not rel-
evant, as demonstrated in this study. It is worth men-
tioning once more how this study area provides one of
the more dense networks in regions of complex terrain
that one can find around the world.

For Liguria and Piedmont the high number of sta-
tions also allowed the identification of two subsets for
calibration and validation. For Liguria, 59 stations were
used for calibration and 30 for validation. For Pied-
mont, 45 stations were used for calibration and 22 for
validation (see Fig. 1).

The four regions here considered correspond to the
“homogeneous regions” discussed elsewhere. Region
borders have been defined according to the main ori-
entation of mountain slopes and valleys and to the
prevalent airflow regimes during extreme events. Ho-
mogeneity tests were performed following the hierar-
chical procedure proposed by Fiorentino et al. (1987)
and Gabriele and Arnell (1991), based on the assump-
tion of the Two Component Extreme Value (TCEV;
Fiorentino et al. 1987) distribution as nondimensional
cumulative density function (CDF) for IR1 in homoge-
neous regions. The TCEV model can be interpreted as
the CDF of the annual maximum for a Poissonian pro-
cess composed of a mixture of two independent popu-
lations, each one of them described by an exponential

distribution. One population was named the ordinary
component and represents the Hd values that occur
more frequently. The other was named the extraordi-
nary component and represents the population that in-
cludes the outliers. The analytical expression of the
CDF for the TCEV distribution is

FH1
�h�1� � exp���1 exp��h�1� � �*�

1

�* exp��
h�1
�*
��,

�9�

where h�1 � h1/IR1, � is the so-called shape parameter
and h1 is the recorded value of the annual rainfall maxi-
mum for d � 1 h. The parameters �* and �* are defined
as �* � (�2/�1) and �* � (�2/�1

(1/�*)); �i (i � 1, 2)
represents the annual expected number of H1 realiza-
tions belonging, respectively, to the ordinary and the
extraordinary component, and �i (i � 1, 2) represents
the expected value of the two populations.

The testing procedure assumes that parameters re-
lated to higher-order moments have less spatial vari-
ability. Consequently, it evaluates �*, �*, which define
the coefficient of skewness (CS) on larger regions and
then �1, related to the coefficient of variation (CV) on
the same or smaller subregions (Gabriele and Arnell
1991). Then, the observed sample frequency distribu-
tions of CS and CV in the region, hypothesized as ho-
mogeneous, is compared to the correspondent prob-
ability distributions obtained through a Monte Carlo
generation based on the CDF in (9). If they match, the
region is assumed as statistically homogeneous. Results
for the whole study area are reported in Tables 1 and 2.
They show that the �2 tests between sample and theo-
retical probability distributions have positive results,
therefore the regions can be assumed as homogeneous.

b. Dominant wind directions

In this study, in accordance with the usual conven-
tion, wind direction is defined by clockwise degrees
starting with the 0° at north. To estimate the value of
the dominant wind direction, 	, during intense rainfall
events, an analysis of air motion and precipitation
growth in the different homogeneous regions is pre-
sented below.

In the case of Liguria and the southern French Alps,
heavy precipitation events occur during the fall season
(Boni et al. 2006; Mertz 1957; Tibaldi and Buzzi 1983;
Tibaldi and Molteni 1990) and are typically associated
with a baroclinic trough approaching the region from
the west, which promotes a southerly low-level advec-
tion of moisture impinging toward the Ligurian Apen-
nines and Alps. The climatological analysis of wind per-

FIG. 1. Orography of the region where the analyzed Hd were
collected and location of the rain gauges. Different symbols cor-
respond to different regions where the analysis has been carried
out: triangle � Liguria (white for calibration, black for valida-
tion); circle � Piedmont (white for calibration, black for valida-
tion); black square � northern French Alps; and white diamond �
southern French Alps.
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formed by Castino et al. (2003) showed that in such
area the most frequent low-level wind direction is
southwesterly oriented. For the analysis, we used values
of 	 ranging between the interval 30° � 	 � 60° in
accordance with the aforementioned convention.

Over the Piedmont area, the precipitation is most
intense when the mean geostrophic flow is southerly or
southeasterly impinging against the Alpine barrier, as
shown by the analysis of the 1994 and 2000 floods in
Piedmont and of some Mesoscale Alpine Programme
(MAP) 1999 events (Buzzi and Foschini 2000; Ferretti
et al. 2000; Houze et al. 2001; Massacand et al. 1998;
Rotunno and Ferretti 2001). Values of 	 around 330°
are, then, the most probable.

In the northern French Alps area, the quasi-station-
ary northwest cyclonic regime is dominant (Mertz 1957;
Schiesser et al. 1995) and promotes the highest precipi-
tation amount during the main convective period
(May–September; Frei and Schar 1998). Frontal struc-
tures associated with depressions centered over north-
ern Europe tend to move in from west and northwest
and the presence of the Alpine barrier can trigger
strong convective episodes embedded in the frontal
zone (Blanchet 1990). Values of 	 range from 105° to
135°.

5. Results

a. DEM filtering

To define the optimal number of components of the
DEM Fourier transform in (6) to be used, we first ana-
lyzed wavelengths that preserved more than 80% of the

morphologic content. In Fig. 2, we show that the spec-
tral components of wavelength larger than 100 km al-
ready describe more than 80% of the spatial variability.
We, then, truncated the Fourier transform in (6) in or-
der to obtain a filtered DEM using wavelengths larger
than 200, 100, and 50 km that described the 80%, 90%,
and 95%, respectively, of the observed orographic spa-
tial variability (Fig. 3). These three filtered DEMs zf 80,
zf 90, and zf 95 are the starting point from which to evalu-
ate the independent variables of the regression in (5). A
least squares linear regression is performed for each of
the three cases, using the general set of variables S, Z,
and L, evaluated through Eq. (5), for values of 	
around dominant wind directions as defined in the pre-
vious paragraph.

b. Methodological approach for the model
evaluation

The results of the application of Eq. (5) are reported
in the following paragraphs for the four homogeneous
regions considered.

The t statistic is applied on each coefficient of regres-
sion in order to test the significance of the dependence
of IR1 on each of the variables of Eq. (5). This allows us
to identify the optimal subset of variables that describe
the IR1 spatial variability.

The F test is performed in order to assess whether or
not the chosen form of the model (linear in this case) is
appropriate for Eq. (5). It is a statistic test commonly
used to decide whether a model, as a whole, has statis-
tically significant predictive capability, considering the
number of variables necessary to achieve it.

TABLE 2. Regional frequency analysis, second level. Results of the homogeneity tests. The �2 test on sample and theoretical CDFs
for CV passes for each region.

Region �1

Sample CV Generated CV
Degree of

freedom (n) �2 �2
	�0.05, n�4Std dev Mean Std dev Mean

Liguria 15.75 0.075 0.40 0.067 0.39 16 20.36 21.02
Piedmont 19.55 0.076 0.39 0.07 0.38 13 9.81 16.91
Southern Alps 31.66 0.101 0.41 0.10 0.39 10 12.4 12.6
Northern Alps 39.02 0.102 0.37 0.096 0.36 9 2.97 11.07

TABLE 1. Regional frequency analysis, first level. Results of the homogeneity tests. The �2 test on sample and theoretical CDFs for
CS passes for each region.

Region �* �*

Sample CS Generated CS
Degree of

freedom (n) �2 �2
	�0.05, n�3Std dev Mean Std dev Mean

Liguria 0.50 1.48 0.66 1.01 0.64 1.01 16 9.66 22.4
Piedmont 0.19 1.78 0.77 1.04 0.70 1.09 13 13.16 18.30
Southern Alps 0.23 2.54 0.83 1.44 0.86 1.31 10 8.12 14.2
Northern Alps 0.24 2.38 0.76 1.21 0.83 1.22 9 11.9 12.60
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The Durbin–Watson test is used to verify whether
the residuals of the linear multiple regression are inde-

pendent (Durbin and Watson 1950). This test is among
the most widely applied in time series analysis and is
based on the assumption that the errors in the regres-
sion model are generated by a first-order autoregres-
sive process observed at equally spaced time periods.

In the case of the Piedmont and Liguria regions,
where a larger number of stations are available, the
linear regression equation were both calibrated and
validated by splitting the dataset into two subsets. The
calibration set included data recorded at 59 stations for
Liguria and 45 stations for Piedmont, the remaining 30
(Liguria) and 22 (Piedmont) were used for validation.

Validation was performed by applying the regression
coefficients to IR1 estimated for the validation set and
then by comparing differences between observed and
predicted values with the 100(1 � 	) confidence inter-
val on the prediction of future values. The interval,
following Kottegoda and Rosso (1997), was evaluated
by the following expression:

Pr�E�IRd�1� � tn�p,��2��2�1 � a�XTX��1aT� � IRd�1 � . . .

. . . � E�IRd�1� � tn�p,��2��2�1 � a�XTX��1aT�� � 1 � �, �10�

where t is the t statistic, n is the number of predicted
variables, and X(n � p) is the matrix containing the
values of the p � 1 explanatory variables at the obser-
vation points plus a column of 1s to cater to the con-
stant �. We assume here 	 � 0.05.

c. The Liguria region

1) CALIBRATION

For the Liguria region, the synthetic relief descrip-
tors used in Eq. (5) were evaluated along different
dominant wind directions, ranging from 30° to 60°. This
range presented the most frequently observed low-level
wind directions in all the regions (see section 4). A total
of 59 randomly chosen and spatially homogeneously
distributed rain gauge sites were used to calibrate the
proposed model (see Fig. 1). The choice of the level of
filtering and of the wind direction 	 was performed by
maximizing the coefficient of multiple determination
R2 of the linear regression in (5). An 80% variance
DEM was identified as the one that maximized, for all
wind directions, the R2 (see Fig. 4). Table 3 shows the
results of the trivariate least squares linear regression
performed for the wind direction 	 � 60°, which maxi-
mized the value of R2. In this case we have both the
highest values of F and R2. In particular, R2 � 0.60
means that about 60% of the variation in IR1 is ex-
plained by the trivariate linear regression model. The F

test confirms that the linear regression model ad-
equately describes the functional relation between IR1

and the chosen variables. The t test results in Table 3
show that, for a level of significance 	 � 0.05 and for
	 � 60°, the slope S(x, 60°) is the most important pa-
rameter in the linear regression, while the dependence
on the distance from the coastline is negligible. The
distance from the coastline can be retained as predic-
tion, but its contribution to the linear regression is neg-
ligible. Consequently for a homogeneous region like
Liguria the optimal subset of regression variables is
given by slope and distance from the coastline.

2) VALIDATION

The remaining 30 gauged sites in the Liguria region
were used to validate the model. The model prediction
at the gauge location was compared to observations of
IR1. Figure 5 suggests that the results are satisfactory,
since almost all the predicted values (28 of 30) are
in the 95% confidence interval defined by (10). The
bias, as a measurement of sign and magnitude of the
mean errors, and the mean absolute error (MAE), as a
precision measurement, were computed. The values
found (bias � 0.4 mm and MAE � 5.2 mm) were lower
than those usually found in literature (Basist and Bell
1994; Daly et al. 1994; Marquinez et al. 2003), even if
these studies refer to mean annual and monthly pre-

FIG. 2. The explained variance of the DEM power spectrum
depends on the orography wavelength considered. Longer wave-
lengths explain less variance and provide a smoother description
of orography.
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cipitation. The regression residuals ri � (ei /�e�1 � hjj)
(where ei is the model error for the ith observation, hjj

are the diagonal elements of the hat matrix H �
Y(Y� · Y)�1Y�, and Y � [Z, S, L]) were normally dis-
tributed and uncorrelated, as shown in Table 4 by the
results of the Kolmogorov–Smirnov and Durbin–
Watson tests.

The index rainfall map that was estimated by using
the optimal subset of regression variables is shown in
Fig. 6. The estimates can be placed in the right drainage
basin since the regression variables are a function of the
localization.

d. The Piedmont region

1) CALIBRATION

For this region the set of synthetic relief descriptors
was computed along wind direction 	, which ranged

FIG. 3. Comparison between (top left) unfiltered DEM, (top right) 95% variance DEM, (bottom left) 90% variance DEM, and
(bottom right) 80% variance DEM.

FIG. 4. Coefficient of multiple determination R2 for the regres-
sion in Eq. (5). Results for low-level wind direction that maximize
the values R2 for each region are reported.
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from 300° to 345° counterclockwise in the west–east
direction, which is representative of the typical propa-
gation direction of extreme events affecting this area
(see section 4). The calibration set in this case included
45 rain gauges (see Fig. 1).

The 90% variance DEM, filtering out the orography
wavelengths lower than about 100 km, maximized R2

values for all wind directions (Fig. 4) and was adopted
for the estimation of the parameters of Eq. (8). When
compared with the Liguria region, the processes re-
sponsible for spatial variability of IR1 in Piedmont
seem to be sensitive to finer orographic details. This can
be explained by looking again at Fig. 3. The morphol-
ogy of the mountain chain in Liguria is relatively simple
when compared to the orography of Piedmont as it is
almost a single wave from the sea to the floodplain.
Thus, a 90% variance DEM (bottom-left panel) does
not add, for Liguria, any significant detail of mountain
shape to those given by the 80% variance DEM (bot-
tom-right panel). In Piedmont, the presence of many
long valleys variously oriented and the relative effects
on shading and slopes must be described and it cannot
be done by using the 80% variance DEM. The results
reported in Table 3 are for the flow direction 	 � 330°
that maximized R2. The R2 values were high, around
0.8. The orography and an average low-level wind di-
rection can be assumed here to be responsible for the
amount of rainfall produced during extreme events.
The t statistic shows that, for the level of significance
	 � 0.05 and 	 � 330°, the altitude Z is the dominant
parameter in the linear regression, while the role of the
distance L from the floodplain is still negligible. There-
fore, for this region the optimal subset of regression
variables includes the aforementioned height Z and the
slope S. This result confirms that for the Piedmont re-
gion the orographic shielding effect is the dominant

explanatory factor in the linear regression and is re-
sponsible for comparatively large-scale atmospheric as-
cent and enhanced precipitation.

2) VALIDATION

The positive behavior of the model, shown in the
previous paragraph, is also confirmed by the validation
summarized in Fig. 7: 21 of 22 values are included in the
95% interval of prediction of future values. The bias �
�0.27 mm and the MAE � 3.2 mm are even lower than
in the case of Liguria. The testing of the gaussianity and
the uncorrelation on ti reported in Table 4 was success-

FIG. 5. Comparison between observed and modeled IRd�1 for
30 randomly chosen rain gauge stations (Liguria region). The pre-
diction interval for a future value of IRd�1 is shown (	 � 0.05).

TABLE 3. Results and statistics of the linear regression of IRd�1 vs synthetic relief descriptors for the four study regions. The �
values are those that maximize R2.

Region Liguria Piedmont Southern Alps Northern Alps

� (°) 60 330 60 120
R2 0.61 0.82 0.77 0.45
F 28.7 57.9 51.5 10.9
F	�0.05(k, n � k � 1) 2.76 2.83 2.81 2.82
n � k � 1 55 41 45 43
� (mm) 44.3 37.4 28.8 21.9
|t�| 15.2 16.8 23.6 22.3
�z (m�1) �0.02 �0.011 �0.007 �8.6 � 10�3

| t�Z
| 3.0 11.8 6.79 2.46

�s (–) 904 132.6 �40.7 164
| t�S

| 4.1 2.63 1.36 6.79
�L (km�1) �7.5 � 10�3 5 � 10�4 �5 � 10�4 �0.08
| t�L

| 0.10 0.02 0.07 2.33
t	�0.05(k, n � k) 1.68 1.68 1.68 1.68
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ful. Once more the Kolmogorov–Smirnov and Durbin–
Watson tests suggest that the residuals from the linear
multiple regression are also independent for the Pied-
mont region.

e. Southern French Alps region

For this study region, due to a lack of rain gauges,
only the calibration was performed. Analysis demon-
strated that, as like Piedmont, the 90% variance DEM,
filtering out the orography wavelengths lower than
about 100 km, guarantees the highest R2 (Fig. 4). How-
ever, the direction of propagation of extreme events
seems to play a marginal role in the trivariate linear
regression, since values of R2 for any considered low-
level climatological wind direction (30° � 	 � 60°) are
nearly coincident. This result was also confirmed by the
statistics shown in Table 3: the optimal subset of regres-
sion variables was reduced to the height Z(x) in agree-
ment with the findings of the gradex method proposed
by Bouvard and Garros-Berthet (1994). An indirect
validation of the model was carried out by analyzing the

regression residual ti. As in the case of the other regions
considered in this study, the residuals ti do not exhibit
any trend along the whole model prediction range. On
the basis of the Kolmogorov–Smirnov and Durbin–
Watson tests, they were normally distributed and they
did not present any degree of autocorrelation as sug-
gested by test results shown in Table 4. Figure 8 shows
the map of the IR1, for the southern French Alps re-
gion, estimated by using the optimal subset of regres-
sion variables.

f. Northern French Alps region

For this study region, the 90% variance DEM guar-
anteed the highest R2, even though in this case the per-
formances of the multivariate linear regression model
were worse than the other areas considered in this
study (Fig. 4). In respect to the 90% variance DEM, the
regression statistics showed that all the synthetic relief
descriptors contributed to explain the spatial variability
of IR1 with a slight predominance of the elevation.
Moreover, the best results were obtained for wind di-

FIG. 6. Contour lines of IR1 for the Liguria region.

TABLE 4. Results of the Durbin–Watson test and Kolmogorov–Smirnov test for level of significance 	 � 0.05.

Region

Hypothesis ti: N(0, �t) Residual correlation

Kolmogorov–Smirnoff test Durbin–Watson test

tmax t	�0.05 Observed value Limits 	 � 0.05 n

Liguria 0.069 0.177 1.90 1.50–2.50 59
Piedmont 0.067 0.202 1.85 1.65–2.35 45
Southern France 0.07 0.198 2.30 1.65–2.35 49
Northern France 0.132 0.194 1.70 1.65–2.35 47
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rections around 120° showing both the highest values of
F and R2. The residuals, also for this region, did not
present any systematic pattern in respect to the inde-
pendent variables, as confirmed by the results of Table
4 and in particular by the Durbin–Watson test. The
Durbin–Watson test statistic is designed to detect er-
rors that follow a first-order autoregressive process.
This statistic also plays an important role as a general
test of model misspecification. Figure 8 shows the IR1

map, for the northern French Alps region, estimated by
using the optimal subset of regression variables. The
northern French Alps region is characterized by values
of index rainfall lower than those estimated in the
southern part.

6. Discussion

Besides the satisfactory performance of the proposed
mapping method, the main result of this study appears
to be that the relevant wavelength of orography for
spatial variability of mean hourly annual rainfall
maxima is about 100 km and that both the slope and
elevation are the most important predictors in the four
case studies.

The broad horizontal wavelength obtained appar-
ently contrasts with many statistical studies of rainfall
spatial variability that identify scales less than 10 km as
appropriate. However, it is worth pointing out some
differences in those studies with respect to this paper.

First, this research did not intend to study the spatial

variability of intense rainfall at the event scale, seen as
a single realization of the rainfall stochastic process, but
instead dealt with the mapping of the rainfall index
defined as the mean of hourly annual rainfall maxima.
In the case of deep convective processes at the event
scale, finescale orography details can trigger the rainfall
event and can deeply affect its resulting spatial pattern
(see studies related to the MAP project), but when we
focus on the mean value of hourly annual rainfall
maxima, it is reasonable to expect that the relevant
scales of orography are smoother and wider.

Second, while other studies referred to spatial pat-
terns of average rainfall accumulated over long time
windows (i.e., day, month, and season), we addressed
the mapping of IR1, which is annual rainfall maxima for
a short duration (d � 1 h).

FIG. 8. Contour lines of IR1 for the northern and southern
French Alps regions.

FIG. 9. Sections of the smoothed orography for northern France
along the dominant wind direction. The black arrow indicates the
direction of the incoming wind.

FIG. 7. Comparison between observed and modeled IR1 for 22
randomly chosen rain gauge stations (Piedmont region). The pre-
diction interval for a future value of IR1 is shown (	 � 0.05).
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Third, other studies (Hutchinson and Bischof 1983;
Hutchinson 1998; Sharples et al. 2005) mainly consid-
ered areas (like Australia) characterized by a climatol-
ogy and orography quite different from that typical of
the four homogeneous regions that we analyzed.

Finally, they identified the optimal spatial scale of
the interaction between precipitation and topography
by looking for the minimum of a generalized cross vali-
dation function (GCV; Sharples et al. 2005). However,
this minimum is, often, not very strong and the differ-
ence between the value of GCV for scale values equal
to 10 or 100 km (and higher) is very small. Conse-
quently, the identification of the optimal scale is often
not unambiguous.

Therefore, it is interesting to interpret the results ob-
tained in the previous section and the dominant role of
predictors like slope or elevation referring to the linear-
delayed orographic precipitation model proposed by
Smith and Barstad (2004). Such a linear theory for oro-
graphic precipitation is event based, but in this case we
did not directly compare this theory against our results,
though valid at a climatological scale, instead we used
some of the physical aspects of this theory to discuss
our results.

The model of Smith and Barstad (2004) is repre-
sented by the following two steady-state condensation-
advection equations:

U · �qc�x� � C�x� �
qc�x�

�c

U · �qf �x� �
qc�x�

�c
�

qf �x�

�f

C�x� � �q
�Z�U · �Z�x�, �11�

where qi(x) are the cloud (c) and hydrometeor ( f ) col-
umn densities (kg m�2), �i are the characteristic time
scales for cloud water conversion and hydrometeor fall-
out (s�1), C(x) is the source/sink condensed water term
in the form proposed by Smith (1979) (kg m�2 s�1), and
U the regionally averaged wind vector (m s�1).

Looking at Table 3 we see that in the southern
French Alps and Piedmont the most important param-
eter, explaining most of the variance, is the elevation at
the gauging station Z(x). In fact, a large number of the
gauged sites have values of L around 50 km. Assuming
|U| and �c � �f � � (Medina et al. 2005) constant across
the whole homogeneous region (see section 2), whose
typical values for these study regions are |U| � 10 m s�1

and � � 500–1000 s (Buzzi and Foschini 2000; Barstad
and Smith 2005; Smith et al. 2003) we have in this case,
for most of the gauged sites, L/|U| k 1000 s � �. As the
advection terms for water densities in the left-hand side

of the first two equations in (11) scale with |U|q/L and
the conversion terms in the right-hand side scale with
q/�, for large L values such as L/|U| k �, the advection
term in Eq. (11) is small. This result is consistent with
the regression results that rainfall intensity at a given
location x depends on the local elevation, since the
source term is proportional to surface atmospheric
moisture.

The regression dependency for northern France both
in regards to L and Z can be explained by the presence
of a two-ridge terrain with a narrower ridge superposed
on the windward slope of a wider and higher ridge (Fig.
9). It has been demonstrated that a narrower ridge
could significantly modulate the precipitation intensity
and distribution by inducing upslope ascent, leeside de-
scent, and gravity waves (Jiang 2007). In the lee side,
C(x) becomes negative, thus reducing rainfall intensi-
ties, and Z alone cannot explain all the variability. The
position along the slopes, parameterized by L, adds to
the regression model the ability to discriminate be-
tween gauged sites with the same Z though located on
the windward or the lee side.

For the Liguria region, however, the characteristic
value of L is around 10–20 km, thus lower than 50 km.
In this case L/|U| � 2000 s � �. Equation (11) assigns
the same order of magnitude to the advection and to
the conversion terms, which means that condensed wa-
ter is partially transformed into locally and partially
advected rain. Rainfall intensity does not depend in this
case on its position along the slope. We can reasonably
assume that the total water condensed by the forced
ascent, scaled with the local mountain range elevation
H, and averaged along the mountain range half-width a,
is a good representation of the rainfall intensity along
the slope, resulting in a scale of H/a. This result is con-
sistent with Table 3, which shows that for Liguria the
most important parameter is the local slope S. Due to
the small width and the smoothed representation of the
mountain range, S can be considered here a good ap-
proximation of H/a.

It is also worth highlighting that the maximum value
of R2 is attained for specific directions coinciding with
major storm systems, consequently this study shows
how this method agrees with physically based methods
that rely on the analysis and or physical modeling of
climatologically relevant storms.

7. Conclusions

This paper presents a new parsimonious methodol-
ogy of modeling the spatial variability of rainfall index
IR1, based on the objective extraction of the relevant
orographic and meteorological features that affect
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expectations of orographically induced rainfall. The
key idea is to find a general objective methodology
for IR1 estimation in mountainous areas, by extracting
the parameters affecting its spatial variability from a
smoothed DEM, along oriented cross sections that fol-
low the dominant low-level (700 hPa) winds during
rainfall events.

The results show that by assuming linear relations
between the orographic parameters used in linear mod-
els that describe orographic rainfall (widely used in lit-
erature) and neglecting the spatial variability of the cli-
matic values of the parameters that describe atmo-
spheric disturbances (e.g., wind speed, atmospheric
moisture, etc.), it is possible to explain, through a linear
regression, up to 70%–80% of the IR1 spatial variability
observed in the western Alpine region.

The results are interpreted by using a linear-convec-
tive model for orographic precipitation. This model
makes it possible to identify some remarkable cases
that shift the dependence of IR1 from one orographic
parameter to another. The ratio between the character-
istic conversion (and fallout) time scales and the time
scale of the orographic uplift seems to be the discrimi-
nant parameter, which means that the interaction be-
tween the geometry of the orographic range and the
climatology of atmospheric disturbances defines the
variable mainly affecting IR1 spatial variability.

Future research activity will be devoted to the appli-
cation of the proposed methodology to other portions
of the Alps and Apennines. It will also be studied if this
method can be enlarged, beyond relief and climatologi-
cal descriptors, by adding, for example, parameters re-
lated to vegetation. Finally the performances of the
method for longer duration IRd will also be analyzed.
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