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ABSTRACT

It is shown that a sufficient condition for stability by P. Ripa, based on the monotonicity of the flow potential

vorticity (PV), can be used to prove linear stability of isolated shallow water vortices over localized topo-

graphic features. Stable axisymmetric vortices over axisymmetric topography that satisfy Ripa’s condition are

explicitly constructed by using a simple two-step, fully analytic approach. First, for a given velocity profile, the

topography is found that yields a steady-state, constant-PV solution of the shallow water equations. Then, this

topography is slightly modified to obtain new steady solutions, with monotonic PV, that satisfy Ripa’s stability

criterion. Application of this procedure shows that modest depressions (elevations) can stabilize cyclones

(anticyclones) with small Rossby and large Burger numbers and velocity profiles similar to those observed in

mesoscale oceanic vortices. The stabilizing topographic features have radial sizes comparable with that of the

vortex (about twice the radius of maximum speed) and maximum vertical size, normalized to the unperturbed

fluid depth, from 2 to 3.3 times the Rossby number for the profiles considered. The upper limit corresponds to

a Gaussian profile, whereas the lower limit is approached by a velocity profile that is linear inside the vortex

core and a cubic polynomial outside.

Finally, it is argued that a similar stabilization mechanism holds for two-dimensional (2D) flows, and

a method for the construction of stable 2D shallow water vortices over 2D topography is outlined that is

analogous to that used for the axisymmetric problem. In the 2D case, however, it is generally not possible to

obtain stable equilibria analytically.

1. Introduction

The stability of oceanic vortices over isolated topogra-

phy has been investigated by Nycander and LaCasce (2004,

hereafter NL04) in the context of the two-dimensional

(2D) inviscid Euler equation in a nonrotating environ-

ment. The main result of NL04 is that there is a large class

of stable, stationary anticyclonic vortices attached to sea-

mounts (quite wider than that found in the classical in-

vestigation by Carnevale and Frederiksen 1987), whereas

stable cyclones can only exist over axisymmetric topo-

graphic features. This asymmetric behavior could con-

tribute to explain the fact that some observed seamounts

do possess stationary anticyclonic caps (see, e.g., the

case of the Fieberling Seamount, which was studied by

Kunze and Toole 1997).

However, the dynamical setting of NL04 is very

simplified and one may wonder about the robustness

of the stability results. For example, the recent work of

Benilov (2005) indicates that the stability picture may

be significantly modified by baroclinic effects. Other

potentially important limitations, also present in the

approach of Benilov (2005), are the inherent restrictions

to small-amplitude topographic features and quasigeo-

strophic dynamics. As a first step toward the removal of

these limitations, here we examine stability of vortices

over topography in the context of the shallow water

(SW) model, which allows both for finite-amplitude to-

pography and for ageostrophic effects. Our objective is

not a thorough investigation of the SW stability prob-

lem, which would require extensive numerical work. We

seek, instead, to gain analytic insight by exploiting a

somewhat neglected stability criterion for the SW equa-

tions (SWE) by Ripa (1987) that is based on the mono-

tonicity of the flow potential vorticity (PV).

Ripa’s stability condition, originally derived for flows

over a flat bottom, has not proven very useful in that
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context, since it only applies to circular flows and

moreover cannot be satisfied by isolated circular vorti-

ces (Nore and Shepherd 1997). Interestingly, however,

the condition also holds for flows over arbitrary ba-

thymetry. This result is implicitly stated in Ren and

Shepherd (1997), which is concerned with the derivation

of an analog of Ripa’s stability condition for Salmon’s

(1983) balance model. It is noted in that work that the

pseudoenergy functional that yields the stability crite-

rion [their Eq. (3.9)] is formally identical to that for the

SWE, once the geostrophic velocity is replaced by the

full velocity vector. Since the derivation of Ren and

Shepherd (1997) is for flows over variable topography, in

general geometry, this implies that Ripa’s stability cri-

terion for the SWE holds for the same conditions. This

fact, perhaps not widely appreciated, is easily un-

derstood by observing that a variable bottom topogra-

phy only affects the equilibrium state but not the

conservation laws of energy and PV that lead to the

stability criterion.

Since the negative argument by Nore and Shepherd

(1997) does not hold in the presence of topography, this

may allow existence of axisymmetric, isolated SW vorti-

ces over appropriate axisymmetric topographic fea-

tures that satisfy Ripa’s condition. On the other hand,

in the presence of nonaxisymmetric topography, the

restriction to circular flows would be waived, and it

might be possible to find 2D SW vortices over 2D to-

pography that are stable according to Ripa’s criterion.

The main purpose of this work is to examine these

possibilities, which apparently have not been explored

in the literature.

The stability of SW axisymmetric equilibria is dis-

cussed in section 2, where we analytically construct

isolated vortices with realistic velocity profiles (e.g.,

Gaussian vortices), trapped on localized topographic

features, that satisfy Ripa’s condition. In section 3, an

analogous, more elaborate construction is outlined that

allows, in principle, stable two-dimensional SW vortices

over two-dimensional topography to be obtained. Con-

clusions are drawn in section 4, where the main limita-

tions of the present analysis are reminded and some

directions for future work are indicated.

2. Stability of axisymmetric SW vortices

We first investigate the stability of axisymmetric SW

vortices over axisymmetric topographic features. In

particular, we consider isolated axisymmetric vortices:

that is, vortices with an azimuthal velocity profile V(r)

that decays more rapidly than 1/r at large r. For such

flows, Ripa’s condition ensures stability against small-

amplitude perturbations if

V
dq

dr
. 0, V2 , gh (1)

for any r. Here, q is the PV; h is the fluid depth; and g is

the acceleration due to gravity, or the ‘‘reduced’’ gravity

in a 1 1 ½ layer context. In the following, we shall

construct isolated SW vortices over topography that

satisfy (1), using a simple two-step approach: first, given

a velocity profile, we shall determine the topography

needed to make this profile a steady, constant-PV so-

lution of the SWE; then, with slight modifications of this

topography and of the corresponding fluid depth, we

shall obtain new steady solutions that satisfy Ripa’s

condition for stability. For simplicity, although it is not

fully appropriate, we shall denote the topography corre-

sponding to constant PV as the ‘‘marginal topography.’’

In an axisymmetric configuration, the basic equilib-

rium relations are the radial force balance,

g
d

dr
(h 1 h

b
) 5 f V 1

V2

r
, (2)

and the definition of the PV,

q 5
z 1 f

h
, (3)

with hb(r) the height of the bottom topography, z 5

dV/dr 1 V/r the relative vorticity, and f the Coriolis

parameter that is taken to be constant and positive

throughout the paper. Computing the fluid depth gra-

dient from (3),

dh

dr
5

1

q

dz

dr
� z 1 f

q2

dq

dr
, (4)

and placing it in (2) gives a useful expression for the PV

gradient,

(z 1 f )
dq

dr
5 q

dz

dr
� q2

g
f V 1

V2

r

� �
1

dh
b

dr
q2. (5)

Consider a cyclonic vortex over flat bottom (i.e., dhb/dr 5

0), with a velocity profile that peaks at some radius R. It

is easily seen that, for such a vortex, the rhs of (5) is

negative definite in a neighborhood of r 5 R (note that

dz/dr , 0 at the velocity maximum). It follows that Ripa’s

condition is always violated in the region of maximum

velocity of a cyclonic vortex, unless a positive topographic

slope is present in that area [see the last term in (5)] that is

strong enough to change the local sign of the PV gradient.

Similar considerations pertain to the flow in the region

of minimum velocity of an anticyclonic vortex, as long as

jz(R)j/f is smaller than unity. In that case, the ‘‘stabiliz-

ing’’ topography would be hill-like.
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If we set q 5 ~q 5 f /H, with H the unperturbed fluid

depth [i.e., H 5 h(r / ‘)], and denote the marginal

topography by ~h
b
, (5) reduces to

d ~h
b

dr
5 �H

f

dz

dr
1

1

g
f V 1

V2

r

� �
. (6)

Integrating this relation and choosing the integration

constant so that ~h
b

vanishes at infinity, we finally get

~h
b
(r)

H
5�z(r)

f
� 1

gH

ð‘

r

dr f V 1
V2

r

� �
, (7)

which gives the marginal topography for any V(r) pro-

file of interest. The corresponding fluid depth ~h follows

from (3),

~h(r)

H
5 1 1

z(r)

f
. (8)

The first step accomplished, we must now show that

stable vortices can be obtained through appropriate

modifications of the marginal topography profile. To this

end, it is sufficient to notice that, since the radial force

balance only involves the free surface elevation h 1 hb,

infinite steady states correspond to any given V(r),

characterized by the couples of profiles [h(r), hb(r)] such

that h 1 hb is a solution of (2). The constant-PV vortex

defined by (7) and (8) is just one of these couples; any

other vortex with the same V(r) and

h 5 ~h� g(r), h
b

5 ~h
b

1 g(r) (9)

(with g vanishing at large r and such that h is non-

negative) belongs to the same class of steady states,

whose PV is given by

q 5 ~q
1

1� g/ ~h
. (10)

In this class, solutions with monotonic PV can be se-

lected by choosing g(r) so that g(r)/ ~h is monotonic. For

example, we can choose

g(r) 5�� ~he
�r/R

, (11)

with � a constant, so that

q 5 ~q
1

1 1 �e�r/R
, h

b
5 ~h

b
� � ~he

�r/R
. (12)

Since j�j can be taken as small as wanted, we can con-

struct topographic profiles arbitrarily close to ~h
b

that

yield solutions with a sign definite dq/dr. In particular,

we can construct topographic profiles arbitrarily close

to ~h
b

for which (1) is satisfied. Since dq/dr has the same

sign of �, (12) shows that cyclones satisfying (1) are ob-

tained for positive �: that is, by slightly deepening the

marginal topography. Similarly, stable anticyclones are

obtained for � , 0: that is, by making the underlying

elevation slightly taller.

Clearly, we are assuming here that the second condi-

tion in (1) can be fulfilled, through an appropriate choice

of the flow Froude number. Indeed, it follows from (8)

that the marginal flow satisfies this condition if

V2
m

gH
, min

1

y2
1 1

z

f

� �� �
;

z

f
5

v
m

f

dy

dx
1

y

x

� �
, (13)

where we have introduced the normalizations x 5 r/R

and y 5 V/Vm, with Vm the (signed) velocity extremum,

and defined vm [ Vm/R. Since

V2
m

gH
5

v
m

f

� �2
Rffiffiffiffiffiffiffi

gH
p

/ f

� �2

5
(v

m
/ f )2

(L/R)2
,

with L [
ffiffiffiffiffiffiffi
gH
p

/f the deformation radius, (13) can also

be seen as a constraint on the ratio between the square

of the Rossby number Ro [ vm/f and the Burger num-

ber Bu [ (L/R)2. At small Ro, this ratio cannot exceed

a value that is of order unity, the exact bound depending

on the velocity profile in consideration.

Before discussing explicit examples, we may further

examine the expression for the marginal topography.

With the normalizations just introduced, (7) takes the

form

~h
b
(r)

H
5�z(r)

f
� 1

(L/R)2

v
m

f

ð‘

x

dx y 1
v

m

f

� �2ð‘

x

dx
y2

x

" #
,

(14)

which explicitly shows the dependencies on the Rossby

and Burger numbers, the two parameters of the prob-

lem. When Bu is much larger than unity and jzj is

maximum in the vortex core, the rhs of (14) is dominated

by the first term. The corresponding marginal topogra-

phy for an anticyclonic (cyclonic) vortex is a hill (valley)

with shape close to that of the 2z(r)/f profile and max-

imum size (normalized to H) on the order of the dy-

namical Rossby number jz(0)j/f.
For Bu of order unity, the Coriolis term in (14) be-

comes nonnegligible. Since this term has the same sign

as the first one, it always tends to increase the size of

the marginal topographic feature. On the other hand,

the centrifugal term is negative definite and always tends
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to reduce the marginal topographic height, thereby in-

troducing an asymmetry between cyclones and anticy-

clones that favors the latter. It should be noted, however,

that this term becomes a significant fraction of the Cori-

olis term only for large values of Ro that imply marginal

topographic features of unrealistic sizes (see the exam-

ples below). At moderate Ro, the asymmetry could be

somewhat amplified by taking small Bu; then, however,

(13) may become a limitation. Therefore, to have realistic

topographic features and to satisfy both the conditions

required for stability, in the following we shall restrict to

flows with small Ro as well as Bu of order unity or larger

for which the asymmetry between cyclones and anticy-

clones is small.

Examples of stable vortices

Let us now consider specific examples. We start with

a Gaussian velocity profile: that is, V(r) } r 3 exp(2lr2),

with l a constant, which is often used in theoretical work

and is sometimes used to fit observations of oceanic

vortices (see, e.g., the meddy described by Paillet et al.

2002). The stability of these vortices over a flat bottom,

in the context of the SWE, has been studied numerically

by Stegner and Dritschel (2000; in fact, they examined

a wider class of vortices, with both steeper and broader

vorticity profiles). In the limit of large Burger number

(see Stegner and Dritschel 2000, their Fig. 3), Gaussian

vortices, both cyclonic and anticyclonic, were found to

be unstable, independently from the Rossby number

and consistently with the quasigeostrophic results of

Carton et al. (1989). Here, we show that these vortices

can be stabilized by topography.

For a Gaussian vortex,

y 5 x exp
1

2
(1� x2)

� �
, z 5 z

0
1� x2

2

� �
exp �1

2
x2

� �
,

(15)

where z0 [ z(0) 5 2
ffiffiffi
e
p

vm. Placing (15) in (14) and

evaluating the integrals, we find

~h
b

H
5�

v
m

f
2 1� x2

2

� �
1

R

L

� �2
" #

exp
1

2
(1� x2)

� �

� 1

2

v
m

f

� �2
R

L

� �2

exp(1� x2). (16)

The corresponding fluid depth is

~h

H
5 1 1

z
0

f
1� x2

2

� �
exp

1

2
(1� x2)

� �
. (17)

Figure 1 shows the ~h
b
/H profiles for two anticyclonic

vortices with Ro 5 20.1 and Bu 5 1 and 10. As ex-

pected, the marginal topography for the latter vortex

(lower solid curve) has a shape close to that of 2z/f

(dotted line), with a central normalized height close to

the dynamical Rossby number (about 0.33). In the case

with Burger number equal to unity (upper solid line),

the correction resulting from the Coriolis term becomes

relevant and increases the marginal topography. The

dashed lines in the same figure are modified topography

profiles, with g chosen as in (11) and � 5 20.05, that

correspond to solutions satisfying Ripa’s condition. It

may be noted that, because of the convex shape of the

velocity profile in the vortex interior, the topographic

features needed for stability are quite tall for Gaussian

vortices (for a vortex with Ro 5 20.3 and large Burger

number, ~h
b

is already comparable to H).

A simple extension of the Gaussian profile, whose

stability was examined by Stegner and Dritschel (2000),

is given by

y 5 x exp
1

a
(1� xa)

� �
, z 5 z

0
1� xa

2

� �
exp �1

a
xa

� �
,

(18)

with z0 5 2vme1/a. These profiles were introduced in

Carton et al. (1989) and have also been studied in the

context of two-layer SWE over a flat bottom, in a recent

work by Baey and Carton (2002), focusing on the for-

mation of long-lived tripolar structures. For a . 2, (18)

yields vorticity profiles steeper than that of the Gaussian

vortex (a 5 2). However, the expression of z0 shows that

the dynamical Rossby number decreases with increasing

FIG. 1. The solid lines are the marginal topography profiles (see

the text for definition) for two Gaussian vortices, with Rossby

number equal to 20.1 and Burger numbers of 1 (top line) and 10

(bottom line; the dotted line gives the 2z/f profile for both vorti-

ces). Also shown (dashed lines) are modified topography profiles

that yield stable solutions of the SWE.
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a (it tends toward a limiting value of 2vm/f ). Thus, for

given Rossby and Burger numbers, the size of the sta-

bilizing topography tends to be smaller at larger a.

Smaller topographic features are also obtained by

taking a linear velocity profile in the vortex core, consis-

tent with observations of mesoscale oceanic vortices (see

Paldor 1999). The problem with a linear profile is that it

must be matched with an external profile that allows for

the rapid decay usually observed beyond the radius of

maximum speed. This requires some care, because the

simplest solution (i.e., matching the linear profile at r 5 R

with an exponentially or power-law-like decaying exter-

nal one) leads to global profiles with a vorticity jump that

are prone to instability (Paldor 1999). To avoid these

discontinuities, we match the inner linear profile VI at

a radius r 5 a , R with an exterior profile VE, defined by

a cubic polynomial in r, with coefficients chosen so that

both V and dV/dr are continuous at r 5 a and vanish at

a radius r 5 b . R. If v is the rotation frequency in the

vortex core, the external profile is given by

V
E

(x) 5
vR

(b� a)3
�

3

i50
c

i
xi, (19)

with a [ a/R, b [ b/R, and

c
0

5�2b2a2, c
1

5 b(b2 1 ab 1 4a2)

c
2

5�2(b2 1 ab 1 a2), c
3

5 b 1 a. (20)

Asking that VE(1) 5 Vm yields

v 5
V

m

R

(b� a)3

�
3

i50
c

i

, (21)

and consequently the normalized profile

y
I
5

(b� a)3

�
3

i50
c

i

x, y
E

5

�
3

i50
c

i
xi

�
3

i50
c

i

. (22)

Finally, the condition dyE/dx(1) 5 0 gives an algebraic

relation between a and b, which can be solved for a to find

a 5
1

8
[3� b 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3� b)(3 1 15b)

p
]. (23)

Once this expression is placed in (22), the velocity pro-

file is completely specified in terms of the only free pa-

rameter remaining, the vortex size b. It should be noted

that (23) implies b # 3: that is, the size of the vortex

cannot exceed 3 times the radius of maximum speed.

This result, not obvious a priori, is interesting, since

many oceanic vortices studied in the literature tend to be

of this size or smaller.

The normalized velocity profile (22) is shown in Fig. 2

for different vortex sizes (b 5 1.8, 2.4, and 3). The

bounding profile with b 5 3 has a 5 0 (i.e., it has no

linear region at all, although it is approximately linear at

small r) and takes the simple form y 5 x(3 2 x)2/4. The
~h

b
profiles for the case b 5 2.4 and the same parameters

of Fig. 1 are shown in Fig. 3 along with the corresponding

modified profiles (dashed lines), with � 5 20.05. As

expected, the sizes of the topographic features are sig-

nificantly smaller than for the Gaussian profiles and

would further approach 2vm/f for smaller size vortices

(not shown) with more ‘‘triangular’’ velocity profiles.

Trying to further reduce the topography size, we have

also considered some slightly concave velocity profiles in

the vortex interior. This allows smaller values of ~h
b
/H in

the core, but values slightly higher than 2vm/f are found

just to the left of the radius of maximum speed because

of the stronger velocity gradient in that region (with

respect to the linear case). We have not been able to

obtain marginal topographic features of size smaller

than 2vm/f.

3. 2D SW vortices

We now briefly consider the extension of the previous

approach to the case in which both the vortex and the

topography are fully two dimensional. The 2D SW equi-

librium system reads

(z 1 f )k 3 v 5�$ gh 1 gh
b

1
1

2
y2

� �
[�$B and

(24)

FIG. 2. The linear-cubic velocity profile of Eq. (22) for three different

vortex sizes [b 5 1.8 (dotted), 2.4 (dashed), and 3 (solid)].
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$ � (hv) 5 0, (25)

where B is the Bernoulli function. The continuity Eq.

(25) can be satisfied by introducing a transport stream-

function c such that hv 5 k 3 $c. Then, it follows from

(24) that B is a function of c and that q 5 q(c) 5 dB/dc.

Consequently, the equilibrium problem reduces to two

coupled equations for c and h,

$ � 1

h
$c

� �
5�f 1 hq(c) and (26)

1

2
vj j2 1 gh 1 gh

b
5 B(c), (27)

which must be solved for a q(c) of interest. The func-

tional relation between q and c has direct bearing on

stability, since for 2D flows Ripa’s condition becomes

dq

dc
. 0, vj j2 , gh (28)

everywhere.

Now consider a vortex with constant PV, q 5 ~q, and

consequently linear Bernoulli function, B 5 B
0

1 ~qc,

with B0 as a constant. Differently from the axisymmetric

case, we cannot arbitrarily choose the velocity field for

this vortex; using (3) to express h in terms of z and ~q and

placing the result in (25) gives a complicated relation

that v has to satisfy. Instead, we may choose the form of

c, solve (26) for h, compute the velocity field, and place

the results in (27), which becomes a definition of the

marginal topography. Eliminating h in favor of z gives

h
b

5�1

~q
z � vj j2

2g
1

~q

g
c (29)

(here, we have let c go to zero for r / ‘ and taken

B
0

5 fg/~q so that hb also vanishes in the same limit).

Let us assume we have carried out this procedure, and

let ~c, ~h, ~hb be the fields that characterize the constant-

PV vortex. Then, just as in the axisymmetric case, we can

consider a new vortex with the same velocity field and

the same free surface [which is still solution of (24)] but

with topography and fluid depth modified as in (9) and

with g being a two-dimensional function of position.

From (25), we find the constraint

v � $ g

~h

� �
5 0, (30)

which is satisfied by taking

g 5 ~hF(~c), (31)

with F as an arbitrary function of ~c. The PV of the

modified vortex is

q 5 q(~c) 5 ~q
1

1� F(~c)
, (32)

and its streamfunction c is given by

dc

d~c
5

1

1� F(~c)
. (33)

Consequently,

dq

dc
5 q

dF

d~c
, (34)

which shows that, to satisfy Ripa’s condition, it is suffi-

cient to choose a monotonically increasing F(~c) (note

that, since ~h is generally not a function of ~c, the resulting

g will not be a function of ~c; i.e., the topographic con-

tours of the stable vortex and of the constant-PV vortex

will have different shapes).

The previous considerations indicate that 2D SW

vortices over topography satisfying Ripa’s condition

may be constructed following a procedure similar to the

one adopted in the axisymmetric case. Further work is

needed, however, to address the difficulties related to

the choice of the starting streamfunction and to the

numerical solution of the partial differential Eq. (26).

4. Conclusions

The main result of the present work is the analytic

construction of isolated, axisymmetric SW vortices over

topography that satisfy Ripa’s (1987) stability criterion.

FIG. 3. As in Fig. 1, but the velocity profiles are of the form (22),

with b 5 2.4.
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To our knowledge, this is the first exact stability result

concerning SW vortices with realistic velocity profiles;

previous analytic studies were restricted to quite special

equilibrium flows, such as the constant-PV vortex with

a discontinuity at its boundary analyzed by Ford (1994)

or the rotating elliptic vortex (Rodons) introduced by

Cushman-Roisin et al. (1985), whose stability was

studied in Ripa (1987), which has been the starting point

of our investigation.

We have examined velocity profiles representative of

those observed in mesoscale oceanic vortices, showing

that, at large Burger numbers (i.e., for small-size vorti-

ces), these profiles can be stabilized by topographic

features with radial sizes comparable with that of the

vortex (about twice the radius of maximum speed) and

maximum vertical size (normalized to the unperturbed

fluid depth) from 2 to 3.3 times the Rossby number vm/f

(the upper limit holding for Gaussian profiles). Al-

though results of single-layer theory should be used with

caution when discussing geophysical vortices, we believe

that examples of this stabilization mechanism are likely

to be found in real oceanic contexts.

Our construction of stable, axisymmetric SW equi-

libria relies on first computing the topography that

makes the velocity profile in consideration a constant-

PV solution of the SWE and then modifying this to-

pography (and the corresponding fluid depth profile) so

as to have new steady solutions with monotonic PV that

satisfy Ripa’s stability condition. We have argued that

a similar approach, albeit more involved and partly nu-

merical, could be used to construct stable 2D SW vor-

tices over 2D topography. Such a construction is left for

future work.

The SW stability results are not in contradiction with

those of NL04, since we also find stable anticyclones

(cyclones) over elevations (depressions). This is because

the topography that yields constant-PV (the ‘‘marginal

topography’’) is hill-like (valley-like) for anticyclones

(cyclones) and because the alterations of this topogra-

phy needed to satisfy Ripa’s condition cannot change its

global shape (i.e., cannot transform hills in valleys or

vice versa). It should be kept in mind, however, that

Ripa’s criterion is only a sufficient condition for stability

and that its violation does not imply instability. As

a consequence, we cannot exclude the existence of sta-

ble equilibria with nonmonotonic PV or with a PV

gradient of opposite sign. The latter would correspond

to negative dq/dc and could be obtained with topo-

graphic corrections of opposite sign than those consid-

ered in section 2. Such corrections could change the

global shape of the topography.

In fact, since in the absence of topography both

cyclones and anticyclones have negative dq/dc in the

region of maximum speed and in many cases over most

of the vortex, SW steady states with uniformly negative

dq/dc would require the presence of modest topo-

graphic features. On the other hand, anticyclones (cy-

clones) over depressions (elevations) of the sizes we

have previously considered would tend to have strongly

negative dq/dc. Existence of stable solutions of this kind

would definitely yield a more complex and intriguing

stability picture.

The idea of a second stability region, for SW flows

with strongly negative dq/dc, analogous to that existing

for Euler flows (Arnold 1966), is not new. Support for

this idea comes, for example, from the numerical in-

vestigation of the stability of Jupiter’s zonal winds per-

formed by Dowling (1993). To date, however, a SW

analog of Arnold’s second stability theorem is still lack-

ing, and the existence of such equilibria in our context

could only be explored numerically.

A final word of caution should concern the small-

amplitude nature of Ripa’s criterion. Although formally

similar to Arnold’s first stability theorem for Euler

flows, Ripa’s condition does not hold in the fully non-

linear case; the structure of the SWE seems to prevent its

extension to finite-amplitude perturbations. In absence

of analytic progress on the matter, this is another point

that should be tested numerically to verify whether the

stabilization by topography we have explored also works

in the nonlinear regime.
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