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Defining and quantifying complexity is one of the major challenges of modern science and contemporary societies. 'is task is
particularly critical for model selection, which is aimed at properly identifying the most adequate equations to interpret the
available data. 'e traditional solution of equating the complexity of the models to the number of their parameters is clearly
unsatisfactory. 'ree alternative approaches are proposed in this work. 'e first one estimates the flexibility of the proposed
models to quantify their potential to overfit. 'e second interprets complexity as lack of stability and is implemented by
computing the variations in the predictions due to uncertainties in their parameters. 'e third alternative is focused on assessing
the consistency of extrapolation of the candidate models. All the upgrades are easy to implement and typically outperform the
traditional versions of model selection criteria and constitute a good set of alternatives to be deployed, depending on the priorities
of the investigators and the characteristics of the application.

1. The Evaluation of Complexity for the
Purpose of Data Analysis

'e science of complexity continues to make significant
progress in clarifying many phenomena in science and
engineering [1]. As a field of study, complexity theory is
aimed at understanding the behaviour of systems difficult to
analyse and predict. 'e body of knowledge produced is
impressive and general interpretative paradigms exist, such
as the heuristic that complexity is a middle ground between
randomness and rigid order [2]. On the other hand, detailed
analysis of individual systems and phenomena typically
requires specific tools and techniques. 'e objective of
developing reliable models for these systems is therefore
particularly important.

Given the nature of complex systems, very often multiple
models are good candidates for the interpretation of the
phenomena under study and it is not necessarily simple to
discriminate between them and identify the most appro-
priate. In this context, Model Selection Criteria (MSC)

would be expected to play an important role and be sys-
tematically used [3]. 'ey consist of a series of indicators
aimed at determining to what extent a mathematical model
is supported by the available data. Unfortunately, even the
more advanced model selection criteria are difficult to de-
ploy in practice, because typically several of their underlying
assumptions are violated.

Among the weaknesses of the traditional formulation of
MSC, the quantification of complexity is certainly a major
issue. Sound mathematical theories for estimating the
complexity of mathematical functions do exist. Among the
most developed are certainly the Vapnik-Chervonenkis [4]
and the Rademacher [5] criteria. On the other hand, these
quantifiers are very difficult to calculate for the vast majority
of mathematical equations encountered in practice. 'ey are
also based on an interpretation of complexity, which is not
necessarily the most useful in the context of model selection
(see the next section).

'e typical solution of assuming that the complexity of
an equation is determined by the number of its parameters is
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well known to be unsatisfactory. Particularly when it comes
to overfitting, as will be shown in the next sections, models
with the same number of parameters can have a completely
different behaviour. Moreover, the definition of complexity
itself is not unique in this context. Depending on the ap-
plication, different types of model, clearly of different level of
complexity, can prove to be more or less adequate. 'ere-
fore, in this work, three different quantifiers of model
complexity are proposed.'e first one is explicitly conceived
to penalise the candidate models for their potential to overfit.
'e second favours equations, which are less sensitive to
uncertainties in their parameters. 'e third is more devoted
to guaranteeing a smooth extrapolation of the models out of
sample.

With regard to the structure of the paper, the next
section is an overview of the way traditional MSC deal with
the issue of quantifying model complexity. Section 3 in-
troduces the main rationale behind the proposed alternative
views of complexity and how they can be inserted in the
MSC criteria, with the help of some didactic examples. 'e
list of function families and noise statistics investigated is
provided in Section 4. 'e results of systematically applying
the new versions of the MSC to these functions are also
covered in Section 4. 'e conclusions are drawn in the last
section of the paper, with a discussion about possible further
developments.

2. How Information Theoretic and Bayesian
Model Selection Criteria Handle Complexity

In the science of complex systems, measurements are the
basic inputs required to provide quantitative knowledge
about systems. However, all the measurements provide
limited information about the phenomena to be investi-
gated, since they are affected by uncertainties. Such un-
certainties, also referred to as measurement errors, present
quite a challenge for model selection. Indeed, the main aim
of identifying equations to describe phenomena resides in
the possibility to use them to predict situations not already
encountered in experiments. One qualifying aspect of
mathematical models is therefore their generalisation ca-
pability. Errors in the data are a problem in this perspective
because models reproducing too well the available data can
be too influenced by the noise and therefore can generalise
poorly. In the literature, this issue is typically indicated with
the term “overfitting.”

Information theoretic and Bayesian model selection
criteria address this aspect by penalising the complexity of
the models. 'e main argument behind this approach is that
more complex mathematical models typically are more
flexible and therefore are inherently more prone to over-
fitting the input examples. 'is conceptual framework is
problematic because it is not obvious why simpler equations
should be more adequate to model the behaviour of complex
systems. More importantly, the implementation of this
approach is flawed in practice, as will be discussed in detail
later in this section.

'e most widely used MSC belong to the family of
information theoretic criteria and Bayesian information

criteria. 'e main representative of the first family is the
Akaike Information Criterion (AIC), which is meant to
minimise the extrapolation errors [6]. 'e Bayesian Infor-
mation Criterion (BIC) exemplifies the second class and is
conceived to select the most likely model given the data [7].
'eir derivations and properties are described in detail in
[3].

Under the traditional assumption that the data are
identically distributed and independently sampled from a
normal distribution, it can be demonstrated that the AIC can
be written (up to an additive constant, which depends only
on the number of entries in the database and not on the
model) as

AIC � n · ln(MSE) + 2k, (1)

where MSE is the mean-squared error of the residuals, n is
the number of entries in the database, and k is the number of
parameters in the model. Similar assumptions allow
expressing the BIC criterion as

BIC � n · ln σ2(ε)􏼐 􏼑 + k · ln(n), (2)

where σ2(ε) is the variance of the residuals and again n is the
number of entries in the database and k is the number of
parameters in the model.

Both criteria are cost functions to be minimised, in the
sense that the better the model the lower their value.'is can
be intuitively understood simply by inspection of their
structure. 'e first term favours models that are closer to the
data. 'e second addend is the penalty term for complexity.
On the other hand, assuming that more complex functions
have a higher number of parameters is a very poor ap-
proximation. Two classical examples, showing the limita-
tions of this approach, are discussed in the following. Let us
suppose that the model generating the data is a 5th-degree
polynomial depending on 7 parameters:

y � 1 + 2x + 0.01x
2

+ 3e
−5

x
5
. (3)

A sinusoidal function at high frequency, a function
depending on only three parameters (amplitude, frequency,
and phase) can fit the data equally well (see Figure 1).
Moreover, in case of added noise, the frequency of the si-
nusoidal function can be increased to the point that it can fit
the data even better than the original function.'erefore, the
traditional versions of the AIC and BIC would select the
sinusoid as the best model, since both terms in equations (1)
and (2) would be smaller than for the actual model gen-
erating the data.

Another case, emphasising the difficulty of quantifying
the complexity of a mathematical function, is the compar-
ison of an exponential and a polynomial function. In
principle, when comparing the complexity of two classes of
mathematical functions, one should use the same repre-
sentation of the functions. In this example, the exponential
would have infinite complexity, once expressed as a series.
On the other hand, it is much less prone to overfitting than a
high-order polynomial, even if formally depending on a
much higher number of parameters. 'ese intuitive
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considerations have been confirmed with a series of nu-
merical tests.

3. Alternative Definitions of Complexity

'e examples, presented in the last section, show clearly that
quantifying the complexity of a function with the number of
parameters is clearly not adequate for model selection. An
appropriate indicator for this application would have to
satisfy various requirements. It should be easy to compute, if
possible, independently from the number of database en-
tries. It should also properly quantify the tendency of the
models to overfit the data. A goodMSC should also be robust
against small errors in the determination of the parameters
and should also generalise and extrapolate well. Of course, it
is probably impossible to devise a single indicator capable of
fulfilling all these desiderata. 'ree possible alternatives are
introduced in the next two subsections. 'e first one in-
terprets complexity as flexibility of the equations, resulting
in the potential to overfit the data. 'e second one is more
orientated toward assessing stability, the capability of the
models to provide consistent predictions in the presence of
unavoidable uncertainties in the parameters. 'e third is
more orientated toward guaranteeing a smooth extrapola-
tion out of sample. To illustrate in a simple way the main
rationale behind the proposed new versions of the criteria,
functions of only one independent variable are discussed in
this section. It should be noted however that, as shown in
Section 5, they can be naturally extended to higher numbers
of regressors.

3.1. Quantification of Model Flexibility. A possible practical
approach to address the potential of a model to overfit is to
quantify its flexibility, in the region covered by the database.
In this respect, a good indicator is the moving average
standard deviation of the model. Such an indicator, called
Model Flexibility (MF) in the following, can be easily cal-
culated by computing the moving average of y� f (x) over a
reasonable interval and then summing the squares as

MovSTDy,x xi( 􏼁 �

���������������������

􏽐
i+Δ
j�i−Δ (df/dx − df/dx)

2

2Δ

􏽳

, (4)

MF �
􏽐

N
i�1 MovSTD2

y,x xi( 􏼁

N
. (5)

According to the line of thought, quantified by equations
(4) and (5), model A is more complex than model B if its
derivative varies more in the considered interval of the
independent variable x. A very effective version of the AIC
and BIC, to implement this approach, is

AICMF � N ln(MSE) + 2k +
��
N

√
ln(1 + MF),

BICMF � N ln σ2(ε)􏼐 􏼑 + k ln(N) +
��
N

√
ln(1 + MF).

(6)

To interpret these equations, they can be profitably re-
written as

AICMF � N ln(MSE) + 2kl +
��
N

√
ln(1 + MF) � N ln MSE(1 + MF)

1/
��
N

√

􏼒 􏼓 + 2k

BICMF � N ln σ2(ε)􏼐 􏼑 + k ln(N) +
��
N

√
ln(1 + MF) � N ln σ2(ε)(1 + MF)

1/
��
N

√

􏼒 􏼓 + k ln(N).

(7)

Consequently, the higher the MF factor, and therefore
the more flexible the model, the more penalising are con-
sidered the prediction errors.

Of course, the indicator MF, in order to have a real
impact, cannot be calculated only for the entries of the
database; otherwise, it would tend to reproduce the
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Figure 1: (a) Data generated by a fifth-order polynomial. (b) Fit with a high frequency sinusoidal function. (c) Zoom of the plot in the centre
to show the quality of the fit of the sinusoid.
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classification of the first term in the previous equations. 'is
is not a problem since the MF indicator is meant to quantify
the complexity of the model. Consequently, it can be
computed using much more synthetic points, albeit in the
interval of the independent variables quantified by the DB.
'e evaluation of the new version AICMF and BICMF of the
indicators can therefore be implemented with the following
procedure:

(i) Given the number of entries in the database, gen-
erate a suitable number Nmodel of independent
variable points in the domain xmin–xmax

(ii) Calculate the corresponding predictions of the
models

(iii) Compute the MF indicator to be inserted in AICMF
and BICMF

'e two main free parameters of the procedure are
Nmodel and ∆. 'e best way to choose Nmodel consists of
progressively increasing it until the values of the indicators
stabilise; convergence typically requires a multiple of the
entries in the database (between 3 and 10 but this problem is
problem-dependent). For ∆, a safe choice is Δ � f

��
N3

√

where f is equal to Nmodel/N.
For the problematic example of the sinusoid reported in

Section 2, the new proposed version of the indicators per-
forms significantly better as can be seen by inspection of
Table 1.

3.2. Quantification of Sensitivity to Parameter Errors: Pa-
rameters Stability. 'e second alternative definition of
complexity, for the purpose of model selection, is more
focused on stability. 'e main rationale behind this ap-
proach is that the estimation of the parameters in the model
is always affected by some uncertainties. Other things being
equal, it is assumed that a model is to be preferred if its
predictions are less sensitive to modifications of its pa-
rameters. In this perspective, models, providing more
consistent predictions when their parameters are varied
within their confidence intervals, are deemed more reliable
and therefore to be preferentially chosen.

'e implementation of the idea just described is based on
the knowledge (or educated guess) of the uncertainties in the
parameters of the candidate models. 'e procedure consists
of the following:

(i) Generating a large number of parameter combi-
nations, sampling the probability distribution
function of their uncertainties

(ii) Calculating the predictions of the models for these
combinations of parameters

(iii) Computing a suitable estimator of the range of
variability of the predictions with the variations of
the parameters

For the estimator of the stability, various alternatives are
viable: mean, standard deviation, max value, etc. 'e user
can choose themost suited to the application. For example, if

the worst-case scenario is particularly relevant, an appro-
priate choice could be the maximum variation in the pre-
dictions. With regard to the pdf of the parameter
uncertainties, the choice must of course be driven by the
knowledge of the application and the type of errors affecting
the model estimates. In the numerical cases presented in the
following, the indicator chosen is the MSE and Gaussian
noise is assumed to affect the parameters. In any case, in-
dicating with PS the estimator of stability, the proposed
version of the criteria reads

BICPS � N ln(MSE) + k ln(N) +
��
N

√
ln(PS),

AICPS � N ln(MSE) + 2k +
��
N

√
ln(PS).

(8)

For the problematic example of the sinusoid reported in
Section 2, again the upgraded version of the indicators
performs significantly better as can be seen by inspection of
Table 1.

3.3. Quantification of Extrapolation Behaviour: Boundary
Stability. In many applications, the extrapolation properties
of the models are of great importance. Some models can
behave very well in sample but vary wildly out of sample.
When designing new devices or experiments, this fact can
cause serious difficulties. To remedy or at least to alleviate
this problem, the criteria can be fine-tuned to reduce the
likelihood of selecting models with a wild behaviour out of
sample. A good alternative consists in fitting the data ex-
cluding the boundary of the database and then quantifying
how the models perform in this region. An effective pro-
cedure, to implement this approach, calculates a different
boundary stability (BS) coefficient for the upper and one for
the lower boundary. For the upper boundary, a suitable
window dx is chosen and the points in the interval between
xmax − dx and xmax are not considered:

(i) 'e model is fitted to the data in the reduced
domain

(ii) 'e points in the discarded interval are predicted
and a suitable indicator of the residuals is calculated
(the MSE in the following examples is called
MSEsup,red)

(iii) 'e model is fitted to the whole set of data and its
prediction in the reduced domain are used to cal-
culate again the indicator of their quality, MSEsup

'e stability parameter BSsup is calculated as follows:

BSsup � max
MSEsup,red

MSEsup
− 1, 0􏼠 􏼡. (9)

'e same algorithm is implemented also for the
boundary in the lowest part of the regressor BSinf. 'e total
boundary stability is then defined as follows:

BS � BSsup + BSinf . (10)

Inserting this indicator in the AIC and BIC criteria leads
to the following formulations:

4 Complexity



BICBS � N ln(MSE(1 + BS)) + k ln(N),

AICBS � N ln(MSE(1 + BS)) + 2k.
(11)

For the problematic example of the sinusoid reported in
Section 2, again the new proposed version of the indicators is
quite competitive with the traditional AIC and BIC, as can be
seen again by inspection of Table 1.

4. Systematic Tests with Synthetic Data

A series of systematic tests have been performed to inves-
tigate the properties of the developed upgrades of the cri-
teria. Since the objective is the qualification of additional
criteria for practical applications, the most commonly used
classes of functions have been considered: polynomial,
trigonometric, power laws, and exponential. 'e criteria can
be applied also to density estimation (i.e., to models aimed at
fitting probability distribution functions). Even for this type
of task, the most popular pdfs have been tested: Gaussian,
Poisson, and uniform.

In terms of results, typically the situation of Table 1
represents quite well the performance of the various criteria.
'e traditional versions are by far the weakest.'e proposed
upgrades practically never perform worse than the original
versions. When the AIC and BIC identify the right model,
they typically discriminate better and therefore are less
vulnerable to noise. In various cases, as the one shown in
Table 1, they can even converge on the right equating, when
the traditional forms of AIC and BIC fail to do so.

In general, the Model Flexibility and the Parameter
Stability criteria are the most coherent and reliable. 'e
boundary stability criterion comes into its own whenmodels
are particularly problematic out of sample but in many cases
does not outperform the traditional AIC and BIC.

'e previous results and considerations apply also for
the case of multiple regressors. An example, representative
of many tests performed, is the case of the data being
generated by the polynomial:

y � 1 + 2x
2
1 − 0.01y

3
2. (12)

'e candidate models tested are

ym,1 � a + b1x1 + c1x
2
1 + d1x

3
1 + b2x2 + c2x

2
2 + d2x

3
2, (13)

ym,2 � A1 sin b1x1 + c1( 􏼁 + A2 sin b2x2 + c2( 􏼁. (14)

'e candidate equations (13) and (14) are so close to the
original function generating the data that the traditional AIC
and BIC cannot identify the right model. On the other hand,

AICMF, BICMF, AICPS, and BICPS correctly converge on the
right solution. 'e boundary stability version of the criteria
is competitive with AIC and BIC but not enough to improve
the selection, as can be deduced from Table 2.

y � 3x
3.3

. (15)

'e candidate models are assumed to be

ym,1 � 􏽘
8

i�1
Ai sin bix + ci( 􏼁, (16)

ym,2 � axb
+ c. (17)

'e classical BIC and AIC have problems discriminating
the right model (17) from the competitive but wrong one
(16). Indeed, the average values of the two indicators are very
similar (Table 3) and therefore, in 25% of the cases, even the
small level (10%) of noise can mislead the indicators. Using
the new definitions, the difference between the two models is
increased, especially in the case of the BS method. In fact, as
shown in Figure 2, the sum of sines model (16) is very
unstable on the boundary region of the available data, and
the BS method is very sensitive to this aspect by design,
preferring the right model.

'e last example presented is a two-dimensional case,
where the data are generated from the equation

y � 1 + 2x
2
1 − 0.01y

3
2. (18)

And the candidate models are

ym,1 � a + b1x1 + c1x
2
1 + d1x

3
1 + b2x2 + c2x

2
2 + d2x

3
2, (19)

ym,2 � A1 sin b1x1 + c1( 􏼁 + A2 sin b2x2 + c2( 􏼁. (20)

Again, the sine functions tend to overfit the data par-
ticularly at high frequencies. In the new proposed versions of
the indicators, the sensitivity to parameter changes (detected
by PS) and the penalty for high model flexibility (imple-
mented by MF) ensures the correct detection of the right
model (increasing the average correct detection probability
from 50% to 100%).'e average results are shown in Table 4.

5. Discussion and Conclusions

Complexity is a property of systems, which is difficult to
define in absolute generality. To a certain extent, the details
vary with the application and the priorities of the observer.
Such a context dependence is particularly evident in the case
of model selection, because quantifying the complexity of
mathematical functions is a notoriously arduous task. 'e

Table 1: Estimates of the various versions of the indicator for the problematic examples of the comparison between a polynomial (model 1)
and a sinusoid (model 2) introduced in Section 2.

BIC AIC BICMF AICMF BICBS AICBS BICPS AICPS

Polynomial (correct) −1151 −1172 −1151 −1172 −1151 −1172 −1321 −1342
Sine (incorrect) −1167 −1178 −922 −933 −1167 −1178 −1150 −1161
Model selected 2 2 1 1 2 2 1 1
Result Wrong Wrong Correct Correct Wrong Wrong Correct Correct
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popular solution of equating the number of parameters of a
model to its complexity presents serious drawbacks. 'e
alternatives proposed in the present work are all quite easy to
implement in practice and they do not pose unrealistic
requirements in terms of data availability and computational
resources. 'ey are based on three different interpretations
of complexity in the context of model selection: flexibility,
robustness against parameter errors, and extrapolation
consistency. 'e first one indeed penalises flexibility as a
potential for overfitting. 'e second favours stable models,
whose predictions do not change much with small variations
in the parameters. 'e third privileges solutions, which
extrapolate smoothly out of sample.

Of course, also the criteria proposed in this paper are not
a panacea and cannot claim absolute generality. On the
contrary, as probably any other definition, they are better
suited for certain applications. On the other hand, the
systematic tests performed indicate that they have a great
potential to at least complement the indicators available.
'ey have proven to perform very well for a very large
number of classes of functions of practical interest. In most
cases, they show a significantly higher discriminatory power
and are less prone to be completely misleading than the
traditional AIC and BIC. 'e weakest of the upgrades
proposed is certainly the Boundary Stability version; on the
other hand, to test the behaviour of the models out of

Table 2: Estimates of the various versions of the indicators for the examples of equations (16)–(18).

BIC AIC BICK AICK BICBS AICBS BICPS AICPS

Model 1 −1692 −1710 −1692 −1710 −1692 −1710 −1940 −1982
Model 2 −1693 −1735 −1325 −1342 −1693 −1735 −1703 −1720
Model selected 2 2 1 1 2 2 1 1
Result Wrong Wrong Correct Correct Wrong Wrong Correct Correct
Relative difference −0.03% −1.46% 21.69% 21.50% −0.03% −1.46% 12.22% 13.25%
A representative example to show the potential of the BS method is reported in the following. 'e data have been generated with the equation

Table 3: Estimates of the various versions of the indicators for the regressor example of equations (15)–(17).

BIC AIC BICMF AICMF BICBS AICBS BICPS AICPS BICAll AICAll

Model 1 6409 6291 6539 6422 95968 95850 6372 6254 96062 95944
Model 2 6010 6000 6045 6035 6010 6000 5735 5725 5770 5760
Model selected 2 2 2 2 2 2 2 2 2 2
Correct model detection probability ∼75% ∼75% 100% 100% 100% 100% 100% 100% 100% 100%
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Figure 2: Generated data (from equation (15)) and fitted models (equations (16) and (17)). 'e sum of sines model clearly shows out-of-
sample instability.

Table 4: Estimates of the various versions of the indicators for the regressor example of equations (18)–(20).

BIC AIC BICMF AICMF BICBS AICBS BICPS AICPS BICAll AICAll

Model 1 −1692 −1710 −1692 −1710 −1692 −1710 −1940 −1982 −1939 −1982
Model 2 −1693 −1735 −1325 −1342 −1725 −1737 −1703 −1720 −1335 −1352
Model selected 2 2 1 1 2 2 1 1 1 1
Correct model detection probability ∼50% ∼50% 100% 100% ∼95% ∼95% 100% 100% 100% 100%
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sample, it can turn out to be very useful and can profitably be
used as a complement to the other indicators.

In terms of developments, a significant activity has al-
ready started to include these new versions of the criteria in
the genetic programmes for the automatic analysis of large
databases, implementing also more advanced metrics [8]
and better treatments of the error bars [9]. With regard to
future applications, high-temperature plasmas and envi-
ronmental sciences are obvious targets [10, 11]. In nuclear
fusion, some crucial quantities for the design of new ex-
periments, such as the energy confinement time or the
power threshold to access the H mode, are derived from
empirical databases; the new versions of the indicators could
lead to more robust empirical scaling laws [12, 13]. Other
relevant topics could be impurity studies [14] and the control
of the current profile [15], particularly in metallic devices
such as JETwith the ITER LikeWall [16]. With regard to the
Earth sciences, better model selection could help not only in
the investigation of complex interactions between atmo-
spheric phenomena [17], but also in optimising remote
sensing techniques [18].

'e physical problems just mentioned are natural fields
of application for the indicators developed in this work,
since they typically require modelling systems with a rela-
tively limited number of variables but with strong nonlinear
interactions. A different, extremely interesting, and chal-
lenging task would be deployment of the new complexity
definitions to phenomena that require many parameters to
be fitted. 'is is another frontier of complexity typical, for
example, of “sloppy models” in biochemical networks
[19, 20]. 'ese systems usually need a huge number of
parameters to describe the reaction kinetics, whose details
are not known and must be derived by experimental data.
Given the limited observability of the kinetics and the noisy
character of the measurements [21], the collected data
present large uncertainties, which render parameter esti-
mation quite problematic. Moreover, it is usually found that
this data can be described by completely different models but
with the same complexity and MSE. In this context, the new
definitions of complexity, introduced in this paper, could
provide some useful guidance about the most appropriate
models to select. Indeed, the MF complexity can help in
understanding the “internal stability” (avoiding solutions
like the sine overfitting shown in this paper); the PS com-
plexity would ensure the choice of more stable parameters,
while the BS could guarantee more stable extrapolation.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest
regarding the publication of this paper. 'e funders had no
role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript; and
in the decision to publish the results.

Authors’ Contributions

Andrea Murari and Riccardo Rossi have contributed equally
to the paper.

Acknowledgments

One of the authors (T.C.) acknowledges the financial sup-
port received from the contract 1EU- 4/2 funded by Ro-
manian Research and Innovation Ministry.

References

[1] S. C. Rohilla, Methods and Techniques of Complex Systems
Science: An Overview in Complex Systems Science in Bio-
medicine, Springer, Berlin, Germany, 2006.

[2] Y. Bar-Yam, General Features of Complex Systems, New
England Complex Systems Institute, Cambridge, MA, USA,
2002.

[3] K. P. Burnham and D. R. Anderson, Model Selection and
Multimodel Inference: A Practical Information-?eoretic
Approach, Springer-Verlag, Berlin, Germany, 2nd edition,
2002.

[4] V. N. Vapnik, ?e Nature of Statistical Learning ?eory. In-
formation Science and Statistics, Springer-Verlag, Berlin,
Germany, 2000.

[5] G. Giorgio and S. Marcello, “Approximation error bounds via
rademacher’s complexity,” Applied Mathematical Sciences,
vol. 2, no. 4, pp. 153–176, 2008.

[6] H. Akaike, “Information theory and an extension of the
maximum likelihood principle,” in Proceedings of the 2nd
International Symposium on Information ?eory, Tsahkadsor,
Armenia, September 1971.

[7] G. E. Schwarz, “Estimating the dimension of a model,” Annals
of Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[8] A. Murari, P. Boutot, J. Vega et al., “Clustering based on the
geodesic distance on Gaussian manifolds for the automatic
classification of disruptions” Nucl,” Fusion, vol. 53, p. 33006,
2013.

[9] A. Murari, E. Peluso, M. Gelfusa, M. Lungaroni, and
P. Gaudio, “How to handle error bars in symbolic regression
for data mining in scientific applications,” Statistical Learning
and Data Sciences, vol. 9047, pp. 347–355, 2015c.

[10] F. Romanelli and R. Kamendje, “Overview of JET results,”
Nuclear Fusion, vol. 49, no. 10, p. 104006, 2009.

[11] J. Ongena, “Towards the realization on JET of an integrated
H-mode scenario for ITER,” Nuclear Fusion, vol. 44, no. 1,
pp. 124–133, 2004.

[12] A. Murari, E. Peluso, M. Lungaroni, M. Gelfusa, and
P. Gaudio, “Application of symbolic regression to the deri-
vation of scaling laws for tokamak energy confinement time in
terms of dimensionless quantities,” Nuclear Fusion, vol. 56,
no. 2, p. 26005, 2015.

[13] A. Murari, E. Peluso, M. Gelfusa, I. Lupelli, and P. Gaudio, “A
new approach to the formulation and validation of scaling
expressions for plasma confinement in tokamaks,” Nuclear
Fusion, vol. 55, no. 7, p. 73009, 2015.

[14] M. E. Puiatti, M. Mattioli, G. Telesca et al., “Radiation pattern
and impurity transport in argon seeded ELMy H-mode
discharges in JET,” Plasma Physics and Controlled Fusion,
vol. 44, no. 9, pp. 1863–1878, 2002.

[15] D. Mazon, “Tokamak edge turbulence: background theory
and computation,” Plasma Physics and Controlled Fusion,
vol. 45, p. 7, 2003.

Complexity 7



[16] J. Pamela, “'e JET programme in support of ITER,” Fusion
Engineering and Design, vol. 82, no. 5–14, pp. 590–602, 2007.

[17] T. Craciunescu and A. Murari, “Geodesic distance on
Gaussian manifolds for the robust identification of chaotic
systems,” Nonlinear Dynamics, vol. 86, no. 1, pp. 677–693,
2016.

[18] A. F. Villaverde and A. Barreiro, “Identifiability of large
nonlinear biochemical networks,” Communications in
Mathematical and in Computer Chemistry, vol. 76, pp. 259–
269, 2016.

[19] P. Gaudio, P. Gaudio, M. Gelfusa et al., “In-cell measurements
of smoke backscattering coefficients using a CO2 laser system
for application to lidar-dial forest fire detection,” Optical
Engineering, vol. 49, no. 12, p. 124302, 2010.

[20] M. K. Transtrum, “Perspective: sloppiness and emergent
theories in physics, biology, and beyond,” ?e Journal of
Chemical Physics, vol. 143, no. 1, 2015.

[21] J. R. Banga and E. Balsa-Canto, “Parameter estimation and
optimal experimental design,” Essays in Biochemistry, vol. 45,
pp. 195–210, 2008.

8 Complexity


