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Parametric identification of bridges using instrumented vehicles can be challenging, mainly due to the reduced length of the time
series associated with the bridge span under test. This research discusses the practicability of a time-domain identification method
based on the use of an instrumented vehicle. The highest cross-correlation between the bridge response from an elementary
analytical model and the experimental one, acquired by a moving force-balance accelerometer, yields the unknown model
parameter. The effect of vehicle-bridge interaction is removed by proper filtering of the signals. Specifically, the authors estimate
the elastic moduli of seven prestressed concrete bridges and compare a subset of the results to the outcomes of static load tests
carried out on the same bridges. There is a good correlation between the elastic moduli from the instrumented vehicle and those
from static load tests: the method grasps the approximate value of the elastic modulus of concrete. Still, the data do not return an
excellent match due to the bias in the estimation of the deflection shape—the paper remarks on the issues faced during the

experimental tests and proposes possible enhancements of these procedures.

1. Introduction

Static load tests are the chief method to assess the bending
stiffness of bridges and monitor their integrity. Nevertheless,
static load tests, which are mandatory after construction,
may be expensive and time-consuming to track the ageing of
the infrastructures. The assessments from static load tests
possess a reduced level of uncertainty, and their value is
indispensable in critical situations.

However, the managing bodies may handle a vast
number of infrastructures, and they cannot carry out pe-
riodic static load tests on all of them. Therefore, the current
methods followed for prioritizing the interventions are
derived from routine visual inspections by expert bodies.
Despite the indispensability of human expertise, the status of
a bridge cannot always stem from visual investigations.
Objective, nondestructive tests with low time and money
expense should be companions of the current prioritization
methods based on visual inspections [1].

The primary outcomes of static load tests are moment-
deflection curves, which estimate the bending stiffness and,
consequently, the elastic modulus. Besides, in concrete
structures, the elastic modulus represents a synthetic pa-
rameter, revealing the state of concrete. Nonlinearities in the
moment-deflection curve manifest the occurrence of crack
openings, possibly due to prestress losses.

The prioritization criteria would benefit from low-cost
and rapid methods which can return the same results of
static load tests.

The use of a so-called instrumented vehicle would
represent a new frontier in the periodic monitoring of in-
frastructures [2-15]. There are three main approaches in the
field of drive-by inspections of bridges. (i) A straightforward
method originates from processing the data acquired by a
single passage of an instrumented vehicle. (ii) A second
method is based on processing multiple passages of an
instrumented vehicle on the same deck [16]. (iii) A hybrid
approach includes measuring a reference sensor fixed on the
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bridge deck synchronized with the moving one [17, 18]. Still,
most of the research directs at the first approach.

Several scholars identified the fundamental bridge fre-
quency following analytical, numerical, and experimental
investigations [19-24]. Yang et al. proved that it is also
possible to estimate the bridge frequency with low velocities
of the instrumented vehicle [19]. Additionally, fewer re-
searchers successfully extracted the bridge mode shapes
from a moving sensor by adopting various signal processing
techniques (e.g., short time-frequency domain decomposi-
tion or Hilbert transformation) [25-27]. Other researchers
have investigated the identification of damping using
moving vehicle responses [13, 28]. Next to the direct natural
frequency identification, it is also possible to estimate me-
chanical parameters of the bridge from drive-by inspections.
Explicitly, the single passage of a vehicle equipped with
particular sensors may be an indirect method to estimate the
bending stiffness, the midspan deflection, the elastic mod-
ulus, or any other valuable parameter for the structural safety
assessment (e.g., road irregularity [29]). Besides, the
adoption of vehicles with different weights and speeds may
return the response of the bridge to increasing values of the
excitation, as carried out in static load tests.

However, many practical and theoretical limits under-
mine the complete success of these methods [30].

The direct FFT of the acquired signals provides an es-
timate of the dominant spectral components. The first and
dominant harmonic, which generates the response of a
simply supported girder to a moving load, is a low-frequency
half-sine. Nevertheless, the frequency of the half-sine, which
is, theoretically, the most significant contribution in the
signal acquired by the moving sensor, cannot be estimated
from peak-peaking. Fourier transform is derived from the
orthogonality between harmonic functions. However, or-
thogonality holds from the integration on the entire period
of the harmonic (-7, +7). Accordingly, FFT cannot return a
reliable estimate of a half-sine natural frequency. Therefore,
the direct FFT of the signal acquired by the moving sensor
does not provide reliable information about the dominant
harmonic of the bridge response (see equation (3)).
Therefore, the analyst must devise specific procedures to
preprocess the signal, by signal duplication, bank filters, and
zero paddings, e.g., in order to manifest the contribution of
the excitation frequency [31]. Besides, vehicle-bridge in-
teraction phenomena may be beneficial in magnifying the
peak associated with the natural frequency of the bridge [32].

In this field, Aloisio et al. [33] developed a parametric
identification procedure based on a drive-by inspection with
laser sensors. They estimated the bending stiffness of simply
supported girders using correlation functions between the
recorded time series. The importance of parametric iden-
tification lies in the possibility of providing the unknown
structural parameters directly, without the need for model
updating using the experimental modal parameters.

This paper extends the procedure proposed by Aloisio
et al. [33] to drive-by inspections with force-balance ac-
celerometers (FBAs). The originality of this research lies in
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the elastic modulus identification based on the correlation
between the experimental displacement response, obtained
by integrating the signal acquired by FBAs, and the simu-
lated one, derived from an elementary analytical model. The
authors chose force-balance sensors because they have a low
noise level and very high dynamics, and they can measure
very low-frequency signals up to the DC component. To the
authors’ knowledge, most of the scholars used laser sensors
[34, 35] or piezoelectric accelerometers [36]. Laser sensors
do provide the displacement response directly, but the
roughness of the road may compromise the quality of the
results. Laser measurements require a uniform surface with
the same reflectivity properties. Piezoelectric accelerometers
are the most used and versatile transducers in the field of
structural dynamics, but their bandwidth does not attain the
DC component, as in the force-balance accelerometers.
The authors provided a full validation by comparing a
subset of the estimated parameters to those obtained from
static load tests. The validation of the method fed a dis-
cussion about the future perspective of these techniques.
The paper has the following structure: the first section
discusses an elementary analytical model used to predict the
single-span response; the third section focuses on presenting
the case study and the results; the last sections offer a discussion
and a few concluding remarks about this research experience.

2. Methods

The analytical solution of the equation representative of the
dynamic response of a single-span simply supported beam to
a concentrated load moving with constant velocity could not
be straightforward [37]. However, if the dynamic equation
describes the beam response from a reference frame moving
with the same velocity of the load, the analytical solution is
almost trivial. In this section, the general theory of moving
loads introduces the theoretical basis of the procedure as well
as the identification method.

2.1. Background. The equation representative of a bridge
deck of length L, modelled as a single-span Euler-Bernoulli
beam subjected to an external force P(t) travelling with
constant velocity ¢, can be written as

PAazy(x, t) N 0y (x,t) . E184y(x, t)
2

d
ot ot ox*

=P(t)6(x —ct),
(1)

where p is the mass density, A is the cross-sectional area, d is
the damping of the beam, E is Young’s modulus, I is the
moment of inertia of the beam cross section, y (x,t) is the
transverse displacement function of the beam, and § (-) is the
Dirac delta function.

Young’s modulus E is assumed to be constant along the
whole beam.

By imposing the following relation between the de-
scribing variables x (t) = ¢t and setting d = 0, equation (1)
turns into
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=P. (2)

EI d*y(x,t) N Adzy(x,t)

& At P
The assumptions in equation (2) restrict the application
to instrumented vehicles moving with a constant velocity
(x(t) = ct), without the effect of road roughness and VBI
phenomena. Aloisio et al. [33] discussed the limits of these

assumptions in the considered case study. The solution of
equation (2) can be written as

P
y(t) = ¢, + ¢yt + ¢c5 sin(At) + ¢4 cos (At) + — %

it O

where ¢, — ¢, are integration constants and A* = pAc*/EL
Partial differential equation (1) turns into an elementary
ordinary differential equation. By imposing the boundary
conditions of a simply supported beam in equation (4)
expressed in terms of the new independent variable, the
integration constants are
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Equation (2) does not simulate VBI phenomena, but Tyl - Iyl (10)

proper preprocessing of the acquired signal can reduce these
effects and ease the identification problem. The next section
presents a preliminary discussion about the above solution
on the considered case study, by isolating the contribution of
each of the four terms to the structural response.

2.2. Identification Method. The identification of the un-
known modelling parameters is obtained from the corre-
lation between the simulated displacement response and the
experimental one obtained from the double integration of
the acceleration time-history. The rank correlation [38]
between the solution of equation (2) and the experimental
measurements can be expressed as
C(X) = corr (v, ¥e)s (9)
where X collects the optimization variables, while y, and y,
are the discretized displacement responses of the simulated
and experimental deflection, respectively. The rank corre-
lation coefficient measures the degree of similarity between
Y, and y,, and it is used to assess the significance of the
relation between them. The correlation is defined as

where (-) is the inner product and is the norm operator. The
parameters which yield the maximum correlation in
equation (9) are chosen as optimum parameters:

X = arg min corr (Yp YE)’
X

(11)

where X collects the unknown parameters. In this paper, the
authors chose the elastic modulus (E) as the unknown
parameter.

3. Introduction to the Case Study

The paper deals with the dynamic response of simply
supported girders of an Italian motorway, the A24, which
connects Rome to Teramo. The motorway, also known as
Park Motorway, crosses the Apennine range and has several
viaducts. After the Gran Sasso tunnel, the highway is almost
a sequence of viaducts made of simply supported prestressed
concrete (PSC) girders. The girders, built between the 80s
and the 90s, have a trapezoidal-like hollow cross section, as
depicted in Figure 1(a). The cross section, almost 2 m high, is
11.8m wide with two large cantilevered wings. The total
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FIGURE 1: (a) Cross section of the bridge. (b) View of the Cretara viaduct of the A24 motorway. (c) View of the rack and roller bearing.

length of the beams is 40 m, and they are supported by rack
and roller bearings (Figures 1(b) and 1(c)).

The girders were post-tensioned by internal tendons.
The designer adopted a limited prestressing condition, i.e.,
tensile stress under service loads is accepted below the
concrete tensile resistance. An approximately constant
prestressing force was achieved by symmetrically arranging
the tendons to avoid the variation of prestressing due to
friction [39]. The prestressing force Td expected at service
after the short and long-term losses is about 29000 kN. The
design modulus of elasticity Ed is 35000 MPa, while the
inertia is approximately 4.338 m*. The prestressing force
was not modelled in the analysis, since internal prestressing
due to internal bonded tendons has no measurable effects
upon the beam dynamics [40, 41]. The authors focused on
the investigation of seven viaducts, also experimented via
static load tests.

3.1. Remarks on the Experimental Dynamic Response of the
Tested Girders Using Fixed Sensors. The method delivered by
this paper is validated using the outcomes of static load tests
carried out on seven PSC girders. Additionally, the authors
did carry out dynamic measurements of the same seven
girders under operational conditions. These paragraphs
remark on the most significant outcomes of dynamic
identification by discussing the role of bending stiffness in
the beams’ dynamics. Aloisio et al. [1, 42, 43] focused on the
dynamic identification of a set of seven PSC girders of the
A24 motorway. The dynamic identification using two arrays
of five accelerometers led to the identification of three stable
modes. The first mode resembles the first of a simply sup-
ported beam. The second and the third engage the torsional
response, as discussed in [42]. Table 1 lists the experimental

natural frequencies of the seven spans next to the values of
the elastic moduli. Further details about the experimental
setup, the identification algorithm, and the modal param-
eters can be found in [1, 42, 43].

Hereafter follows a few details extracted from the
aforementioned research studies, which may support the
reader through the paper.

The first mode shape bestows the prominent contribu-
tion to the beam response to a moving load, as can be noted
from the spectral analysis of the acquired signal in Figure 2.

Therefore, the estimation of the first mode would guarantee
a reliable prediction of the structural response. The tested
beams were nominally identical, but their first natural fre-
quencies were very scattered. Conversely, the first mode shapes
were very alike, yielding a cross MAC (Modal Assurance
Criterion) higher than 0.99. The authors concluded that the
first mode shapes almost correspond to those of a simply
supported beam, while the possibly diverse boundary condi-
tions, due to the different height of the piles or various sup-
porting devices, did not cause measurable effects on the first
modes. Interestingly, the differences in the natural frequencies
originate from a significant scatter in the elastic moduli. The
discrepancy of the EM may originate from the construction
time, when different curing and environmental conditions
affected the concrete hardening. The ageing of concrete was not
uniform, thus compelling the monitoring of the structural
response and, specifically, of the elastic modulus.

3.2. Experimental Equipment. The experimental apparatus
consists of a vehicle (Jeep Renegade 4x) equipped with four
force-balance accelerometers, as shown in Figure 3. There
are multiple accelerometers for comparison purposes,
supported by three-point adjustable bases. The sampling rate
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TaBLE 1: Comparison between the elastic moduli obtained from the instrumented vehicle and the static load tests (the table reports details
about the experimental natural frequencies of the first three identified modes).

Elastic modulus (MPa)

Natural frequencies (Hz)

Viaduct Span
P Moving sensor Static tests Error (%) 1st mode 2nd mode 3rd mode
Biselli 12 28000 24900 11.07 2.66 6.08 8.61
Cerchiara 4 26000 15000 42.31 2.97 5.67 8.15
Cerchiara 7 25000 23700 5.20 2.68 6.30 8.36
Cretara 9 43000 26000 39.53 3.56 6.73 8.63
Le Grotte 5 35000 36000 -2.86 2.66 6.29 8.31
San Nicola 10 38000 26700 29.74 2.68 6.89 8.84
Temperino 6 36000 35900 0.28 2.52 5.41 7.92
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FIGURE 2: (a) Acceleration time series acquired by a fixed sensor by the midspan of the Le Grotte viaduct: the peaks correspond to the passage

of the vehicle. (b) Fast Fourier transform of the signal in (a).

FIGURE 3: Arrangement of the four force-balance accelerometers used in the experimental tests.

is 200Hz. A lead-acid battery provides power to the ac-
celerometers and the personal computer used for the ac-
quisition. The vehicle’s velocity is set constant to 140 km/h,
and it is controlled automatically by embedded cruise
control. The signals acquired by the four accelerometers are
almost indistinguishable and do not return different out-
comes from the identification. Therefore, the results dis-
cussed in the last sections descend from a single
accelerometer measurement.

Table 2 lists the parameters describing the dynamics of
the vehicle and the details of the tested girders needed to
simulate the structural response and the preliminary cal-
culations exposed in the following paragraphs.

3.3. Preliminary Calculations. The preceding section pre-
sented the exact solution of equation (2) in the case of a
simply supported beam. Several scholars faced the moving
load equations using the harmonic series. Nevertheless, the
projection of the governing equation in the direction x = ct
determines the loss of the spatial dimension but returns an
elementary ordinary differential equation, which does not
require series expansion for the solution estimation. Pre-
cisely, the solution of the boundary value problem in the case
of a simply supported beam yields the summation of five
terms (equation (3)). Four terms are derived from the so-
lution of the homogeneous problem. The fifth is the par-
ticular one and originates from the forcing term. The



TABLE 2: Parameters of the instrumented vehicle and the con-
sidered bridge stock.

Parameters

Mass of the vehicle 1750 tn
Ist natural frequency of the vehicle 2Hz
Modal damping of the vehicle 15%
Velocity of the vehicle 140 km/h
Cross section area 6.6m?
Bending inertia 44m*
Length span 40m
Mass density 2500 kg/m?

manipulation of the analytical expressions in equations
(5)-(8) does not deliver straightforward adimensional ex-
pressions for a general discussion. Accordingly, the authors
present some preliminary calculations, which reveal the
contribution of each term in the specific case study using the
parameters in Table 2.

Figure 4(a) shows the plot of the girder deflection ob-
tained from the parameters in Table 2. The midspan span
deflection is approximately 6 mm if the elastic modulus is
22000 MPa, and the velocity of the vehicle is 140 km/h. The
solution is not a pure half-sine but originates from the
summation of five terms. Figure 5 depicts the values of each
addend in equation (3), evaluated by the midspan of the
girder, whose summation yields the function plotted in
Figure 4(a).

Additionally, Figure 5 plots each of the five terms in the
entire domain. Variations of the elastic modulus determine
notable effects on the midspan deflection, as illustrated in
Figure 6. Accordingly, the proposed technique may have
adequate premises for a possibly successful estimation.

4. Results

The moving accelerometers measured the structural re-
sponse of 12 viaducts, labelled and itemized in Table 3. Still,
the investigation focuses on the analysis of seven viaducts:
San Nicola, Le Grotte, Biselli, Cerchiara, Temperino, and
Cretara. The seven viaducts are marked in bold in Table 3.
The additional bold phrases, which describe the bridge ty-
pology, indicate the specific direction associated with the
experimented simply supported girders, namely, L’Aquila-
Teramo or Teramo-L’Aquila.

The selection of the recordings associated with each
viaduct descends from a rough but effective procedure. The
experimenter gently hits an accelerometer before and after
the passage over the viaduct. The associated spikes allowed
the direct and manageable identification of the signals
corresponding to each sequence of girders.

Within the selected signal, the identification of the re-
sponse of each girder is also straightforward. Thermal ex-
pansion joints stand between adjacent girders. The joints
present a small hump, which causes isolated peaks in the
measured response when the wheels cross them.

Figure 7 shows the acceleration signal acquired from the
moving sensor in the Le Grotte viaduct. The vertical lines
identify the time instants corresponding to the crossing of
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the thermal joints—the red signal descends from low-pass
filtering with a cutoff frequency equal to 0.5 Hz. The effects
of the vehicle dynamics manifest at higher frequencies: the
first natural frequency of the vehicle is 2 Hz (see Table 2). The
VBI phenomena can be considered negligible, as proved in
[33]. Therefore, proper filtering could adequately isolate the
bridge response from the vehicle dynamics and other ex-
citation sources (the asphalt roughness), contaminating the
dynamics of the girders.

Figure 8 depicts the response of each span of the time
series in Figure 7 corresponding to the Le Grotte viaduct.
Specifically, Figures 8(a) and 8(b) represent the superposi-
tion of the acceleration and displacement responses of each
span, respectively. The solid red lines indicate the average
curves. Figure 8(c) shows the simulated bridge response to
the moving load along with the displacement responses in
Figure 8(b).

The shape of the estimated displacement does not closely
agree with the one derived from equation (2). Interestingly,
the boundary values of the displacement are approximately
zero, which is evidence of the quality of the acquired data
and integration. Figure 8(c) has an illustrative purpose. The
blue line indicates the theoretical prediction of the dis-
placement response from the direct integration of equation
(2) using an elastic modulus equal to 30000 MPa. The elastic
modulus variation can yield close matching with the max-
imum displacement value from the experimental curve. The
main flaw of this procedure lies in the discrepancy between
the shape of the theoretical and simulated response due to
the neglection of road roughness and the presence of thermal
joints, which causes a jump in the measured acceleration,
biasing the integration of the acceleration time-history. The
experimental curves in Figure 8 underestimate the dis-
placement by the midspan and overestimate it by the
boundary. Likely, the displacement drop by the right
boundary originates from the acceleration peak caused by
the front wheels crossing the thermal joint, while the rear
ones and the accelerometers are still above the girder.

The authors chose not to introduce artificial and possibly
arbitrary modifications to the obtained signal to remove this
effect. Besides, the length of the vehicle is comparable to that
of the girder, and it would not be appropriate to exclude that
part of the signal. Likely, the underestimation by the mid-
span and the overestimation by the right edge may com-
pensate, yielding an accurate estimate. Therefore, the
authors attempted to identify the elastic modulus by min-
imizing the cross-correlation between the simulated and
experimental signals. Figure 9 shows the value of the qua-
dratic error between the simulated and experimental signals
as a function of the elastic modulus. There are evident
minima consistent with the expected value of the elastic
modulus of concrete. The legend displays the point of
minima associated with each span of the Le Grotte viaduct.

Nevertheless, a few values overestimated the elastic
modulus of concrete ( > 6000 MPa). The authors did not find
an exact cause of these biases. Still, several reasons may
concur: namely, the nonlinearity of the elastic modulus at
higher deformations. Therefore, it is plausible that the elastic
modulus of concrete is not independent of the deformation
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FiGure 5: Plot of the five terms of equation (3) in the considered case study. The title of each subfigure identifies the corresponding term.
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FIGURE 6: (a) Midspan deflection of the considered beam element in Table 2, and (b) root mean square (RMS) of the solution of equation (3)

as functions of the elastic modulus of concrete.

TaBLE 3: Description of the investigated viaducts.

L’Aquila-Teramo

Teramo-L’Aquila

Name No. of spans
San Nicola I 18
San Nicola II 5
Valle Situra 10
Le Grotte 10
Biselli 15
Caldarone 9
Cerchiara 29
Castello 15
Costa Colle 13
Temperino 23
Vico 6
Cretara 12

Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders
Continuous girders
Continuous girders
Continuous girders
Simply supported girders
Simply supported girders

Continuous girders
Continuous girders
Continuous girders
Simply supported girders
Continuous girders
Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders
Simply supported girders

The bold character indicates the viaducts tested via static load tests.
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FIGURE 7: Acceleration time series acquired by a moving force-balance accelerometer while crossing the Le Grotte viaduct.
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FIGURE 8: (a) Superposition of the acceleration time-histories associated with each span of the Le Grotte viaduct (the solid lines represent the
average curve). (b) Superposition of the displacement time-histories associated with each span of the Le Grotte viaduct (the solid lines

represent the average curve). (c) is the figure in (b) with the blue line representing the optimum theoretical response.

and that lower deformations may be associated with higher
values of the elastic modulus, which stabilizes after a certain
deformation. The available information is not sufficient to
draw definite conclusions. However, the value of span no 5,
which is 35000 MPa, corresponds to that estimated from the
static load test, which is 36000. This result is encouraging
and may endorse the accuracy of the method. However, as
shown in Table 1, there are two estimates which do not
correspond to the values from static load tests (relative error
= 40%).

As remarked, the nonlinear behaviour of concrete at
lower deformation may be the origin of these discrepancies.
The authors repeated the measurements to prove the absence
of measurement errors. It is likely that some inconsistent
values are caused by the irregularities of the road profile.
Table 4 exhibits the results from the identification of the
chosen girders. The bold values indicate the spans with
known elastic modulus from static load tests. Except for a
very few cases, the comparison provides a good validation of
the method (see Table 1). From a statistical viewpoint, the
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TaBLE 4: Elastic moduli in MPa identified using the instrumented
vehicle.

Span s . Le San .
nl()). Biselli Cerchiara Cretara Grotte Nicola Temperino
1 38000 18000 63000 22000 40000 77000
2 52000 43000 57000 70000 52000 35000
3 30000 27000 38000 77000 29000 52000
4 39000 26000 60000 19000 39000 50000
5 80000 30000 60000 35000 50000 64000
6 50000 34000 55000 31000 21000 36000
7 50000 25000 23000 35000 42000 50000
8 27000 36000 40000 44000 35000 60000
9 27000 80000 43000 75000 38000 50000
10 34000 43000 47000 43000 57000 74000
11 24000 31000 50000 — 51000 51000
12 28000 56000 59000 — 51000 57000
13 19000 50000 — — 41000 45000
14 26000 27000 — — 18000 70000
15 19000 39000 — — 50000 74000
16 — 63000 — — 37000 26000
17 — 27000 — — 39000 30000
18 — 47000 — — 28000 21000
19 — 77000 — — — 21000
20 — 80000 — — — 73000
21 — 68000 — — — 45000
22 — 42000 — — — 63000
23 — 27000 — — — 18000
24 — 42000 — — — 22000
25 — 24000 — — — —
26 — 35000 — — — —
27 — 18000 — — — —
28 — 22000 — — — —

The bold values correspond to those estimated from static load tests.

method agrees with the expected values significantly. Fig-
ure 10 proves that the method leads to a slight overesti-
mation of the elastic modulus. In conclusion, the procedure
delivers credible estimates of the elastic modulus, despite a
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FiGure 10: Normal probability density function (PDF) of the elastic
moduli estimated from static load tests and the moving sensors.

marked shift towards higher values, possibly due to the
nonlinearities of concrete at lower deformation, the road
irregularities, or other meaningful phenomena neglected in
equation (2).

5. Conclusion

The paper addresses a notable theme in structural dynamics:
parametric identification of bridges from signals acquired by
moving sensors. The current research focuses on identifying
the elastic modulus of full-scale simply supported pre-
stressed concrete girders using moving force-balance ac-
celerometers. The parametric identification is obtained from
the optimization of the cross-correlation between the sim-
ulated and experimental displacement responses. The
minimum value of the cross-correlation returns the most
likely value of the elastic modulus. The authors used an
instrumented vehicle, moving with a constant velocity equal
to 140km/h, equipped with force-balance accelerometers.
These accelerometers are characterized by a linear response
at very low frequencies up to the DC components. As
remarked in the discussion of the governing equations, the
estimated signal is almost a half-sine at low frequency.
Therefore, force-balance accelerometers may be the most
suitable sensors for this purpose. The simulated response is
derived from the sole bridge dynamics and does not include
vehicle-bridge interaction phenomena, which are negligible
in the considered case study [33]. Additionally, the effects of
the vehicle dynamics are removed by adopting low-pass
filtering with a cutoff frequency lower than the first natural
frequency of the vehicle. The outcomes of the static load tests
of a subset of the considered spans validated the values
obtained from the proposed method. Interestingly, there is a
good agreement between the values estimated using the two
methods: static load tests and the moving sensor method. In
very few cases, the values are inconsistent with the elastic
modulus of concrete and present a considerable overesti-
mation. Several phenomena may cause the biases of the
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estimates, and among them, the nonlinear response of
concrete even at lower deformation and the road irregu-
larities play a crucial role. Still, despite the presence of a few
out-of-range estimates, the method delivers promising re-
sults. Future attempts will converge in the estimation of the
elastic modulus by varying the velocity and vehicle weight.
The estimation of the load curves in bridges, which reports
the load as a deflection function, is significant for structural
safety assessment and the eventual prioritization of the
maintenance interventions. Therefore, the need for agile
methods for the indirect estimation of the elastic modulus is
a compelling issue, which deserves further research. The
current results prove that the proposed procedure still re-
quires further verification for reliable elastic modulus
identification.
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The MATLAB code used to support the findings of this study
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