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Abstract

In this paper, convex interval games are introduced and characteri-
zations are given. Some economic situations leading to convex interval
games are discussed. The Weber set and the Shapley value are de-
fined for a suitable class of interval games and their relations with the
interval core for convex interval games are established. The notion of
population monotonic allocation scheme (pmas) in the interval setting
is introduced and it is proved that each element of the Weber set of a
convex interval game is extendable to such a pmas. A square opera-
tor is introduced which allows us to obtain interval solutions starting
from the corresponding classical cooperative game theory solutions. It
turns out that on the class of convex interval games the square Weber
set coincides with the interval core.
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1 Introduction

In classical cooperative game theory payoffs to coalitions of players are known
with certainty. A classical cooperative game is a pair < N, v > where N =
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{1, 2, ..., n} is the set of players and v : 2N → R is a map, assigning to each
coalition S ∈ 2N a real number, such that v(∅) = 0. Often, we also refer to
such a game as a TU (transferable utility) game. We denote by GN the family
of all classical cooperative games with player set N . The class of convex
games (Shapley (1971)) is one of the most interesting classes of cooperative
games from theoretical point of view as well as regarding its applications in
real-life situations. A game v ∈ GN is convex (or supermodular) if and only
if the supermodularity condition v(S ∪T ) + v(S ∩T ) ≥ v(S) + v(T ) for each
S, T ∈ 2N holds true. Many characterizations of classical convex games are
available in the literature (Driessen (1988), Biswas et al. (1999), Branzei,
Dimitrov and Tijs (2008), Martinez-Legaz (1997, 2006)). On the class CGN

of classical convex games solution concepts have nice properties; for details we
refer the reader to Branzei, Dimitrov and Tijs (2008). Classical convex games
have many applications in economic and real-life situations. It is well known
that classical public good situations (Moulin (1988)), sequencing situations
(Curiel, Pederzoli and Tijs (1989)) and bankruptcy situations (O’Neill (1982),
Aumann and Maschler (1985), Curiel, Maschler and Tijs (1987)) lead to
convex games.

However, there are many real-life situations in which people or businesses
are uncertain about their coalition payoffs. Situations with uncertain payoffs
in which the agents cannot await the realizations of their coalition payoffs
cannot be modelled according to classical game theory. Several models that
are useful to handle uncertain payoffs exist in the game theory literature.
We refer here to chance-constrained games (Charnes and Granot (1973)),
cooperative games with stochastic payoffs (Suijs et al. (1999)), cooperative
games with random payoffs (Timmer, Borm and Tijs (2005)). In all these
models probability and stochastic theory plays an important role.

This paper deals with a model of cooperative games where only bounds
for payoffs of coalitions are known with certainty. Such games are called co-
operative interval games. Formally, a cooperative interval game in coalitional
form (Alparslan Gök, Miquel and Tijs (2008)) is an ordered pair < N,w >
where N = {1, 2, . . . , n} is the set of players, and w : 2N → I(R) is the
characteristic function such that w(∅) = [0, 0], where I(R) is the set of all
nonempty, compact intervals in R. For each S ∈ 2N , the worth set (or worth
interval) w(S) of the coalition S in the interval game < N,w > is of the
form [w(S), w(S)]. We denote by IGN the family of all interval games with
player set N . Note that if all the worth intervals are degenerate intervals,
i.e. w(S) = w(S) for each S ∈ 2N , then the interval game < N,w > corre-
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sponds in a natural way to the classical cooperative game < N, v > where
v(S) = w(S) for all S ∈ 2N . Some classical TU -games associated with an in-
terval game w ∈ IGN will play a key role, namely the border games < N,w >,
< N,w > and the length game < N, |w| >, where |w| (S) = w(S)−w(S) for
each S ∈ 2N . Note that w = w+ |w|. An interval solution concept F on IGN

is a map assigning to each interval game w ∈ IGN a set of n-dimensional
vectors whose components belong to I(R). We denote by I(R)N the set of all
such interval payoff vectors. Cooperative interval games are very suitable to
describe real-life situations in which people or firms that consider cooperation
have to sign a contract when they cannot pin down the attainable coalition
payoffs, knowing with certainty only their lower and upper bounds. The con-
tract should specify how the players’ payoff shares will be obtained when the
uncertainty of the worth of the grand coalition is removed at an ex post stage.
In the following we briefly explain how interval solutions for cooperative in-
terval games are useful to support decision making regarding cooperation and
related binding contracts. A vector interval allocation obtained by an agreed
upon solution concept offers at the ex ante stage an estimation of what in-
dividual players may receive, between two bounds, when the uncertainty on
the reward of the grand coalition is removed in the ex post stage. We notice
that the agreement on a particular interval allocation (I1, I2, . . . , In) based
on an interval solution concept merely says that the payoff xi that player i
will receive in the interim or ex post stage is in the interval Ii. This is a very
weak contract to settle cooperation. Therefore, writing down in the contact
the protocol to be used when the uncertainty on w(N) is removed at the ex
post stage, is compulsory. Such protocols are described in Branzei, Tijs and
Alparslan Gök (2008b).

In this paper, we introduce the class of convex interval games and extend
classical results regarding characterizations of convex games and properties
of solution concepts to the interval setting.

The paper is organized as follows. In Section 2 we recall basic notions and
facts from the theory of cooperative interval games. In Section 3 we introduce
supermodular and convex interval games and give basic characterizations of
convex interval games. Economic situations leading to convex interval games
are briefly discussed. In Section 4 we introduce for size monotonic interval
games the notions of marginal operators, the Shapley value and the Weber set
and study their properties for convex interval games. Moreover, we introduce
the notion of population monotonic allocation scheme in the interval setting
and prove that each element of the Weber set of a convex interval game is
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extendable to such a pmas. In Section 5 we introduce the square operator and
describe some interval solutions for interval games that have close relations
with existing solutions from the classical cooperative game theory. It turns
out that on the class of convex interval games the interval core and the square
Weber set coincide. Finally, in Section 6 we conclude with some remarks on
further research.

2 Preliminaries on interval calculus and

interval games

In this section some preliminaries from interval calculus and some useful
results from the theory of cooperative interval games are given (Alparslan
Gök, Branzei and Tijs (2008a)).
Let I, J ∈ I(R) with I =

[

I, I
]

, J =
[

J, J
]

, |I| = I − I and α ∈ R+. Then,

(i) I + J =
[

I, I
]

+
[

J, J
]

=
[

I + J, I + J
]

;

(ii) αI = α
[

I, I
]

=
[

αI, αI
]

.

By (i) and (ii) we see that I(R) has a cone structure.
In this paper we also need a partial substraction operator. We define I − J ,
only if |I| ≥ |J |, by I − J =

[

I, I
]

−
[

J, J
]

=
[

I − J, I − J
]

. Note that

I − J ≤ I − J . We recall that I is weakly better than J , which we denote
by I < J , if and only if I ≥ J and I ≥ J . We also use the reverse notation
I 4 J , if and only if I ≤ J and I ≤ J . We say that I is better than J , which
we denote by I ≻ J , if and only if I < J and I 6= J .
For w1, w2 ∈ IGN we say that w1 4 w2 if w1(S) 4 w2(S), for each S ∈ 2N .
For w1, w2 ∈ IGN and λ ∈ R+ we define < N,w1 + w2 > and < N, λw > by
(w1 + w2)(S) = w1(S) + w2(S) and (λw)(S) = λ ·w(S) for each S ∈ 2N . So,
we conclude that IGN endowed with 4 is a partially ordered set and has a
cone structure with respect to addition and multiplication with non-negative
scalars described above. For w1, w2 ∈ IGN with |w1(S)| ≥ |w2(S)| for each
S ∈ 2N , < N,w1 − w2 > is defined by (w1 − w2)(S) = w1(S) − w2(S).
Now, we recall that the interval imputation set I(w) of the interval game w,
is defined by

I(w) =

{

(I1, . . . , In) ∈ I(R)N |
∑

i∈N

Ii = w(N), w(i) 4 Ii, for all i ∈ N

}

,
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and the interval core C(w) of the interval game w, is defined by

C(w) =

{

(I1, . . . , In) ∈ I(w)|
∑

i∈S

Ii < w(S), for all S ∈ 2N \ {∅}

}

.

A game w ∈ IGN is called I-balanced if for each balanced map λ : 2N \{∅} →
R+ we have

∑

S∈2N\{∅} λ(S)w(S) 4 w(N). We recall that a map λ : 2N \

{∅} → R+ is called a balanced map (Tijs (2003)) if
∑

S∈2N\{∅} λ(S)eS = eN .

Here, eN = (1, . . . , 1), and for each S ∈ 2N , (eS)i = 1 if i ∈ S and (eS)i = 0
otherwise. It is easy to prove that if < N,w > is I-balanced then the border
games < N,w > and < N,w > are balanced. A game w ∈ IGN is I-balanced
if and only if C(w) 6= ∅ (Theorem 3.1 in Alparslan Gök, Branzei and Tijs
(2008a)). We denote by IBIGN the class of I-balanced interval games with
player set N .
Let w ∈ IGN , I = (I1, . . . , In), J = (J1, . . . , Jn) ∈ I(w) and S ∈ 2N \ {∅}.
We say that I dominates J via coalition S, denoted by I domS J , if

(i) Ii ≻ Ji for all i ∈ S,

(ii)
∑

i∈S Ii 4 w(S).

For S ∈ 2N \ {∅} we denote by D(S) the set of those elements of I(w)
which are dominated via S. I is called undominated if there does not exist J
and a coalition S such that J domS I. The interval dominance core DC(w)
of w ∈ IGN consists of all undominated elements in I(w), i.e. it is the
complement in I(w) of ∪

{

D(S)|S ∈ 2N \ {∅}
}

. It holds C(w) ⊂ DC(w) ⊂ A
for all w ∈ IGN and A a stable set of w.

3 Supermodular and convex interval games

We say that a game < N,w > is supermodular if

w(S) + w(T ) 4 w(S ∪ T ) + w(S ∩ T ) for all S, T ∈ 2N . (1)

From formula (1) it follows that a game < N,w > is supermodular if and
only if its border games < N,w > and < N,w > are supermodular (convex).
We introduce the notion of convex interval game and denote by CIGN the
class of convex interval games with player set N . We call a game w ∈ IGN
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convex if < N,w > is supermodular and its length game < N, |w| > is
also supermodular. We straightforwardly obtain characterizations of games
w ∈ CIGN in terms of w, w and |w| ∈ GN .

Proposition 3.1. Let w ∈ IGN and its related games |w| , w, w ∈ GN . Then

the following assertions hold:

(i) A game < N,w > is convex if and only if its length game < N, |w| >
and its border games < N,w >, < N,w > are convex;

(ii) A game < N,w > is convex if and only if its border game < N,w >
and the game < N,w − w > are convex.

We notice that the nonempty set CIGN is a subcone of IGN and tradi-
tional convex games can be embedded in a natural way in the class of convex
interval games because if v ∈ GN is convex then the corresponding game
w ∈ IGN which is defined by w(S) = [v(S), v(S)] for each S ∈ 2N is also
convex. The next example shows that a supermodular interval game is not
necessarily convex.

Example 3.1. Let < N,w > be the two-person interval game with w(∅) =
[0, 0], w(1) = w(2) = [0, 1] and w(1, 2) = [3, 4]. Here, < N,w > is super-

modular, but |w| (1)+ |w| (2) = 2 > 1 = |w| (1, 2)+ |w| (∅). Hence, < N,w >
is not convex.

The next example shows that an interval game whose length game is
supermodular is not necessarily convex.

Example 3.2. Let < N,w > be the three-person interval game with w(i) =
[1, 1] for each i ∈ N , w(N) = w(1, 3) = w(1, 2) = w(2, 3) = [2, 2] and

w(∅) = [0, 0]. Here, < N,w > is not convex, but < N, |w| > is supermodular,

since |w| (S) = 0, for each S ∈ 2N .

Interesting examples of convex interval games are unanimity interval
games. First, we recall the definition of such games. Let J ∈ I(R) with
J < [0, 0] and let T ∈ 2N \ {∅}. The unanimity interval game based on J
and T is defined by

uT,J(S) =

{

J, T ⊂ S
[0, 0] , otherwise,
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for each S ∈ 2N .
Clearly, < N, |uT,J | > is supermodular. The supermodularity of < N, uT,J >
can be checked by considering the following case study:

T ⊂ A, T ⊂ B
T ⊂ A, T 6⊂ B
T 6⊂ A, T ⊂ B
T 6⊂ A, T 6⊂ B

uT,J(A ∪ B) uT,J(A ∩ B) uT,J(A) uT,J(B)
J J J J
J [0, 0] J [0, 0]
J [0, 0] [0, 0] J

J or [0, 0] [0, 0] [0, 0] [0, 0].

For convex TU-games various characterizations are known. In the next the-
orem we give some characterizations of convex interval games inspired by
Shapley (1971) .

Theorem 3.1. Let w ∈ IGN be such that |w| ∈ GN is supermodular. Then,

the following three assertions are equivalent:

(i) w ∈ IGN is convex;

(ii) For all S1, S2, U ∈ 2N with S1 ⊂ S2 ⊂ N \ U we have

w(S1 ∪ U) − w(S1) 4 w(S2 ∪ U) − w(S2); (2)

(iii) For all S1, S2 ∈ 2N and i ∈ N such that S1 ⊂ S2 ⊂ N \ {i} we have

w(S1 ∪ {i}) − w(S1) 4 w(S2 ∪ {i}) − w(S2).

Proof. We show (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (i).
Suppose that (i) holds. To prove (ii) take S1, S2, U ∈ 2N with
S1 ⊂ S2 ⊂ N \ U . From (1) with S1 ∪ U in the role of S and S2 in the role
of T we obtain (2) by noting that S ∪ T = S2 ∪ U , S ∩ T = S1. Hence, (i)
implies (ii).
That (ii) implies (iii) is straightforward (take U = {i}).
Now, suppose that (iii) holds. To prove (i) take S, T ∈ 2N . Clearly, (1)
holds if S ⊂ T . Suppose that T \S consists of the elements i1, . . . , ik and let
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D = S ∩ T . Then, from (iii) follows that

w(S) − w(S ∩ T ) = w(D ∪ {i1}) − w(D)

+
k

∑

s=2

(w(D ∪ {i1, . . . , is}) − w(D ∪ {i1, . . . , is−1}))

4 w(T ∪ {i1}) − w(T )

+
k

∑

s=2

(w(T ∪ {i1, . . . , is}) − w(T ∪ {i1, . . . , is−1}))

= w(S ∪ T ) − w(T ), for each S ∈ 2N .

Next we give as a motivating example a situation with an economic flavour
leading to a convex interval game.

Example 3.3. Let N = {1, 2, . . . , n} and let f : [0, n] → I(R) be such that

f(x) = [f1(x), f2(x)] for each x ∈ [0, n] and f(0) = [0, 0]. Suppose that

f1 : [0, n] → R, f2 : [0, n] → R and (f2 − f1) : [0, n] → R are convex

monotonic increasing functions. Then, we can construct a corresponding

interval game w : 2N → I(R) such that w(S) = f(|S|) = [f1(|S|), f2(|S|)] for

each S ∈ 2N . It is easy to show that w is a convex interval game with the

symmetry property w(S) = w(T ) for each S, T ∈ 2N with |S| = |T |.
We can see < N,w > as a production game if we interpret f(s) for s ∈ N
as the interval reward which s players in N can produce by working together.

Before closing this section we indicate some other economic situations
related to supermodular and convex interval games. In case the parame-
ters determining sequencing situations are not numbers but intervals, under
certain conditions also convex interval games appear (Alparslan Gök et al.
(2008)). Bankruptcy situations when the estate of the bankrupt firm and the
claims are intervals, under restricting conditions, give rise in a natural way
to supermodular interval games which are not necessarily convex (Branzei
and Alparslan Gök (2008)). Airport situations (Littlechild and Owen (1977))
with interval data lead to concave interval games (Alparslan Gök, Branzei
and Tijs (2008b)). An interval game < N,w > is called concave if < N,w >
and < N, |w| > are submodular, i.e. w(S) + w(T ) < w(S ∪ T ) + w(S ∩ T )
and |w| (S) + |w| (T ) ≥ |w| (S ∪ T ) + |w| (S ∩ T ), for all S, T ∈ 2N .
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4 The Shapley value, the Weber set and

population monotonic allocation schemes

We call a game < N,w > size monotonic if < N, |w| > is monotonic, i.e.
|w| (S) ≤ |w| (T ) for all S, T ∈ 2N with S ⊂ T . For further use we denote
by SMIGN the class of size monotonic interval games with player set N .
We notice that size monotonic games may have an empty interval core. In
this section we introduce marginal operators on the class of size monotonic
interval games, define the Shapley value and the Weber set on this class of
games, and study their properties on the class of convex interval games.
Denote by Π(N) the set of permutations σ : N → N . Let w ∈ SMIGN . We
introduce the notions of interval marginal operator corresponding to σ, de-
noted by mσ, and of interval marginal vector of w with respect to σ, denoted
by mσ(w). The marginal vector mσ(w) corresponds to a situation, where the
players enter a room one by one in the order σ(1), σ(2), . . . , σ(n) and each
player is given the marginal contribution he/she creates by entering. If we
denote the set of predecessors of i in σ by Pσ(i) = {r ∈ N |σ−1(r) < σ−1(i)},
where σ−1(i) denotes the entrance number of player i, then mσ

σ(k)(w) =

w(Pσ(σ(k))∪{σ(k)})−w(Pσ(σ(k))), or mσ
i (w) = w(Pσ(i)∪{i})−w(Pσ(i)).

We notice that mσ(w) is an efficient interval payoff vector for each σ ∈
Π(N). For size monotonic games < N,w >, w(T ) − w(S) is well defined
for all S, T ∈ 2N with S ⊂ T since |w(T )| = |w| (T ) ≥ |w| (S) = |w(S)|.
Now, we notice that for each w ∈ SMIGN the interval marginal vectors
mσ(w) are defined for each σ ∈ Π(N), because the monotonicity of |w| im-
plies w(S ∪ {i}) − w(S ∪ {i}) ≥ w(S) − w(S), which can be rewritten as
w(S ∪ {i})−w(S) ≥ w(S ∪ {i}−w(S). So, w(S ∪ {i})−w(S) is defined for
each S ⊂ N and i /∈ S.

The following example illustrates that for interval games which are not
size monotonic it might happen that some interval marginal vectors do not
exist.

Example 4.1. Let < N,w > be the interval game with N = {1, 2}, w(1) =
[1, 3], w(2) = [0, 0] and w(1, 2) = [2, 31

2
]. This game is not size monotonic.

Note that m(12)(w) is not defined because w(1, 2) − w(1) is undefined since

|w(1, 2)| < |w(1)|.

A characterization of convex interval games with the aid of interval mar-
ginal vectors is given in the following theorem.

9



Theorem 4.1. Let w ∈ IGN . Then, the following assertions are equivalent:

(i) w is convex;

(ii) |w| is supermodular and mσ(w) ∈ C(w) for all σ ∈ Π(N).

Proof. (i) ⇒ (ii) Let w ∈ CIGN , let σ ∈ Π(N) and take mσ(w). Clearly, we
have

∑

k∈N mσ
k(w) = w(N). To prove that mσ(w) ∈ C(w) we have to show

that for S ∈ 2N ,
∑

k∈S mσ
k(w) < w(S). Let S = {σ(i1), σ(i2), . . . , σ(ik)} with

i1 < i2 < . . . < ik. Then,

w(S) = w(σ(i1)) − w(∅)

+
k

∑

r=2

(w(σ(i1), σ(i2), . . . , σ(ir)) − w(σ(i1), σ(i2), . . . , σ(ir−1)))

4 w(σ(1), . . . , σ(i1)) − w(σ(1), . . . , σ(i1 − 1))

+
k

∑

r=2

(w(σ(1), σ(2), . . . , σ(ir)) − w(σ(1), σ(2), . . . , σ(ir − 1)))

=
k

∑

r=1

mσ
σ(ir)(w) =

∑

k∈S

mσ
k(w),

where the inequality follows from Theorem 3.1 (iii) applied to i = σ(ir) and

S1 = {σ(i1), σ(i2), . . . , σ(ir−1)} ⊂ S2 = {σ(1), σ(2), . . . , σ(ir−1)}

for r ∈ {1, 2, . . . , k}. Further, by convexity of w, |w| is supermodular.
(ii) ⇒ (i) From mσ(w) ∈ C(w) for all σ ∈ Π(N) follows that mσ(w) ∈ C(w)
and mσ(w) ∈ C(w) for all σ ∈ Π(N). Now, by the well known characteri-
zation of classical convex games with the aid of marginal vectors we obtain
that < N,w > and < N,w > are convex games. Since < N, |w| > is convex
by hypothesis, we obtain by Proposition 3.1 (i) that < N,w > is convex.

Now, we straightforwardly extend for size monotonic interval games two
important solution concepts in cooperative game theory which are based on
marginal worth vectors: the Weber set (Weber (1988)) and the Shapley value
(Shapley (1953)).
The interval Weber set W on the class of size monotonic interval games is
defined by W(w) = conv {mσ(w)|σ ∈ Π(N)} for each w ∈ SMIGN . We
notice that for traditional TU-games we have W (v) 6= ∅ for all v ∈ GN ,
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while for interval games it might happen that W(w) = ∅ (in case none of
the interval marginal vectors mσ(w) is defined). Clearly, W(w) 6= ∅ for all
w ∈ SMIGN . Further, it is well known that C(v) = W (v) if and only
if v ∈ GN is convex. However, this result can not be extended to convex
interval games as we prove in the following proposition.

Proposition 4.1. Let w ∈ CIGN . Then, W(w) ⊂ C(w).

Proof. By Theorem 4.1 we have mσ(w) ∈ C(w) for each σ ∈ Π(N). Now, we
use the convexity of C(w).

The following example shows that the inclusion in Proposition 4.1 might
be strict.

Example 4.2. Let N = {1, 2} and let w : 2N → I(R) be defined by w(1) =
w(2) = [0, 1] and w(1, 2) = [2, 4]. This game is convex. Further, m(1,2)(w) =
([0, 1], [2, 3]) and m(2,1)(w) = ([2, 3], [0, 1]), belong to the interval core C(w)
and W(w) = conv

{

m(1,2)(w),m(2,1)(w)
}

. Notice that ([1
2
, 13

4
], [11

2
, 21

4
]) ∈

C(w) and there is no α ∈ [0, 1] such that αm(1,2)(w) + (1 − α)m(2,1)(w) =
([1

2
, 13

4
], [11

2
, 21

4
]). Hence, W(w) ⊂ C(w) and W(w) 6= C(w).

In Section 5 we introduce a new notion of Weber set and show that the
equality between the interval core and that Weber set still holds on the class
of convex interval games.
The interval Shapley value Φ : SMIGN → I(R)N is defined by

Φ(w) =
1

n!

∑

σ∈Π(N)

mσ(w), for each w ∈ SMIGN . (3)

Since Φ(w) ∈ W(w) for each w ∈ SMIGN , by Proposition 4.1 we have
Φ(w) ∈ C(w) for each w ∈ CIGN . Without going into details we note
here that the Shapley value Φ on the class of size monotonic interval games,
and consequently on CIGN , satisfies the properties of additivity, efficiency,
symmetry and dummy player. In the next two propositions we show that on
the class of interval games w ∈ IGN whose length games are supermodular,
which we denote for further use by SLIGN , marginal vectors and the interval
Shapley value have simple expressions. Clearly, CIGN ⊂ SLIGN . Note
that the fact that < N, |w| > is supermodular implies that < N, |w| > is
monotonic because for each S, T ∈ 2N with S ⊂ T we have

|w| (T ) + |w| (∅) ≥ |w| (S) + |w| (T \ S),
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and from this inequality follows |w| (S) ≤ |w| (T ) since |w| (T \ S) ≥ 0. So,
SLIGN is a subclass of SMIGN implying that CIGN ⊂ SMIGN .

Proposition 4.2. Let w ∈ SLIGN and let σ ∈ Π(N). Then, mσ
i (w) =

[mσ
i (w),mσ

i (w)] for all i ∈ N .

Proof. By definition,

mσ(w) = (w(σ(1)), w(σ(1), σ(2))−w(σ(1)), . . . , w(σ(1), . . . , σ(n))−w(σ(1), . . . , σ(n−1)),

and

mσ(w) = (w(σ(1)), w(σ(1), σ(2))−w(σ(1)), . . . , w(σ(1), . . . , σ(n))−w(σ(1), . . . , σ(n−1)).

Now, we prove that mσ(w) − mσ(w) ≥ 0. Since |w| = w − w is a classical
convex game we have for each k ∈ N

mσ
σ(k)(w) − mσ

σ(k)(w) = (w − w)(σ(1), . . . , σ(k)) − (w − w)(σ(1), . . . , σ(k − 1))

= |w| (σ(1), . . . , σ(k)) − |w| (σ(1), . . . , σ(k − 1))

≥ |w| (σ(k)) − |w| (∅) = |w| (σ(k)) ≥ 0,

where the first inequality follows from the properties of classical convex
games. So, mσ

i (w) ≤ mσ
i (w) for all i ∈ N , and

([mσ
i (w),mσ

i (w)])i∈N = (w(σ(1)), . . . , w(σ(1), . . . , σ(n))−w(σ(1), . . . , σ(n−1))) = mσ(w).

Since CIGN ⊂ SLIGN we obtain from Proposition 4.2 that mσ
i (w) =

[mσ
i (w),mσ

i (w)] for each w ∈ CIGN , σ ∈ Π(N) and for all i ∈ N .

Proposition 4.3. Let w ∈ SLIGN and let σ ∈ Π(N). Then, Φi(w) =
[φi(w), φi(w)] for all i ∈ N .

Proof. From (3) and Proposition 4.2 we have for all i ∈ N ,

Φi(w) =
1

n!

∑

σ∈Π(N)

mσ
i (w) =

1

n!

∑

σ∈Π(N)

[mσ
i (w),mσ

i (w)] =





1

n!

∑

σ∈Π(N)

mσ
i (w),

1

n!

∑

σ∈Π(N)

mσ
i (w)



 = [φi(w), φi(w)] .
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From Proposition 4.3 we obtain that for each w ∈ CIGN we have Φi(w) =
[φi(w), φi(w)] for all i ∈ N .

In the sequel we introduce the notion of (interval) population monotonic

allocation scheme (pmas) for totally I-balanced interval games, which is a
direct extension of pmas for classical cooperative games (Sprumont (1990)).
A game w ∈ IGN is called totally I-balanced if the game itself and all its
subgames are I-balanced.
We say that for a game w ∈ TIBIGN a scheme A = (AiS)i∈S,S∈2N\{∅} with
AiS ∈ I(R)N is a pmas of w if:

(i)
∑

i∈S AiS = w(S) for all S ∈ 2N \ {∅},

(ii) AiS 4 AiT for all S, T ∈ 2N \ {∅} with S ⊂ T and for each i ∈ S.

Notice that the total I-balancedness of an interval game is a necessary con-
dition for the existence of a pmas for that game. A sufficient condition is
the convexity of the interval game. We notice that all subgames of a convex
interval game are also convex. In what follows we focus on pmas on the class
of convex interval games.
We say that for a game w ∈ CIGN an imputation I = (I1, . . . , In) ∈ I(w)
is pmas extendable if there exist a pmas A = (AiS)i∈S,S∈2N\{∅} such that
AiN = Ii for each i ∈ N .

Theorem 4.2. Let w ∈ CIGN . Then, each element I of W(w) is extendable

to a pmas of w.

Proof. Let w ∈ CIGN . First, we show that for each σ ∈ Π(N), mσ(w)
is extendable to a pmas. We know that the interval marginal operator
mσ : SMIGN → I(R)N is efficient for each σ ∈ Π(N). Then, for each
S ∈ 2N ,

∑

i∈S mσ
i (w) =

∑

k∈S mσ
σ(k)(w) = w(S) holds, where (S,wS) is the

corresponding (convex) subgame.
Further, by convexity, mσ

i (wS) 4 mσ
i (wT ) for each i ∈ S ⊂ T ⊂ N , where

(S,wS) and (T,wT ) are the corresponding subgames.
Second, each I ∈ W(w) is a convex combination of mσ(w), σ ∈ Π(N), i.e.
I =

∑

ασm
σ(w) with ασ ∈ [0, 1] and

∑

σ∈Π(N) ασ = 1. Now, since all mσ(w)
are pmas extandable, we obtain that I is pmas extendable as well.

From Theorem 4.2 we obtain that the total interval Shapley value gen-
erates a pmas for each convex interval game. We illustrate this in Example
4.3, where the calculations are based on Proposition 4.3.
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Example 4.3. Let w ∈ CIGN with w(∅) = [0, 0], w(1) = w(2) = w(3) =
[0, 0], w(1, 2) = w(1, 3) = w(2, 3) = [2, 4] and w(1, 2, 3) = [9, 15]. It is easy

to check that the interval Shapley value generates for this game the pmas

depicted as

N
{1, 2}
{1, 3}
{2, 3}
{1}
{2}
{3}





























1 2 3
[3, 5] [3, 5] [3, 5]
[1, 2] [1, 2] ∗
[1, 2] ∗ [1, 2]
∗ [1, 2] [1, 2]

[0, 0] ∗ ∗
∗ [0, 0] ∗
∗ ∗ [0, 0]





























.

5 Interval solutions obtained with the square

operator

Let a = (a1, . . . , an) and b = (b1, . . . , bn) with a ≤ b. Then, we denote by a¤b
the vector ([a1, b1] , . . . , [an, bn]) ∈ I(R)N generated by the pair (a, b) ∈ R

N .
Let A,B ⊂ R

N . Then, we denote by A¤B the subset of I(R)N defined by
A¤B = {a¤b|a ∈ A, b ∈ B, a ≤ b}.
Now, with the use of the ¤ operator, we give a procedure to extend classical
multi-solutions on GN to interval multi-solutions on IGN .
For a multi-solution F : GN ։ R

N we define F¤ : IGN ։ I(R)N by
F¤ = F(w)¤F(w) for each w ∈ IGN .
Now, we focus on this procedure for multi-solutions such as the core and
the Weber set on interval games. We define the square interval core C¤ :
IGN ։ I(R)N by C¤(w) = C(w)¤C(w) for each w ∈ IGN . We notice that
a necessary condition for the non-emptiness of the square interval core is the
balancedness of the border games.

Proposition 5.1. Let w ∈ IBIGN . Then, C(w) = C¤(w).

Proof. (I1, . . . , In) ∈ C(w) if and only if (I1, . . . , In) ∈ C(w) and (I1, . . . , In) ∈
C(w) if and only if (I1, . . . , In) = (I1, . . . , In)¤(I1, . . . , In) ∈ C¤(w).

Since CIGN ⊂ IBIGN we obtain that C(w) = C(w)¤C(w) for each
w ∈ CIGN .
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We define the square Weber set W¤ : IGN ։ I(R)N by W¤(w) = W (w)¤W (w)
for each w ∈ IGN . Note that C¤(w) = W¤(w) if w ∈ CIGN .
The next two theorems are very interesting because they extend for interval
games, with the square interval Weber set in the role of the Weber set, the
well known results in classical cooperative game theory that C(v) ⊂ W (v)
for each v ∈ GN (Weber (1988)) and C(v) = W (v) if and only if v is convex
(Ichiishi (1981)).

Theorem 5.1. Let w ∈ IGN . Then, C(w) ⊂ W¤(w).

Proof. If C(w) = ∅ the inclusion holds true. Suppose C(w) 6= ∅ and let
(I1, . . . , In) ∈ C(w). Then, by Proposition 5.2, (I1, . . . , In) ∈ C(w) and
(I1, . . . , In) ∈ C(w), and, because C(v) ⊂ W (v) for each v ∈ GN , we
obtain (I1, . . . , In) ∈ W (w) and (I1, . . . , In) ∈ W (w). Hence, we obtain
(I1, . . . , In) ∈ W¤(w).

From Theorem 5.1 and Proposition 4.1 we obtain that W(w) ⊂ W¤(w)
for each w ∈ CIGN . This inclusion might be strict as Example 4.2 illustrates.

Theorem 5.2. Let w ∈ IBIGN . Then, the following assertions are equiva-

lent:

(i) w is convex;

(ii) |w| is supermodular and C(w) = W¤(w).

Proof. By Proposition 3.1 (i), w is convex if and only if |w| , w and w are
convex. Clearly, the convexity of |w| is equivalent with its supermodularity.
Further, w and w are convex if and only if W (w) = C(w) and W (w) = C(w).
These equalities are equivalent with W¤(w) = C¤(w). Finally, since w is I-
balanced by hypothesis, we have by Proposition 5.1 that C(w) = W¤(w).

With the aid of Theorem 5.2 we will show that the interval core is additive
on the class of convex interval games, which is inspired by Dragan, Potters
and Tijs (1989).

Proposition 5.2. The interval core C : CIGN ։ I(R)N is an additive map.

Proof. The interval core is a superadditive solution concept for all interval
games (Alparslan Gök, Branzei and Tijs (2008a)). We need to show the
subadditivity of the interval core. We have to prove that C(w1 + w2) ⊂
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C(w1)+C(w2). Note that mσ(w1 +w2) = mσ(w1)+mσ(w2) for each w1, w2 ∈
CIGN . By definition of the square interval Weber set we have W¤(w1+w2) =
W (w1 + w2)¤W (w1 + w2). By Theorem 5.2 we obtain

C(w1 + w2) = W¤(w1 + w2) ⊂ W¤(w1) + W¤(w2) = C(w1) + C(w2).

Finally, we define DC¤(w) = DC(w)¤DC(w) for each w ∈ IGN and
notice that for convex interval games we have DC¤(w) = DC(w)¤DC(w) =
C(w)¤C(w) = C¤(w) = C(w), where the second equality follows from the
well known result in the theory of TU-games that for convex games the
core and the dominance core coincide, and the last equality follows from
Proposition 5.1.

6 Concluding remarks

In this paper we define and study convex interval games. We note that the
combination of Theorems 3.1, 4.1 and 5.2 can be seen as an interval version
of Theorem 96 in Branzei, Dimitrov and Tijs (2008). In fact these theorems
imply Theorem 96 in Branzei, Dimitrov and Tijs (2008) for the embedded
class of classical TU-games. Extensions to convex interval games of the
characterizations of classical convex games where exactness of subgames and
superadditivity of marginal (or remainder) games play a role (Biswas et al.
(1999), Branzei, Dimitrov and Tijs (2004) and Martinez-Legaz (1997, 2006))
can be found in Branzei, Tijs and Alparslan Gök (2008a).

There are still many interesting open questions. For further research it
is interesting to study whether one can extend to interval games the well
known result in the traditional cooperative game theory that the core of a
convex game is the unique stable set (Shapley (1971)). It is also interesting
to find an axiomatization of the interval Shapley value on the class of convex
interval games. Other topics for further research could be related to intro-
ducing new models in cooperative game theory by generalizing cooperative
interval games. For example, the concepts and results on (convex) cooper-
ative interval games could be extended to cooperative games in which the
coalition values w(S) are ordered intervals of the form [u, v] of an (infinite
dimensional) ordered vector space. Such generalization could give more ap-
plications to the interval game theory. Also to establish relations between
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convex interval games and convex games in other existing models of coop-
erative games could be interesting. One candidate for such study could be
convex games in cooperative set game theory (Sun (2003)).
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