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the reconstruction of the Bishop basement
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S U M M A R Y
We use a multiscale approach as a semi-automated interpreting tool of potential fields. The
depth to the source and the structural index are estimated in two steps: first the depth to the
source, as the intersection of the field ridges (lines built joining the extrema of the field at
various altitudes) and secondly, the structural index by the scale function. We introduce a new
criterion, called ‘ridge consistency’ in this strategy. The criterion is based on the principle
that the structural index estimations on all the ridges converging towards the same source
should be consistent. If these estimates are significantly different, field differentiation is used
to lessen the interference effects from nearby sources or regional fields, to obtain a consistent
set of estimates. In our multiscale framework, vertical differentiation is naturally joint to the
low-pass filtering properties of the upward continuation, so is a stable process. Before applying
our criterion, we studied carefully the errors on upward continuation caused by the finite size
of the survey area. To this end, we analysed the complex magnetic synthetic case, known as
Bishop model, and evaluated the best extrapolation algorithm and the optimal width of the
area extension, needed to obtain accurate upward continuation. Afterwards, we applied the
method to the depth estimation of the whole Bishop basement bathymetry. The result is a
good reconstruction of the complex basement and of the shape properties of the source at the
estimated points.

Key words: Gravity anomalies and Earth structure; Magnetic anomalies: modelling and
interpretation.

1 I N T RO D U C T I O N

The study of gravity and magnetic fields at different altitudes, so
constituting a multiscale data set, is an important part of several
interpretation methods (e.g. Paul et al. 1966; Paul & Goodacre
1984; McGrath 1991; Pedersen 1991). More recently, other meth-
ods involving a multilevel data set were proposed, among which
the continuous wavelet transform method (CWT; e.g. Mallat 1998;
Sailhac & Gibert 2003), the depth from extreme points (DEXP)
method (Fedi 2007) or methods using the scale function (Fedi &
Florio 2006; Fedi 2007; Florio et al. 2009). Other multiscale meth-
ods are the Euler deconvolution of vertical profiles of potential fields
(Florio & Fedi 2006) and the multiridge analysis with reduced Euler
deconvolution (Fedi et al. 2009; Florio & Fedi 2009).

Interpretation of potential fields by these methods is based on
the recognition that the gravity or magnetic effect, f (x), generated
by ideal sources (point mass, line of mass, sheet and contact) is a
homogeneous function,

f (t x) = tn f (x) , (1)

where n is the homogeneity degree and t is the homogeneity co-
efficient. Although t could be arbitrarily chosen (Stavrev & Reid

2007), the exponent n changes with the source type and it is integer
and constant for the ideal sources, whereas it is fractional and varies
within the harmonic region for complex sources (Steenland 1968).

By multiscale methods, the depth to the source of homogeneous
fields can be determined by a geometric approach: as a consequence
of the dilation of potential fields versus the altitude, the maxima of
the field modulus at various scales are located along straight lines
(‘ridges’). In the case of homogeneous potential fields, sources
are located at singular points of the field, under the measurement
level. According to Moreau et al. (1997), the source depth could be
recovered by simply extrapolating the ridges below the measurement
surface and by identifying their intersection point (Fig. 1).

The structural index is the opposite of the homogeneity degree
(N = –n). It characterizes the shape of simple sources generating
homogeneous fields. Simple sources, such as spheres, horizontal
cylinders and sills, have singular points corresponding to their cen-
tre; for dykes, vertical cylinders and contacts, the singular point
corresponds to the top of the source. The estimation of the source
structural index is an important step in potential field interpretation
and it is particularly well suited using multiscale methods.

Multiscale methods need the field to be known at many alti-
tudes. However, direct measurement of the field at many altitudes is
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Figure 1. The geometrical method to retrieve the source depth and horizon-
tal position. Ridges, defined by the position of the extrema of the potential
field at several altitudes, develop as straight lines for simple sources and
intersect below the measurement plane at the source position.

currently not feasible. For this reason, this class of methods uses the
upward-continuation algorithm to create a 3-D data set. This well-
known transformation of potential fields is based on the equation
(e.g. Gibert & Galdéano 1985)

G(x, y, z) = 1

2π

∫ ∫
S

G(ξ, η, zm)

× z − zm[
(x − ξ )2 + (y − η)2 + (z − zm)2

]3/2
dξdη, (2)

where G(x, y, zm) is the measured potential field at zm, z < zm is
the altitude of continuation and S is an infinitely extended region,
where the field should be measured continuously, in principle. This
equation is a convolution integral and relates linearly the data at
some level zm to those at highest levels in the harmonic region.
Upward continuation is a well-known stable filter, and this stability
with respect to the noise is, therefore, shared also by multiscale
methods (e.g. Fedi et al. 2009).

Anyway, to use the above methods, some care must be taken in
order that the application of eq. (2) to a finite and discrete set of
potential field data, known on a finite region, could yield accurate
results. The most severe errors commonly arise when using conven-
tional circular convolution fast Fourier transform (FFT) algorithms,
because frequency aliasing errors can affect the low-frequency con-
tent of the upward-continued data at high altitudes. Fortunately,
these errors can be kept low by performing the circular convolu-
tion on a larger area than that of interest (Oppenheim & Schafer
1975). Therefore, the input data sequences can be extended to a
greater length by using other surveys in nearby areas, if available,
or, alternatively, by mathematical extrapolation algorithms, such as
zero-padding, maximum entropy prediction, symmetrization and
others.

In this paper, we propose a two-step multiscale method to ob-
tain depth and structural index from the analysis of the gravity or
magnetic field.

The first step for using multiscale methods is the generation of
a 3-D data set by using the upward-continuation algorithm. For
this reason, in the first part of the paper, we are interested in the
evaluation of the errors related to the upward-continuation process.
This will be done by comparing the magnetic field of the central

Figure 2. Bishop synthetic basement model. (a) Map of the depth to base-
ment. Grey lines mark the vertical susceptibility discontinuities. (b) Bishop
model total-field anomalies computed at sea level and with a geomagnetic
field inclination of 60◦.

part of the Bishop model upward continued to 10 km (after being
enlarged by various extrapolation algorithms) with the theoretical
magnetic field of the Bishop model generated at the same 10 km
altitude.

As a second step, we will use the ScalFun method to estimate the
structural index N for each analysed ridge. ScalFun is a multiscale
approach proposed by Fedi & Florio (2006) and Fedi (2007), who
analysed potential fields at several scales with the scale function τm,
which is defined as

τm = ∂ log fm

∂ log z
= −Ns

z

z − z0
, (3)

where N s is the structural index relative to the field fm, m = 3 in the
magnetic case and s = m–3, so that N0 is the structural index for
the magnetic field. The scale function is, therefore, a function of the
depth to source z0, of N s and of the altitude z.

A magnetic anomaly data set generated by a synthetic complex
model of magnetic basement, known as the Bishop model (Williams
et al. 2002), will be used to test the performance of the method when
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Figure 3. (a) Details of the Bishop model total-field and (b) its upward continuation to 10 km.

applied to a realistic source model. It will be also possible to assess
the best strategy in data extrapolation to perform a correct upward
continuation of potential fields.

The so-called ‘Bishop model’ represents a magnetized basement
model. The real topography data of the volcanic tablelands, north of
Bishop (CA), have been used as the surface of a magnetic basement,
overlain by non-magnetic sediments. The area was chosen because
it contains a variety of structures: two relatively long, large-offset
faults, en echelon arrays of smaller scale north–south faults, trans-
fer zones between faults and an unfaulted deep-basin area in the
southeast corner (Fig. 2). Susceptibility boundaries (lithological
changes or intrusive bodies) and a Moho at a variable depth were
added to complicate the magnetic model (Williams et al. 2005).
Other authors, besides the inventors of the model, used the syn-
thetic magnetic anomalies generated by this model to test depth and
shape source-estimators techniques (e.g. Reid et al. 2005; Goussev
& Pierce 2010).

In Section 3, we will describe the ScalFun method and will in-
troduce a ‘consistency criterion’ to improve the accuracy and to
assess the reliability of the solutions. Finally, in Section 4, we use
this analysis to recover the depth to the magnetic basement of the
Bishop model, and to obtain also information about the source types
originating the anomalies.

2 R E D U C I N G E R RO R S O N
U P WA R D - C O N T I N U E D DATA

To reduce upward-continuation errors when conventional circular
convolution FFT algorithms are used and, thus, to create a reliable
3-D data set for multiscale analysis, we tested several methods to
extrapolate on a bigger area the field to be upward continued.

Our tests were performed on the magnetic field of the Bishop
model, computed at sea level and with a geomagnetic field inclina-
tion of 60◦ and a declination of 0◦ (Fig. 2b). The data-sampling step
of the model is 0.2 km and we upward continued the sea level data
set from 0 to 10 km altitude, that is, up to 50 times the sampling step
(Fig. 3b). To estimate the error related to the upward-continuation
process, we used the field of the Bishop model computed directly
at 5 and 10 km altitudes.

To consider a more realistic scenario, we extracted a central area
of 800 × 800-cell grid size of the ground data. It can be seen in
Fig. 3 that the northern and western edges of such a subarea cut some
high-amplitude anomalies. In this situation, similar to a real-world
case, upward-continuation errors may be induced in the continued
field.

As already said, to reduce errors near the boundaries, a data set
based on an area larger than the measurement area should be used. In
many cases, real data outside the region of interest are not available,
so the data set must be extrapolated by using suitable algorithms.

In our test, we estimated the misfit between the theoretical field at
10 km and the upward-continued data enlarged by using either ordi-
nary extrapolation algorithms, such as zero-padding and periodized
extension, or more unconventional ones, such as the maximum en-
tropy extension. Other algorithms may also be used, but we stop our
analysis to the following seven methods for practical reasons:

1. Maximum entropy extension algorithm (Gibert & Galdéano
1985): the method is based on the extrapolation with a predictive
filter derived from Burg’s maximum entropy spectral analysis algo-
rithm (Fig. 4a).

2. Smooth extension of order 0: this method implements a simple
constant extrapolation outside the original support. For a 1-D signal,
the extension is the repetition of the first value on the left-hand size
and last value on the right-hand size (Fig. 4b).

3. Smooth extension of order 1: this method implements a simple
first-order derivative extrapolation, padding using a linear extension
fit to the first two and last two values. The smooth padding methods
work well in general for smooth signals (Fig. 4d).

4. Symmetric extension: this method assumes that signals can be
recovered outside their original support by symmetric boundary-
value replication (Fig. 4c).

5. Antisymmetric extension: this method uses an antisymmetric
boundary-value replication outside their original support. Symmet-
ric and antisymmetric extensions have the disadvantage of creating
artificial discontinuities of the first derivative at the edge (Fig. 4e).

6. Periodized extension: this method uses a periodic extension
extrapolation algorithm outside the original support. The disadvan-
tage of periodic padding is that discontinuities are artificially created
at the edges, especially on truncated anomalies (Fig. 4f).

7. Zero padding: this method extrapolates with zeros the orig-
inal support. The disadvantage of zero padding is that, disconti-
nuities are artificially created at the edges. This effect can be re-
duced extrapolating with the field average value instead, than with
zero.

For each of the above methods, we made several tests changing
the extent of the extrapolated data, varying from 25 per cent up to
150 per cent of the original data size (Fig. 3).

The smallest error was obtained by using the maximum entropy
extension algorithm (Fig. 4a). As expected, the greatest errors are
concentrated mainly along the western and northern edges, in cor-
respondence with incomplete and intense anomalies (Fig. 5). The
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Figure 4. Examples of different extrapolation algorithms. (a) Maximum entropy extension algorithm; (b) smooth extension of order 0; (c) smooth extension
of order 1; (d) symmetric extension; (e) antisymmetric extension; (f) periodized extension and (g) zero padding.

difference between the data of the model at 10 km and the upward-
continued data by using the maximum entropy extension algorithm
(Fig. 5a) reveals that, in the selected window, a wide central part
is affected by an error close to 5 nT. The theoretical field at 10 km
varies between −76 and 437 nT in the data window, so the error
results to be <1 per cent. By increasing the width of the extrapo-
lated region, the average error in the central area reduces even more
(Figs 5b and c). Similar results are obtained using the ‘smooth ex-
tension of order 0’ algorithm (Figs 5d–f). Other algorithms perform

similarly in the central area, with errors always <5 nT, but show
bigger errors near the edges. Using the smooth extension of order
1 and an extension width of 25 per cent (Fig. 5g), the errors in
the central area are still reduced (<3 nT), but enlarging the exten-
sion width, an almost constant-value results added to the continued
anomalies (Figs 5h and i). This may be expected because when the
extrapolated area is similar in size or bigger than the data area, the
extrapolated data tend to be as important as the true data, and this
fact may be the cause of errors at low wavenumbers.
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Figure 5. Difference between the data of the model computed at 10 km and the upward-continued data by using (a)–(c) maximum entropy, (d)–(f) smooth
extension of order 0 and (g)–(i) smooth extension of order 1 algorithms. For each of the above methods, tests were made by changing the extent of the
extrapolated data, varying from 25 to 150 per cent of the original data size.

In summary, as expected, we find that the error increases, espe-
cially, when an intense, incomplete anomaly is present at the edges
and a derivative-based extrapolation algorithm is used.

It is clear that the errors produced by the upward-continuation
process increase with the altitude difference as well as with the
high-wavenumber content (in turn dependent on the altitude of ac-
quisition) of the data to be continued. This means that the upward
continuation from 5 to 10 km of the same Bishop data set will give
more accurate results than the continuation from 0 to 10 km. In
our case, we obtained significantly reduced errors by continuing
the data from 5 to 10 km. The smooth extension of order 0 and
1 (Fig. 6) was used, with the extension area sized as the original
data (100 per cent width). Both the extension algorithms have good
performances, with the error in the central area <5 nT. This result
confirms that the error in upward continuation increases with the
continuation altitude and suggests that measuring data at two lev-
els may be exploited to improve the upward-continuation quality,
allowing for continuation by smaller altitude intervals. Sometimes,
two magnetic or gravity data sets acquired at different altitudes, on
the same area, may be available, for example, when aeromagnetic
data are measured in an area when ground or marine data are already
available. So, if two data sets at different altitudes are available and
have a comparable data density and quality, both have to be used
to obtain more accurate upward-continued data, especially if large

altitude differences are needed. This point is clearly very important
for any multiscale method.

3 T H E O RY A N D M E T H O D

3.1 The multiscale geometrical method

As already said, homogeneous potential fields, in absence of strong
noise or interference effects, develop their extrema (maximum or
minimum) at several altitudes along straight lines (e.g. Fedi et al.
2009), due to their dilation law with distance. Such straight lines are
called ‘ridges’ and intersect at the source position (Fig. 1). Thus,
the geometrical method simply consists of retrieving the source
position by extrapolating the ridges under the measurements plane
and by considering their intersection point as the source position.

Generally, gravity or magnetic anomalies may not be sufficiently
isolated, especially when measured from high altitudes. A possible
choice is, hence, to improve the resolution by differentiating the
field. An increased resolution is obviously expected to warrant a
better depth estimation. It is well known, in fact, that the differen-
tiated anomalies will reduce their horizontal extension because of
the increased fall-off rate of the transformed field. Although every
directional derivative could be used, we prefer to use the vertical
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Figure 6. Difference between the data of the model computed at 10 km and the upward-continued data from 5 to 10 km by using (a) smooth extension of order
0 and (b) smooth extension of order 1 algorithms. The extent of the extrapolated data was equal in size to the dimension of the original data window.

differentiation because of its property to have no phase distortion,
thus, simplifying the quality control of the whole process. Fig. 7
shows the case of interfering anomalies generated by two dipolar
sources at 6 km depth. Due to their mutual interference, their ridges
are not fully developed, preventing a correct application of the geo-
metrical method. By differentiating the field, it is possible to reduce
the reciprocal interference and, thus, better isolate the anomalies
and obtain well-developed ridges. In real cases, the decreasing of

the signal-to-noise ratio implied by the use of vertically differenti-
ated data has to be taken into consideration. However, the upward
continuation, acting as a low-pass filter, makes the differentiated
field more stable. In fact, the combination of the continuation and
differentiation operators can act as a bandpass filter (Fedi et al.
2009).

In this paper, we apply the geometrical approach, as described
earlier, to the Bishop model data, to recover the basement depth.

Figure 7. (a) Interfering anomalies generated by two dipolar sources at 6 km depth. (b) Interference prevents a clear development of the two sources’ ridges
and, thus, the geometrical method cannot be used. (c) Vertical derivative of the total field in (a). (d) By vertically differentiating the field, it is possible to reduce
the reciprocal interference and, thus, better isolate the anomalies and obtain well developed ridges.
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Our 3-D data set is obtained through upward continuation, us-
ing the maximum entropy edge extrapolation. To evaluate how the
numerical errors produced by upward continuation could affect the
depth and structural index estimates, our aim was at simulating re-
alistic conditions. To this end, we extended the data by the approach
outlined in Section 2, so renouncing to enlarge the data set with
the available true synthetic data. To speed up the computations, we
divided the model in 18 subareas, whose data set were each one
enlarged and upward continued. Our approach to the interpretation
of the Bishop basement data consists of obtaining depth estimates
by the geometrical method and independent estimates of the struc-
tural index by the ScalFun method (Fedi & Florio 2006; Florio
et al. 2009) that will be outlined in the next section. Results will be
analysed and validated by the Ridge consistency criterion that we
describe in Section 3.3.

3.2 ScalFun method for the structural index estimation

The ScalFun method is based on the concept of the scale function
of potential fields τ , which was introduced by Fedi & Florio (2006)
and Fedi (2007), to estimate the structural index, N , and the depth
to source, z0. By this method, it is possible to obtain independent
estimates of N or of z0, and also simultaneous estimates of both N
and z0.

Starting from eq. (3), we define the scale function τm as

τm = −Ns
z

z − z0
. (4)

Note now that the origin of the z-axis is arbitrarily chosen, so the
altitudes, z, and the depth to source, z0, may be rescaled as, respec-
tively, z − ẑ0 and z0 − ẑ0, for any given depth guess, ẑ0 (Florio et al.
2009)

τm(z, ẑ0) = −Ns
z − ẑ0

z − z0
(5)

Moreover, putting z = 1/q, eq. (5) becomes,

τm(q, ẑ0) = − Ns
1 − ẑ0q

1 − z0q
, (6)

which will be an increasing, decreasing or constant function of q,
respectively for ẑ0 lower, greater or equal to the true z0. Moreover,
for any given guess ẑ0,

τm(q → 0, ẑ0) = − Ns, (7)

that is, the intercept of τm versus q, yields an estimate of the struc-
tural index, which is independent from the depth to source. So, such
an analysis of the scaling function makes it possible to recover the
structural index and the depth to source, independently or jointly.

The structural index estimates, obtained by ScalFun method, are
rather stable with respect to the guess depth ẑ0. This is illustrated
in Fig. 8, in the case of the magnetic field generated by a dipolar
source, located at 4 km depth: the estimated N are very close to the
true one (N = 3) for 2.5 < ẑ0 < 5.5 km.

In this work, we estimate N by the ScalFun method, using all
the ridges involved in the geometrical estimation of depth, such as
the three ridges, shown in Fig. 1. For each anomaly, we estimate
N by eq. (7) and by setting ẑ0 as the depth estimated by using
the geometrical method. The pairs of obtained solution (depth and
N) of every group of ridges concerning the same source will be
discriminated according to a consistency criterion, which we will
introduce in the next section.

Figure 8. Stability of the structural index estimates (N) obtained with the
ScalFun method with respect to the guess depth ẑ0. The case of a dipolar
source (N = 3) at 4 km depth is illustrated.

3.3 Ridge consistency criterion

In presence of regional fields, interference and noise, the structural
index estimates obtained by the separate analysis of two or more
ridges can be very different, even if they apparently converge to the
same source. To discriminate the reliability of the depth solutions
obtained with the geometrical method, we define a consistency cri-
terion: it consists of evaluating the degree of closeness among the
structural index estimations obtained by applying ScalFun method
to the same ridges. The depth solutions are validated only if the N
estimates are consistent over the considered ridges.

Field measurements may present a low signal-to-noise ratio,
caused by experimental or round-off errors. It may be caused also
by sampling errors, characteristic of anomalies from small/shallow
geological sources, which have a so small wavelength to be not
well sampled. Such errors may have a white spectrum, and affect
mostly the signal-to-noise ratio at high wavenumbers. Thus, in a
multiscale analysis, it is rather straightforward to account for this
type of data error by simply excluding the lowest altitude data. More
subtle problems to the interpretation are caused by regional fields
or by interference with nearby anomalies. In the case of multiscale
methods, the coalescence effects may be severely amplified at high
altitudes. This kind of data contamination causes ridges to change
their inclination with respect to the undisturbed case and to become
curved (Fig. 9a), affecting the results obtained by the geometrical
method. Field differentiation and/or exclusion of largest scales may
help to fix this problem.

Thus, if the altitudes are correctly chosen following the above rea-
soning, ridges should be straight lines and the geometrical method
should provide a correct source depth. Consistent estimates of N
are also obtained for all the ridges converging towards the source.
This consistency is an indication of the reliability of both the depth
and structural index estimations.

On the contrary, when the interference effects are not negligible,
no consistent structural index estimations are expected from the
analysis of the ridges converging to the same source. The incon-
sistency among the solutions related to the same source provides
an ambiguity in the determination of the N . In this case, even if
the ridges are straight lines, the depth estimated by the geometrical
method will be flawed. In these cases, to improve the consistency
for our estimations, we can reduce the interference by means of a
differentiation process.

As a first step, errors caused by the upward-continuation process
should be minimized, as described in Section 2. Accordingly, the
altitude set for the multiscale analysis should be selected as preserv-
ing the smoothing effect, while minimizing the influence of noise,
as well as the edge and interference effects that affect the field at
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Figure 9. Choice of the altitude set for the multiscale analysis. Due to noise, interference and edge effects, linear ridges—suitable to be interpreted—are
selected at altitudes between 4 and 12 km.

high altitudes, as shown in Fig. 9. The final step is to use verti-
cal differentiation to lessen the reciprocal interference from nearby
sources and, thus, to help isolating the anomalies. We remark here
that the joint use of differentiation and continuation may effectively
increase the anomaly separation without excessively enhancing the
noise, when the combined operator is correctly tuned and assumes
the shape of a bandpass filter (Fedi et al. 2009).

In the following section, we will use the geometrical method,
for depth estimation, and the ScalFun method, for N estimation.
The parameters related to the three steps outlined earlier (type of
extrapolation, set of upward-continuation altitudes, order of vertical
differentiation) will be varied until some consistent and reliable N
estimation is reached for the ridges converging towards the same
source.

We tested the ridge consistency criterion on the reduced to the
pole Bishop model data, for which we achieved independent N
estimations by using depths (z0 in eq. 6) estimated by the geometrical
method.

Figs 10 and 11 show an example of application of the method
on one of the 18 selected windows. The red line represents the

selected cross-section, along which the analysis is performed. The
anomaly shown in Fig. 10(a) suffers from interference with an-
other anomaly to the South; moreover, it is near the edge of the
considered subarea and, thus, presents also a not-negligible contin-
uation error. Fig. 10(b) shows the basement relief in the selected
window. The depth to the analysed source (a magnetic contact) is
2670 m. However, because of interference effects, a strong error
affects our depth estimation (Fig. 11a). The poor reliability of the
depth estimates is testified by inconsistent estimates of N : from
the analysis of ridge 1, we obtain N = 2.6, and from ridge 2, we
obtain a structural index close to 0 (Figs 11b and c). Then, we
turn to the second-order vertical derivative of the field, to minimize
the interference effects from the nearby sources. The geometrical
method gives now a much different and shallower depth estimate,
and the good quality of the estimates is supported by consistent
estimations of N (Figs 11d and f). We conclude that, according to
our ridge consistency criterion, both solutions (depth and N) should
be now accepted: the depth estimated with the geometrical method
is very close to the true one (−2700 m; Fig. 11d) and also the
estimated N (about 2) is consistent with the source type (magnetic

Figure 10. Example of application of the ridge consistency criterion to an anomaly of the Bishop basement. (a) Magnetic anomaly related to a lateral
susceptibility contrast at 2670 m depth (white cross). The red line indicates the interpreted profile in Fig. 11. (b) Basement relief in the selected window (the
white cross corresponds to the position of the magnetic contact along the selected profile).
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Figure 11. Interpretation of a selected anomaly from the Bishop model along a profile shown in Fig. 10. (a) The application of the geometrical method to the
total field gives strong error on the depth estimation. The ScalFun method applied to the two ridges used in the geometrical method gives inconsistent estimates
of N (b) and (c). (d) To minimize the effects of nearby sources, the second vertical derivative of the total field is interpreted, and the geometrical method gives
a good estimation of the depth to source, supported by consistent N estimations (e) and (f). In this case the estimated N (about 2) is consistent with the source
type (magnetic contact) and the analysed field (second vertical derivative of the total field).

contact) and the analysed field (second vertical derivative of the total
field).

4 A P P L I C AT I O N T O T H E W H O L E A R E A
O F T H E B I S H O P M A G N E T I C F I E L D

In this section, we apply the multiscale approach, described earlier,
to the Bishop model total-field map, computed with magnetic incli-
nation of 60◦ and a declination of 0◦, to obtain information about
the basement depth so as to image the basement morpho-structural
features.

Other authors have done a similar work on this data set, with
different methods.

Williams et al. (2005) compared results obtained with 3-D Eu-
ler deconvolution with and without 2-D constraints, by which the

authors can discern the source structure dimensionality and esti-
mate the source location and depth. The Bishop model version they
used, contain no susceptibility heterogeneities in the basement and
the computed total field has a magnetic inclination of 45◦ and a
declination of 0◦. Williams et al. (2005) used a structural index,
N = 0.5, to obtain the best results. These authors did not interpolate
their results to obtain an image of the basement map, but, at the
solution locations, the misfit between the estimated and the true
depth is generally within 400 m and sometimes reach 2 km. Reid
et al. (2005), by using an Euler deconvolution technique indepen-
dent from the source type, obtained too few acceptable solutions to
accurately reproduce the basement bathymetry. Salem et al. (2008),
testing a method based on the tilt-angle derivatives, obtained solu-
tions with a somewhat high vertical scatter (several kilometres). In
correspondence of the main contact structures, they found solution
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clusters below the basement top, as well as structural indices of
about 0.5, that is, higher than the expected value associated with
these source geometries.

Goussev & Pierce (2010) tested on the Bishop total-field data
set (with magnetic inclination of 90◦) their multiwindow Werner
deconvolution, interpreting their results on the basis of a number
of ‘basement indicators,’ that is, special grouping of the solutions
that, in the authors’ experience, can be used to identify the basement
depth. Errors vary from about –1.5 to about 0.9 km with an average
of about ±0.9 km.

With respect to many of the cited methods, our multiscale ap-
proach dealt with solutions selected on the base of their reliability
by using the Ridge consistency criterion. This means that, our re-
constructed basement map is not defined by a redundant set of
estimates, obtained at every point of the data matrix. Our analysis
is, instead, focused to special points of the magnetic field, which
are related to its singular points. For example, these special points
correspond to the extrema of the anomaly in the case of a dipolar
source (Fig. 7) or to the anomaly flanks when fault-like sources
occur (Fig. 10). Hence, our basin reconstruction is controlled at a
set of selected key points, whose number is less than with other
methods. For instance, to reconstruct the basement bathymetry, we
used results coming from the analysis of about 100 profiles across
the Bishop model total-field map, providing 172 depth and N esti-
mates, whereas methods based on a moving window approach, such
as the Euler deconvolution, would have obtained a redundant set of
solutions virtually equal to the number of data (about 3800 000).
These many solutions must be later filtered by efficient algorithms,
to separate spurious from valid solutions.

Hence, our approach is certainly less automated than these meth-
ods; on the other hand, it does not need any post-processing phase
and does not provide ambiguous clusters of solutions, often scat-
tered by some kilometres in the horizontal or vertical directions.

Generally, multiscale methods are used to interpret potential field
along selected profiles orthogonal to a 2-D geological structure
(Boukerbout & Gibert 2006). Florio et al. (2004) showed that re-
sults of Euler deconvolution, CWT method or other multiscale ap-
proaches are flawed if the vertical differentiation or the upward con-
tinuation involved in these methods are computed along a generic
profile instead of on a map, unless if the profile crosses normally an
elongated anomaly. In our case, the original data, known on a sur-
face, are differentiated and continued to several levels in such a way
to form a 3-D data volume. Vertical sections may be easily extracted
along any specific direction, thus, taking into account preferential
anomaly strike directions.

In this paper, however, to reconstruct the Bishop basement depth
map from the magnetic data, the profiles to be analysed were simply
extracted along rows and columns of the data matrix, regardless the
anomaly strike. This was necessary to perform the process in some
automated way.

Ridges are formed on the selected sections, even though they
should be more rigorously identified by considering the complete
3-D, conic nature of these structures, as shown in Fedi et al. (2010).
However, this would imply a not-so-simple visualization of the
whole cone, and a preliminary analysis showed that the differences
between the two approaches (2-D or 3-D ridge visualization), in
terms of parameters estimation, are mostly small.

The estimated depths are presented in Fig. 12, showing a good
agreement between the estimated depths (coloured dots) and the
true depth to the Bishop basement (filled contours). The depth es-
timations were obtained at locations corresponding to all the in-
trabasement magnetization contrasts and along some of the main

Figure 12. Application of the multiscale approach to the Bishop basement
model. Coloured dots represent depth solutions (see the colour bar) and the
filled contours represent the basement bathymetry by using the same colour
map.

structural features of the basement, such as the steepest sides of the
two large-offset main faults. In the southeastern area, the basement
top is quite smooth and deep (8–9 km) so that the only notable total-
field feature is the strong isolated anomaly caused by a basement
intrusion. Thus, in this area, we obtained depth estimations only for
this last anomaly. A comparison of the estimated depths with the
true depth is presented in Fig. 13, where it can be appreciated how
the found depths are, on average, very close to the 45◦ dashed line,
where perfect solutions lie. In Fig. 13, it is also clear how the depth
error increases with the anomaly source depth.

However, it can be noted how in some cases (e.g. x = 140 km,
y = 290 km), the depth estimations do not agree well with the
true basement depth. It is evident that, in these cases, our strategy
to separate the magnetic anomalies generated by the basement mor-
phology and by the magnetized intrusions was unsuccessful.

Figure 13. Plot of true depth versus estimated depths for the solutions
shown in Fig. 12. Depth solutions with no error lie on the dashed line.
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Figure 14. The obtained structural index solutions, selected on the base
of their reliability by using the ridge consistency criterion. Coloured dots
represent structural index solutions (see the colour bar), the red lines rep-
resent the horizontal, intrabasement susceptibility boundaries and the black
isolines represent the basement bathymetry.

Generally, we noted a good agreement among the structural in-
dex estimations (Fig. 14) and the values expected by considering the
structure geometries. The best N estimations were obtained along
the susceptibility boundaries between differently magnetized base-
ment blocks or related to the intrusive bodies. In all these cases, we
expect N close to 0 (semi-infinite magnetic contacts). The achieved
results confirm the contact model for these structures, even if we
obtained N values significantly higher than zero close to the struc-
ture corners. This is because in those zones, the true structure shape
is significantly different from the ideal contact (e.g. the solutions
relative to the southeastern intrusive). Although most of the esti-
mated structural indices range from 0 to 1 (Fig. 15), agreeing with
the analysis performed by Williams et al. (2005), the N solutions
histogram shows clear peaks in correspondence of the integers 0 and
1. This histogram feature confirms that differentiation is effective
in reducing the interference with nearby sources producing anoma-
lies similar to those expected from ideal sources. Higher structural
indices (1 < N < 2) are sometimes found in correspondence with
complex basement topography (e.g. small ridges) or as a conse-
quence of interference.

Finally, we obtained an image of the recovered basement depth,
by interpolating through the whole set of depth estimates (Fig. 16).
Comparing Figs 12 and 16, one can see that the main topographic
features are well imaged in the map obtained from the estimated
depths. The main discrepancies occur in areas where there is a
lack of estimates. These areas are associated with low total-field

Figure 15. Histogram of the estimated structural indices.

Figure 16. Recovered basement depth, interpolated from the obtained depth
estimates (black dots). The grey lines represent the horizontal, intrabasement
susceptibility boundaries.

horizontal gradients, such as, at the flat bottom of the east–west
and north–south canyons and along the less steep sides of the same
canyons. In these conditions, the interpreted field has low amplitude
and the ridges have a low inclination: These factors do not allow a
good ridge development.

5 C O N C LU S I O N S

In this paper, we propose a new approach to analyse potential fields
by estimating source parameters, such as, the horizontal position
and depth of simple equivalent sources and the structural index N ,
representing the source type. This approach includes estimations
of the depth to source, performed with the multiscale geometrical
method, and of the structural index, achieved by ScalFun method.
The key points are:

1. The introduction of a new criterion, the ridge consistency cri-
terion, to evaluate the validity of the source parameters estimations.
This criterion is based on the computation of field derivatives to
reduce anomaly coalescence as well as the influence of regional
fields. We verified the effectiveness of this approach with tests on
magnetic data, but we expect that this method should be even more
effective and necessary for gravity data, because in that case the
coalescence effects are more pronounced than in magnetic data.

2. The reconstruction of a complex basement, such as the Bishop
model, is not made using a redundant set of estimates, such as the
methods based on a ‘moving window’ approach, but with a reduced
set of the estimates on key anomalies.

We applied our multiscale approach to the magnetic field gen-
erated by the Bishop complex basement model. According to our
theory, a relatively low number of analysed profiles were enough to
obtain a rather accurate map of the basement relief. Also, the struc-
tural index estimates were in good agreement with the structure
morphology of the basement.

In this paper, we also showed that it is possible to build a reliable
multiscale data set by applying the upward-continuation operator to
the measured data set. After testing several extrapolation algorithms,
accurate upward-continued fields were provided, when a reasonable
extension algorithm is used and the field is horizontally extended
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over an area large enough to circumvent aliasing from circular
convolution.

We also showed that field measurements at two different altitudes,
as a minimum, can be enough to check the quality of the upward
continuation and allowing the construction of a reliable 3-D data
set even at very high altitudes/sampling-step ratios.
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