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Abstract
Background and Aims: Non-destructive, reliable, fast and automated plant-based methods for the assessment of the water
status of a grapevine are necessary to design irrigation strategies. The goal of this work was to test the capability of near infrared
(NIR) spectroscopy using a vehicle-mounted and remote NIR sensor without plant contact (contactless) to assess the water status
of grapevines in the vineyard.
Methods and Results: An NIR spectrometer (1100-2100 nm) mounted on an all-terrain vehicle was used to acquire spectra
(contactless, in stop-and-go mode) from leaves of water-stressed and non-stressed vines of Riesling at two timings during the
season. Calibration and cross-validation models yielded R? =0.95 and R?, = 0.88 for the estimation of the stomatal conductance
measured in the same grapevines.
Conclusions: The study demonstrates that NIR spectroscopy may become a potential tool for on-the-go assessment of proximal
plant water status, although further research will be required for full confirmation.
Significance of the Study: The NIR technology tested, capable of being installed on vineyard machinery, paves the way to collect
data on plant water status at high spatial and temporal resolution to assist in irrigation scheduling.
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Introduction

A wide range of plant-based sensing methods exists, and their
advantages and pitfalls have been extensively reviewed (Jones
2004, Fernandez 2014, Jones and Grant 2016). Among these
methods, some directly assess plant water status, such as the
relative water content (RWC) (Barrs and Weatherley 1962),
the plant water potential, either leaf (We.r) or stem water
potential (Wgem) (Choné et al. 2001) and the cavitation and
embolism phenomena caused by water conductance (Lovisolo
and Tramontini 2010). Others are based on the plant’s
physiological reactions to water scarcity. In this group, the
measurement of the stomatal conductance (gs), thermography
(Jones et al. 2002), sap-flow meters and sensors measuring leaf
turgor and fluctuations of trunk or stem diameter (Fernandez
2014) can be mentioned. Many of these plant-based sensors,
however, are used mainly for research purposes as some are
slow, too labour demanding (as they are not automated),
difficult to operate with and to interpret, destructive in many
cases and most of the time only capable of measuring a small
number of vines per hectare in a reasonable time period. Such
constraints limit any real-time mapping of the spatial
heterogeneity or even more of utmost viticultural interest
providing temporal dynamics of the vine water status or
progress in fruit development. Jones (2004) and Fernandez
(2014) summarised some of the main features of the ideal
plant-based sensing method, which should be non-destructive,
sensitive to water variation, capable of providing a reliable and
early response, as well as inexpensive, easy to operate and
suitable for automation.
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Near infrared (NIR) spectroscopy is a non-destructive and
fast technique that has been extensively used for evaluating
food composition (Cen and He 2007), with many potential
applications also for plant phenotyping (Cozzolino 2014). The
NIR region (750-2500 nm) contains information referring to
the relative proportion of CH, NH and OH bonds of organic
molecules. Because water is the predominant constituent of
leaves, their NIR reflectance spectra are dominated by the
water spectrum, which shows overtone bands of the OH bonds
at 760, 970 and 1450 nm and a combination band at 1940 nm
(Nicolai et al. 2007). One of the advantages of NIR spectroscopy
is its ease of use in combination with chemometrics for quality
and quantitative analysis. Multivariate statistical approaches,
mainly regressive tools, together with spectra filtering and
pre-processing, are largely used in modelling procedures.
Unlike destructive data derived from wet chemistry analysis,
NIR spectra are usually aimed at building calibration and
prediction models of specific parameters or attributes (Geladi
2003, Cozzolino et al. 2011, Dambergs et al. 2015). Validating
methods are also applied, as well as indexes of statistical
significance and robustness (Williams and Sobering 1996,
Fearn 2002). This approach has been followed in the few
studies that have investigated the application of portable NIR
spectrophotometers for the assessment of grapevine water
status (Santos and Kaye 2009, De Bei et al. 2011, Vila et al.
2011, Gutiérrez et al. 2016, Tardaguila et al. 2017). These
authors have shown the potential and promising capabilities
of in-field portable NIR spectroscopy for non-destructively
assessing plant water status, with values of correlation
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coefficients of validation (r,) above 0.84 for the prediction of
Yot (Santos and Kaye 2009) or Wgem (De Bei et al. 2011,
Gutiérrez et al. 2016, Tardaguila et al. 2017). Although
successtul, the step forward towards the true implementation
of NIR spectroscopy for in-field appraisal of grapevine water
status would be its automation, and this can only occur if NIR
spectra could be acquired contactless, at a given distance from
the plant.

The aim of this study was to test the capability of NIR
spectroscopy, operating contactless from a vehicle, to assess
the water status of grapevines in the vineyard, in order to
implement such technology for the non-destructive
determination and future assessment of the spatial variability
and temporal dynamics of a vineyard water status.

Materials and methods

Experimental site

Field experiments were conducted in an established vineyard
of Vitis vinifera L. cv. Riesling (clone Gm 198-25; grafted to
rootstock SO4 Gm47) located close to Geisenheim, Germany
(49°59'20" N; 7°55'56"E) during season 2014. Vines were
trained to a vertical shoot positioning (vertical shoot
positioning-type) trellis system in a north-south row
orientation. Row and vine spacing were 2.10 and 1.05 m,
respectively. Two levels of vine water status were imposed in
the vineyard: water stress and Control (non-stressed vines).
The experimental layout consisted on two replication blocks,
each of them comprising three adjacent rows. Of these, only
the central row was used for the measurements, while the
other two were considered edge rows. Water-stressed and
Control treatments were established in alternating rows, and
half of the row was used (16 vines) for the treatment.

Water stress was induced by covering the inter-row on both
sides of the vine (to withhold natural precipitation) using a
removable plastic sheet from flowering onwards. No additional
water nor plastic shielding were applied to non-stressed
Control vines; soil was managed with natural cover crop
consisting mainly of various grass species (Festuca spec.).

Acquisition of NIR spectra
An NIR spectrometer (Polytec, Waldbronn, Germany) covering
the spectral range between 1100 and 2100 nm, connected
through optic fibre (PSS-H-A03 sensor head; Polytec) was used
for contactless spectral detection of vine water status. The
spectrometer was an NIR optical device, based on a
polychromator as the reflection light source selector, and
indium gallium arsenide diode array detectors, which operated
at a rate of 28 Hz. A distance sensor head, which is a reflection
device designed for measurements over larger distances, that is
150 to 600 mm to the target, was used. This was based on an
integrated 20 W Tungsten-halogen Lamp (Polytec, Waldbronn,
Germany) lamp for sample illumination. The instrumentation
was mounted to and carried on an all-terrain vehicle (ATV)
(Kawasaki Mule 610 4 x 4, Akashi, Japan), which moved at a
groundspeed of approximately 2 km/h (Figure 1).
Measurements with the NIR sensor were conducted statically
(stop-and-go) on 16 vines subjected to stressed and non-
stressed water treatments, including the two sampling dates
(July and September) at two distances to the canopy: 0.25
and 0.50 m, approximately. In both cases, the sensor head
was mounted at a height of 1.40 m above ground. The spot size
changed from 1.6-cm diameter at a distance of 0.25 m to 2 cm
when the distance to the canopy was 0.50 m.

At each sampling date, eight random vines within the two
water treatments were measured. Data were recorded from
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Figure 1. lllustration of the set-up of the near infrared system operating from
the moving all-terrain vehicle.

both sides of the canopy. For each vine, three fully sun-exposed
leaves located just above the bunch zone were randomly
selected and tagged, and 100 spectra (2 nm wavelength
increments) per leaf within the range of 1100-2100 nm were
collected from a single spot per leaf and stored in an outdoor
computer. In total, 96 measurements were conducted (two
sampling dates x eight vines x three leaves x two target
distances). For each leaf, the acquired spectra were then
averaged to a mean representative spectrum per leaf. Different
leaves were measured at each sampling date. To improve
discrimination between other materials than leaves, spectra of
shoots, wire, posts and canopy gaps were recorded separately
at a distance to the canopy of 0.50 m (Figure 2).

Ground-truthing: measurement of stomatal conductance (gs)
With the aim of ground-truthing (at the leaf level) the spectral
measurement of grapevine leaf water status, stomatal
conductance was chosen as the reference method and
measured using a portable porometer (AP4, Delta-T,
Cambridge, England).

On two cloudless days during the two sampling periods,
July and September 2014, the same three fully sun-exposed
leaves tagged in each of the 16 measured vines, of either water
stressed or non-stressed vines (Control), were measured (two
spots per leaf were measured and then averaged)
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Figure 2. Spectral absorbance of leaves (—-), bunches (—-) and other
constituents of the canopy, wooden post (——), grapevine shoot () and gap
(—), acquired contactless from a 50 cm distance.
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approximately 1 h prior to the spectral data acquisition around
midday. Ninety-six measurements of g; were made.

Chemometric analysis

Raw spectra were recorded with pss software (Polytec), while
subsequent statistical pretreatment for absorbance (log 1/R)
transformation, together with chemometric calculation, was
obtained after data exportation in UNSCRAMBLER v9.7 software
(CAMO ASA, Oslo, Norway). The absorbance spectra were
used as the X-variable, and g5 was used as the Y-variable to
build the models for water status evaluation.

In addition to simple absorbance, mean normalised spectra,
as well as statistical filtering operations [(e.g. standard normal
variate (SNV) transformation, multiplicative scattering
correction (MSC)], first derivative of Savitzky—Golay filter or
second derivative of Savitzky—Golay were tested for regression
model calculation. Principal component analysis (PCA) allowed
the differentiation of spectral variations of the data sets and
performed a pattern recognition analysis consisting of the
discrimination between stressed and unstressed leaf samples.

Table 1. Stomatal conductance of stressed and non-stressed Vitis vinifera cv.
Riesling vines determined with a portable porometer.

Water status Data set (1) Stomatal conductance
[mmol H,0/(m?s)]
Mean SD Min Max
Stressed 24 86.0 225 38.5 126.0
Non-stressed 24 233.8 56.7 104.0 365.0

Data are values per leaf including the two measuring dates. Data set (#),
number of leaves measured of each water status in the two timings; Max,
maximum; Mean, average values in each water treatment; Min, minimum;
SD, standard deviation.
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Partial least squares (PLS) regression was used to build up the
calibration model for g estimation. Internal cross validation
[leave-one-out cross validation (LOOCV)] was applied in the
calibration procedure; no outlier elimination was required.
The performance of the models was evaluated by the standard
error of calibration and the coefficient of determination in
calibration(R2). The number of latent variables, which yielded
the minimum standard error in cross-validation value, was also
specified in the model.

Results

The data set of g; measurements used as the reference method
for the NIR spectra to build the predictive models ranged from
38.5 to 365 mmol H,O/(m?s), involving measurements at the
two sampling dates in grapevines subjected to the two water
treatments (Table 1). Water stressed vs Control plants were
significantly different (P < 0.05) in their g;, and the mean value
of this variable for the Control vines was almost fourfold that of
the stressed vines.

In order to define the instrumental ability of the NIR system
in the range of 1100-2100 nm, to measure thoroughly leaves of
the vines, to verify and filter spectral responses of non-relevant
information and hence to improve the accuracy of the
application, required in future on-the-go operations, specific
discrimination of material other than leaves in the spectral
absorbance in the range of study was attempted. Figure 2
shows the distinct reflectance patterns of the individual organic
matter (leaf, bunch and shoot), inorganic matter (post) or
within the detection of possible gaps that occur regularly within
vertical shoot positioning trellis systems. Spectra referred to leaf
were clearly dominated by absorption peaks, which were
assigned to the first overtone of the symmetric and asymmetric
OH bond stretching and/or combination bands (1450 nm), and
to the combination of the OH stretching band and to the OH
bending band (1920-1950 nm), respectively. Stretching,
combinations and bending are vibrational responses of the
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Figure 3. Principal component analysis from the spectra taken in July from Control (@) and water-stressed (O) vines. Bi-plot of (a) PC (principal component) 1 and
PC2 and (b) PC1 and PC3, from spectra acquired at a distance of 0.25 m. Bi-plot of (c) PC1 and PC2 and (d) PC1 and PC3 from spectra acquired at a distance of

0.50 m.
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organic groups to the electromagnetic excitement induced by
using NIR spectroscopy. Considering the chemical constitution
of the leaf, the hydroxyl (OH group) domination certainly
means a significant correlation between NIR spectra and water
presence (Curran et al. 2001).

Figure 3 represents the score plots of the PCA results
calculated on the absorbance spectra, within the range 1100—
2100 nm, respectively, detected at 0.25 m (Figure 3a,b) and
0.50 m (Figure 3¢,d) of sensor head distance from the leaves.
Although principal component (PC) 1 and PC 2 explained
99% of the residual variance for the two tested distances of
detection, the score patterns demonstrated a better
discriminative performance of the spectra acquired at a distance
of 0.50 m (Figure 3c).

Scatter plots reporting calibration and cross validation
(leave-one-out cross validation) results of the partial least
squares regression for stomatal conductance estimation are
reported in Figure 4a,b, respectively. Models were calculated
after X-data manipulation with spectra mean normalisation,
then a first derivative of Savitzky-Golay filtering (11 points of
smoothing, second order). Positive and promising results were
obtained and are represented by a coefficients of determination
of calibration (R?) equal to 0.96 and of cross validation (RZ,)
equal to 0.86, together with a standard error of calibration
and of cross validation of 18.1 and 45.6 mmol H,0/(m?s),
respectively.
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Figure 4. Relationship between predicted, using partial least squares
regression, versus measured values of stomatal conductance from a distance
of 0.50 m, in July and September, in leaves of Vitis vinifera L. cv. Riesling.
Measurements were acquired in July (@) and in September (O). (a) Calibration
[n, 48; RZ, 0.962; standard error of calibration, 18.10 mmol HZO/(mZ-s)]; (b)
Cross validation [n, 48; R§,0.862; standard error of calibration, 45.65 mmol
H,0/(m?s)1.
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Discussion

Non-destructive, contactless NIR reflectance spectroscopy in
the range of 1100-2100 nm, acquired proximally from a
vehicle, under field conditions, has proved to assess successfully
and reliably the stomatal conductance of grapevines, hence the
plants” water status (from no stress to severe water stress
conditions) in a commercial vineyard site. Likewise, reliable
calibration and cross-validation models for a classical indicator
of plant water status, such as the g, have been built from leaf
spectra acquired with a new, fast, non-destructive NIR
spectrophotometer in the vineyard.

Although g is a widely used plant-based indicator of a
plant water status (Jones et al. 2002, 2009), mainly in
physiological and agronomical research to evaluate different
irrigation strategies (Speirs et al. 2013, Degaris et al. 2015,
2016), its measurement, that is manually performed in
targeted leaves, is time and labour consuming, therefore
expensive. In the present work, g; was chosen as the reference
method as it is a quick, non-invasive technique, closely linked
to vine water use, because virtually all water transpired by the
vine passes through the stomata (Loveys and Jones 2008). The
tested NIR system mounted on an ATV and measuring in a
stop-and-go way yielded a robust and remarkable estimation
of the g values in seconds. Its performance and contactless
operating mode paves the way for its implementation on-
the-go in the near future. From the agronomical point of view,
the determination and assessment of a vineyard’s spatial
variability and temporal dynamics of water status requires a
vast number of plant water measurements (to be able to
conduct a geostatistics analysis and mapping), spatially
distributed, and these can be easily acquired with the tested
NIR system.

The sensitivity yielded by the NIR spectroscopy in-field
monitoring [45.65 mmol H,O/(m?s)] is similar to or even
better than that of the new approaches of thermal imaging
either from aerial or manual measurements (Garcia-Tejero
et al. 2016). Likewise, the correlations between the main
thermal indices, such as the conductance index and the crop
water stress index with g, yielded differences larger than
100 mmol H,O/(m?*s) in the estimated g, results for a given
value of the corresponding thermal index (Fuentes et al.
2012, Grant et al. 2016, Garcia-Tejero et al. 2016).

The present work builds on past studies using manual point
of contact active NIR sensors for assessment of plant water
status and represents the first step in developing a more
practical on-the-go sensor system for this purpose. So far, most
of the work using NIR spectroscopy to assess plant water status
has operated with portable manual devices in contact with the
leaf (Santos and Kaye 2009, De Bei et al. 2011, Gutiérrez et al.
2016) and has been validated against the measurement of the
Ysiem OF RWC (%) of leaves (Tardaguila et al. 2017). In these
studies, the correlation coefficient of cross validation (r.,) was
around 0.84 in all cases, working with spectral data acquired
on leaves, in different ranges, such as 1100-1830 (De Bei
et al. 2011) or 1600-2500 nm (Gutiérrez et al. 2016,
Tardaguila et al. 2017). In our study, the 1100-2100 nm
spectral range comprised key absorption and overtone bands
of the OH group, at 1450 nm and 1920-1950 nm. This may
respond for the noteworthy values of R* obtained for both
calibration and cross-validation models in the 1100-2100 nm
spectral region. In terms of the prediction of g from NIR
spectroscopy the number of studies is limited, and these have
been conducted with contact, hand-held NIR devices. As an
example, Warburton et al. (2014) obtained r., of 0.89 for g
in  Eucalyptus grandis seedlings, under a controlled
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environment, but no references for grapevines have been
found in the literature. In this regard, the present study holds
the predictive capability of NIR spectroscopy to estimate the
stomatal conductance as an indicator of the plant’s water
status. In the present work, the NIR spectrum in the range
1200-2100 nm is dominated by water bands; therefore, the
leaf water content could be successfully appraised with this
technique. Although the g is a plant-based water status
indicator, its relationship with the plant RWC, for example
with the RWC on a leaf basis, is variable. This is clearly
evidenced in the differential isohydric or anisohydric
behaviour of diverse grapevine genotypes for a given plant
RWOC. This fact suggests that the NIR calibration and prediction
models obtained in the present study for g, may not be used to
predict the plant RWC, but merely its g,. This is confirmed by
the results reported by Tardaguila et al. (2017) in a recent
study. In this work, NIR-derived calibration and prediction
models for RWCie and Yo, measured on the same leaves
of a various grapevine cultivars, were built. These models
yielded an r, value that varied from 0.66 to 0.81 for RWCjc,¢
and from 0.77 to 0.93 for sem.

The good and even enhanced discriminative capability of
the system at 0.50 m compared with 0.25 m is another positive
result. Staying away from the canopy at a further distance will
be safer for the on-the-go operations. Moreover, in future on-
the-go measurements, automated removal of spectra
corresponding to material other than leaves will be required.
For a vehicle moving at a speed of 5 km/h, an acquisition rate
of 28 Hz (as it is the one of the used NIR system) yields
approximately 20 measurements per linear metre of vineyard
row, which is a sufficient and representative number of data,
even if some of them (corresponding to material other than
leaf) have to be discarded. The leaf-class spectra per a given
row distance may then be aggregated and averaged and maps
could be finally prepared.

One of the main advancements of the tested NIR-based
method is its ability to widen the spatial representation of the
plant water status of a whole vineyard with respect to
conventional methods. Moreover, one of the requirements of
ideal water status indicators for optimised irrigation scheduling
is their ability of automation (Jones 2004, Fernandez 2014),
and this new spectroscopic method can be fully automated.
This way, the capability of the non-destructive, contactless
NIR device to provide a large number of measurements of
grapevine transpiration rapidly, to appraise the variation of
the water status of a vineyard and help to define optimised
irrigation strategies is a novel and remarkable outcome, highly
useful for the wine industry. Compared with other existing
techniques, such as thermography, NIR spectroscopy does
not require references, such as Ty, and Tye (Jones et al.
2002, Fuentes et al. 2012), and as mentioned before, its
sensitivity is similar or better to that of thermography-based
solutions. Commercially, thermography is currently mostly
acquired from remote aerial platforms (mostly remotely
piloted aircraft system or unmanned aerial vehicles). In
comparison to aerial thermography, the NIR spectroscopy
assesses the lateral side of the canopy instead of the zenital
view (Baluja et al. 2012) and suffers no limitation in
operational performance time as no batteries exhaust (i.e. In
drones typical operational times reach a maximum of
20 min). Moreover, legal issues and lack of time flexibility
derived from unmanned aerial vehicle piloting are not
applicable to the proximal NIR approach. Finally, once the
models are built, no additional expertise in data interpretation
is needed. The choice of a site-specific versus a global model
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should be further investigated, as the scale of applicability
changes in the two approaches, but the validity of the built
models against the reference values (stomatal conductance or
water potential) would remain. Finally, from the breeding
perspective, this methodology can contribute to mitigate partly
the bottleneck existing in this community for in-field high,
throughput phenotyping.

Further investigation involving different cultivars, locations
and seasons would contribute to refine better and to
demonstrate the robustness of the ATV-mounted, contactless
NIR method for the assessment of vine water status; however,
the novelty and power of the system has been demonstrated.
In the near future, this proximal technique, with powerful
instrumentation, may become of high relevance with practical
input of data immediately gained from the canopy or vine.
Implementing mapping to such a single factor will make the
variability within the vineyard visible and hence impact on
management practices.

Conclusion

A suitable and promising tool for proximal, contactless NIR
spectroscopy-based for assessing vine water status was
developed. It was capable of providing a large number of
measurements from a terrestrial vehicle, in order to appraise
the within-field variability of grapevine water status. Because
of the power in data acquisition, such technology could either
be implemented in phenotyping activities involving either
unmanned ground vehicles or through installation on vineyard
machinery. This offers a great opportunity to collect data on
water status with a high spatial and temporal resolution. Once
implemented this will be of great interest for any type of
management practice. Next steps to effectively put in place
NIR spectroscopy to map water status variability and irrigation
scheduling should include the testing of this technology on-
the-go and the definition of reference or threshold values
beyond which irrigation is necessary under various
environmental conditions.
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