
1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Power-Aware Job Scheduling on
Heterogeneous Multicore Architectures

Matteo Chiesi, Luca Vanzolini, Claudio Mucci, Eleonora Franchi Scarselli and Roberto Guerrieri

Abstract—This paper presents a power-aware scheduling algorithm based on efficient distribution of the computing workload
to the resources on heterogeneous CPU-GPU architectures. The scheduler manages the resources of several computing nodes
with a view to reducing the peak power. The algorithm can be used in concert with adjustable power state software services
in order to further reduce the computing cost during high demand periods. Although our study relies on GPU workloads, the
approach can be extended to other heterogeneous computer architectures. The algorithm has been implemented in a real CPU-
GPU heterogeneous system. Experiments prove that the approach presented reduces peak power by 10% compared to a system
without any power-aware policy and by up to 24% with respect to the worst case scenario with an execution time increase in the
range of 2%. This leads to a reduction in the system and service costs.

Index Terms—Power management, Power measurement, Multi-GPU, Scheduling, Power capping, Prediction.

F

1 INTRODUCTION

THE computational power required by scientific,
engineering and financial applications is unattain-

able on today’s most advanced multi-core CPUs [1].
For this reason, GPUs have been proposed as accelera-
tors for intensive workloads in large scale supercom-
puters [2], leading to the development of powerful
heterogeneous high performance computing systems
(HPC). For example the new supercomputer Titan,
developed by ORNL [3], uses a heterogeneous archi-
tecture coupling conventional 16-core CPUs and GPU
accelerators.
In such a scenario power has become the most crit-
ical issue. These systems can reach a peak power
consumption of tens of MW and in 2012 the sup-
ply cost over their useful life exceeded the initial
capital investment [4]. In addition to supply cost
abatement and positive environmental implications,
the limitation of the worst case power scenario leads
to a cost saving due to the lower complexity and
capacity of the cooling systems needed. Traditionally,
supercomputers were designed to sustain the worst
case operating condition. However this scenario is
very rare and oversized power supply and cooling
systems involve additional costs. Thus in order to
hold down the costs, supercomputers are nowadays
designed with a better-than-worst-case policy [5]. In
this situation the power consumption is constantly
monitored and if the operating condition overlaps the

• M. Chiesi, E. Franchi Scarselli and R. Guerrieri are with the Advanced
Research Center on Electronic Systems for Information and Commu-
nication Technologies E. De Castro (ARCES), University of Bologna,
viale Carlo Pepoli 3/2, 40123, Bologna, Italy, e-mail: (mchiesi, efranchi,
rguerrieri)@arces.unibo.it

• L. Vanzolini and C. Mucci are with STMicroelectronics, Agrate Bri-
anza, (MB), Italy, e-mail: (luca.vanzolini, claudio.mucci)@st.com

predetermined power threshold, the power budget
required by each node is adjusted to run safely under
the maximum physical limitation.
Power capping defined as a strategy to limit peak
power under a predetermined threshold is strongly
influenced by the jobs activated on the computing
system nodes. Hence techniques are needed which
allow one to dynamically control the peak power
while keeping system performance as high as possi-
ble [6]. In particular simultaneous execution of jobs
(concurrency) leads to a performance enhancement
effect, but also to an increase in power consumption.
On the contrary, when concurrency is decreased, both
performance and power consumption decrease.
In this framework, this paper presents a job-level
scheduling algorithm that aims to limit the worst
case power condition below a predetermined budget
during the concurrent execution of jobs in a hetero-
geneous computing system coupling CPU cores and
GPU accelerators. The need for power-saving policies
allowing control of power consumption, depending
on the jobs being activated on the nodes, has already
been recognized [7]. The open challenge is to find an
effective way to reduce peak power while keeping
concurrent execution of jobs as high as possible. The
paper is organized as follows. The rest of Section
1 discusses related work and the contributions of
this paper. Section 2 describes the power measuring
system. Section 3 discusses the scheduling algorithm
herein proposed. Performance evaluation is presented
in Section 4. Section 5 contains the discussion and
some conclusions are drawn in Section 6.

1.1 Related Work
Several studies have been carried out addressing the
need to limit power consumption. Some of them

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

exploit dynamic voltage and frequency scaling (DVFS)
in order to achieve a power reduction in HPC systems
[8]. In [9] the approach presented was to reduce the
clock frequency on nodes which had been assigned
small computation load. The algorithm developed in
[10] presents a power-aware DVFS run-time system
that performs power reduction with small perfor-
mance loss. Another work [11] provides a power-
aware scheduling algorithm for applications with
deadline constraint. In this approach DVFS is used to
minimize power consumption meeting the deadline
specified by users. However none of these approaches
are designed to keep the power consumption under a
preset threshold. Other methods exploit DVFS in or-
der to keep the maximum power lower than a prede-
termined power constraint. In [12] power is shifted be-
tween resources, observing how they are being used,
while keeping the total power consumption lower
than a given budget. Since frequency assignment is
performed at a very fine grain, applying this approach
to large scale systems could involve high overheads.
In [5] the technique presented uses feedback control
to keep the system within predetermined power con-
straints managing the CPU performance. The schedul-
ing algorithm developed in [13] uses integer linear
programming to assign a CPU frequency before ex-
ecuting a selected job in order to remain below the
predetermined budget. Even though DVFS is common
for CPU-based infrastructures [14], it is relatively new
for heterogeneous systems based on GPUs. It must
also be noted that scheduling algorithms based on dy-
namic voltage and frequency scaling deliver a subop-
timal response for short-time workloads because they
rely on reaction instead of prediction and for short
workloads this reaction can occur after the transition.
In this case the amount of performance loss is related
to the number of transitions in the workload and the
lag between request and capacity [15]. Approaches
that aim to reduce power consumption according
to the jobs being activated on the node have been
explored. In order to do this, the power consumption
of several library functions may be characterized for
different CPU performance. For example, in [16] a
power performance comparison between LAPACK
[17] and PLASMA [18] libraries was made using the
setup developed in [7]. The work presented in [19]
uses the same measure setup [7] in order to develop
a job-centric model. The purpose of these works is
to understand how a program can be modified to
improve performance with respect to system run-time
and power consumption. In [20] a method of profile-
based power-performance optimization is presented.
In this work a program is split into several regions
and for each one the frequency which minimizes the
power-performance ratio is selected.
All of these works are based on multicore CPU
and not on heterogeneous CPU-GPU architectures.
In addition, most of the algorithms described in the

literature do not consider the concurrent execution of
several jobs on different cores as a target to be opti-
mized in order to keep peak power under a predeter-
mined budget. However, in heterogeneous computing
systems where GPUs are the most power-consuming
devices, the simultaneous execution of GPU kernels
may lead to overlapping high power profiles, causing
generation of power absorption peaks which could be
avoided with a smart distribution of the workload to
the resources.

1.2 Contributions of This Work

This paper presents a predictive power-aware sche-
duling algorithm which provides a real-time alloca-
tion of computationally-intensive jobs to the nodes
of a heterogeneous computing system, with a view
to keeping the peak power under a predetermined
budget, mitigating the worst case power condition.
The basic idea behind the algorithm is to adopt a
two-step approach. First, the power consumption of a
GPU kernel library is characterized. Jobs activated on
the system nodes utilize these kernels to accelerate in-
tensive computational cores. From the user viewpoint
this characterization does not affect the programming
model at all. However, each time a new kernel is
added to the library, its power consumption must
be characterized. Second, this characterization is then
used to develop a model capable of adjusting the start
time of a job depending on its GPU kernel calls, and
selecting the node on which to activate it, taking into
account the jobs that are already running on the sys-
tem. This approach limits peak power requirements
and enables the system not to exceed the predeter-
mined budget. This is achieved without performance
reductions caused by frequency and voltage scaling
as proposed in [5], since it is obtained by consider-
ing the different profiles associated with each kernel
in order to avoid concurrent execution of the most
power-consuming jobs on the same node. The specific
contributions of this paper may be summarized as
follows:

• A low-cost measurement system has been devel-
oped to extract the power profile of jobs running
on heterogeneous computer architectures. This
system has been designed to make up for the lack
of standard hardware sensors in the computing
nodes used as basic blocks of high performance
systems [7].

• A power-aware scheduling algorithm to manage
the resources of several computing nodes has
been developed. The scheduler manages the start
times and the nodes on which to run the jobs. The
goal is to minimize peak power absorption (such
as may happen during simultaneous execution of
several jobs) while keeping concurrency as high
as possible.

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

• A quantitative analysis has been carried out in
order to demonstrate that the algorithm signifi-
cantly reduces peak power requirements during
parallel job execution, mitigating the worst case
power condition.

2 POWER MEASURING SYSTEM

In order to develop a job-level power model it is
necessary to characterize the power consumption of
the jobs performed on the system nodes. Common
power profiling techniques allow one to measure the
consumption of a single computer component such
as a processor or a co-processor [21] [22] [23] [24].
Other setups have been proposed to perform fine
grain profiling analysis of an entire system [7] [25].
However, they are based on expensive measuring
instruments.
In [23] three options are discussed to measure the
power consumption of a job running on heteroge-
neous CPU-GPU platform: (1) measuring the power
consumption of the GPU card; (2) measuring the
input of the power supply unit (PSU); (3) measuring
the output of the power supply unit. Measuring the
power consumption of the GPU card is the most direct
way, although it is not precise because the GPU is a
co-processor and needs a CPU as a host. Thus the
power measured is only a part of the power required
to run the job. Measuring the PSU input includes the
power loss by the power supply unit which may be
20% or more of the total power dissipation [23]. How-
ever, measuring the total PSU output will not allow
one to understand how each computer component
contributes to the total power consumption, whereas
in order to develop a job-level model one needs
to measure the power consumption of each system
component. Fig. 1 shows the acquisition system used

GPU
0

Power Supply
PSU

Current
Sensing
Board

CPU
K-1

CPU
0

MOTHERBOARD

RAM

GPU
M-1

PCI-e

Acquisition
and

Elaboration
V3.3

V 5

V 12

PCI-e
HD

PCI-e
Power line

P 3,3V ATX
P 5V ATX
P 12V ATX
P 12V EPS
P 12V PCI-e
P 12V PCI-e
P 3.3V SATA
P 5V SATA

SATA

Fig. 1. Measuring setup for the generic computing node

in this work. It has been designed to measure the
power consumption of each target system component:
• the motherboard (ATX 12 V, 5 V and 3.3 V);

• the additional power supply for CPU (EPS 12 V);
• the GPUs (PCI-e 12 V);
• the hard disk (SATA 5 V and 3.3 V).

The current-sensing board is composed of 16 Hall
effect current sensors capable of measuring currents
in the range 0-30 A (Allegro ACS713) and 0-50 A
(Allegro ACS758). The sensor outputs provide voltage
values proportional to the currents measured. Low-
pass filters are connected between sensor outputs and
microcontroller inputs (STM32F) in order to improve
the signal-to-noise ratio. Analog-to-digital converters
internal to the microcontroller sample the current
data. The board is connected to a PC used to acquire
data via USB. A Java interface is set up to manage data
acquisition. When the connection between the board
and the PC is set, the microcontroller starts to send
one data packet per second. Using all 16 channels,
the maximum sample rate is 1600 samples/s for each
channel. The current samples are then multiplied by
the voltage values measured with a Fluke device and
data are post-processed by Matlab in order to obtain
the power profile of each job.

3 POWER-AWARE SCHEDULER

High performance computing relies on computing
nodes equipped with multicore devices at each
node and a distributed resource management system
(DRMS). Users submit jobs which have to be assigned
to the cores. The DRMS sorts and assigns jobs to
the available resources following a scheduling policy.
Hence by changing the DRMS policy it is possible to
limit peak power consumption.
The proposed power-aware scheduler is developed
and implemented starting from two common schedul-
ing policies (First-in-first-out and Backfilling first fit).
• First in First Out (FIFO)

First-in-first-out is a simple scheduling strategy.
New jobs that must be executed are placed at
the end of the queue. When a resource becomes
available the first job in the queue is activated.

• Backfill algorithm (BFF)
Backfill is a policy which allows the scheduler
to run jobs out of arrival order. When there are
not enough resources to run the first job in the
queue, other jobs in the queue are checked in
order to find a job that could be executed without
exceeding the additional constraint imposed by
the algorithm. Usually backfill allows the sched-
uler to start lower-priority jobs so long as they
do not delay the first job in the queue. Execution
is therefore limited to the resources available and
the time available before the expected start time
of the first job. Various backfill strategies can
be used. In this work a backfill first fit strategy
has been implemented: the list of feasible jobs
is filtered, selecting the first one which fits the
constraints.

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

The proposed power-aware scheduler is capable of
predicting the behavior of each node, every time a
new application is ready to be activated. Each job
discussed in this paper is composed of a low com-
putational part running on a CPU host, and a data-
intensive computational kernel running on a GPU.

3.1 The scheduling algorithm

In order to simplify the design of the scheduling
algorithm, three hypotheses were formulated:
• during the entire execution of a GPU kernel, the

power profile is assumed constant and equal to
the maximum value;

• power consumption of GPU kernels is not sensi-
tive to changes in input data set values;

• different input data size for the same GPU ker-
nel lead to the same peak power with different
durations.

The validation of these hypothesis will be discussed
in Section 4.1. Parameters used in the scheduling
algorithm are defined in Table 1.

TABLE 1
Nomenclature table of the algorithm

PC Power Capping : predetermined power constraint
Pjob (m) Maximum power consumption of mth-job
Pnode (n) Power consumption of nth-node
Pidle (n) Power consumed by the nth-node in idle state

N number of nodes
M number of cores for each node

The purpose of the scheduler is to assign jobs to
the available resources, limiting the maximum power
consumption of each node to below the predeter-
mined constraint (PC) while keeping the parallelism
as high as possible. PC is set via software and can
be adjusted by the user. Power consumption of all
kernels comprising the library is characterized a priori
using the measuring system described in Section 2.
Thus, the scheduler already knows the maximum
power consumption of each job (Pjob) that could be
activated on the nodes. As previously mentioned,
these contributions are assumed constants and equal
to their maximum values. The detailed description of
how the maximum power consumption of each job
has been obtained is reported in Section 4.1.
Each GPU in the system is a stand-alone device
running an independent job. Hence, the total power
consumption of the nth-node during the concurrent
execution of M jobs is computed by adding up the
power consumed by the node in idle state (Pidle)
and the power consumption of jobs (Pjob) which are
running on that node, as shown in (1).

Pnode (n) = Pidle (n) +

M−1∑
m=0

Pjob (m) ∀n ∈ N (1)

Input: N ;PC ;Pnode;Pjob

Output: selected node (n)
1: n← none
2: Pmin ← PC

3: for i = 0 to N − 1 do
4: Ptmp = PC − Pnode (i) − Pjob

5: if (0 ≤ Ptmp ≤ Pmin) then
6: Pmin ← Ptmp

7: n← i
8: end if
9: end for

10: return

Fig. 2. Node selection

Once the mth-job has been executed, the power con-
sumption of the nth-node is updated as shown in (2).

Pnode (n) = Pnode (n) − Pjob (m) (2)

When a new job needs to be activated on the system
the DRMS checks if there are nodes with resources
available and if these nodes will meet the power
constraint when executing the job, as reported in (3).

PC ≤ Pnode (n) + Pjob (3)

Hence, if the condition shown in (3) is verified for
some nodes, the scheduler assigns the application
according to a minimum power-slot policy as shown
in the algorithm reported in figure 2.

job to be allocate

job to be allocate

job to be allocate PC

t t

t t

PC

PC PC

Job 2

Job 3

Job 1

Job 4
Job 3

Job 2

Job 1

Power

Power

Power

Power

Job 1 Job 1

Job 2 Job 2

Job 3 Job 3

NODE 1

NODE 3 NODE 4

NODE 2

Tstart Tstart

Tstart Tstart

Pidle Pidle

Pidle Pidle

P
n

o
d

e(
1

)

P
n

o
d

e(
2

)
P

n
o

d
e(

4
)

P
n

o
d

e(
3

)

Pjob

Pjob

Pjob

Fig. 3. Example of scheduling: 4 nodes, each one com-
posed of 4 cores

Fig. 3 explains graphically what is discussed above.
The system shown is composed of 4 nodes (N = 4),
each one equipped with 4 GPUs (M = 4). At time
Tstart the scheduler has to select the node on which
the new job is to be activated. The first node (NODE
1) is already running 4 jobs so it has no resources
available. The second node (NODE 2) has one GPU
available. However, if the job were to be run on the
node, the PC threshold would be exceeded. The job
needs to be executed on NODE 3 or NODE 4 if the

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

power budget is not to be exceeded. The DRMS per-
forms the scheduling according to a minimum power-
slot policy as illustrated in the proposed algorithm.
The strategy is to activate the job in the node with
the smallest ”power-slot” able to keep the power con-
sumption under the predetermined threshold. This is
done in order to keep the largest ”power-slot” free
for a more power-consuming job. In this example the
job is activated on NODE 4 while NODE 3 is left
free for a more power-consuming job. If all nodes
are busy or the constraints are not met, the job will
wait to be scheduled in the queue in accordance with
the scheduling policy selected. Thus the scheduler
manages both power and GPU as finite resources. The
algorithm can easily be extended to rack level instead
of node level. In this case, each time a new job is
activated, the power needs to be controlled at rack
enclosure level [6] instead of node level. Equation (3)
can be rewritten as:

Prack ≤
N−1∑
n=0

Pnode(n)
+ Pjob (4)

Once the characterization of jobs has been completed,
the scheduler makes its decision at run time (on-
line), selecting the most suitable candidates out of
the current set of tasks ready-to-run. The algorithm
is non-preemptive in that the currently executing task
will not be preempted until completion.

4 PERFORMANCE AND EVALUATION

4.1 Job Characterization
Six jobs in the field of linear algebra (see Table 2) were
developed, starting from the code samples available
in [26], [27]. The power consumption of these jobs
was characterized by changing the dimensions and
the values of the input data. The configuration of
the computing node used for this work is detailed
as follows (see also Fig. 1 with K = 2 and M = 4):
• Motherboard SuperMicro X8DTG-QF;
• Two Intel Xeon E5520 CPUs @ 2.27 GHz;
• 24 GB RAM;
• Two NVIDIA GeForce GTX 590 (4 GPUs).

The contributions measured in order to obtain an
estimation of the power consumption during the com-
putation of a job are:
• the consumption of the motherboard (ATX);
• the additional power supply for CPU (EPS);
• the power of the GPUs (PCI-e);
• the consumption of the hard disks (SATA).

The idle power consumption of the computing node
(Pidle) is 240 W. Each job was characterized in the
same operating conditions and during its execution
no competing tasks were performed.
The heterogeneous programing model supported by
GPU implies a system composed of a host (CPU) and
a GPU each with their own separate memory. Kernels

operate out of GPU memory, so the run-time provides
functions to allocate, deallocate and copy GPU mem-
ory, as well as transfer data between host memory
and GPU memory [26]. This architecture is reflected
in the power profile of each job. A small increase in
the job power consumption will be detected during
data upload and download. However the most time-
and power-consuming phase is the kernel execution.
Fig. 4 shows an example of job power profile obtained
with the monitoring system developed.

HOST EXECUTION

cuBLAS
 kernel

Download and upload Allocation and Upload

V ATX

V ATX

V ATX

V EPS

P 3V ATX
P 5V ATX

P 12V PCI
P 12V PCI
P 5V SATA

P 12V ATX
P 12V EPS

Fig. 4. Power profile measured during a matrix multiplication
on GPU

The figure shows a characterization of a matrix multi-
plication performed by multiplying two input matri-
ces comprising 30720x30720 elements. Since the GPU
memory has limited space, the computation was car-
ried out by decomposing the matrix into 9 different
sub-matrices of dimensions 10240x10240. Two main
contributions can be observed: the black line which
shows the consumption of the motherboard and the
blue line which represents the power supply of a
GPU. As shown in Fig. 4, a GPU job starts with
allocation of the GPU memory and copying of data
from host to GPU (contribution indicated in Fig. 4
with allocation and upload). Once the data have been
allocated on the GPU memory, the kernel execution
starts. This phase always coincides with the highest
power in the job (contribution indicated in Fig. 4
with cuBLAS kernel). After computation of a kernel,
results are copied from device to host memory and
new input data are uploaded on the device memory
(contribution indicated in Fig. 4 with download and
upload). Once the job is finished, the device memory
is released. The other contributions reported in Fig.
4 (e.g. SATA) are negligible. All the jobs studied in
this work, performed with different sizes of input
matrix and different input data set values, follow
the trend discussed above and shown in Fig. 4. The
characterization proves the hypothesis discussed in
Section 3. The power profile of a kernel is not sensitive
to changes in the input data set values. In addition,

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

(a) Theoretical

(b) Experimental

Fig. 5. Comparison between theoretical and experimental
evaluation of total power absorption during 4 concurrent
matrix multiplications

experiments demonstrate that different data sizes for
the same kernel lead to power profiles with very
similar power peaks which can be approximated to
the same peak value. The different duration of these
kernels depends on the computational complexity
of the kernel selected. A summary of the GPU job
power consumption is reported in Table 2. The table
shows that the jobs differ considerably in power con-
sumption value. These values have been obtained by
subtracting the idle power consumption of the GPU
from its maximum power consumption during the
execution of the job.

TABLE 2
Power consumption of GPU jobs

Job Pjob

Matrix Multiplication 160 W
Matrix Multiplication (cublas) 220 W

Eigenvalues 170 W
Triangular Matrix Inversion 190 W

Matrix Transpose 180 W
Scalar Product 110 W

As previously described in the algorithm, character-

ization of jobs which can be activated on the target
system allows the scheduler to predict what the power
consumption will be, knowing which jobs are cur-
rently running on the node. An example of what has
been discussed above is shown in Fig. 5. The con-
sumption profile is obtained by considering 4 concur-
rent executions of the previously characterized matrix
multiplication. Fig. 5a shows the prediction obtained
by adding the profile previously characterized, while
Fig. 5b shows the consumption measured during run-
time. Substituting the values in (1), the estimated peak
power consumption is computed.

Pnode (n) = (240 +

3∑
m=0

220) W = 1120 W

The dashed lines at the top of the two profiles show
the approximation introduced in the algorithm (i.e.
power constant and equal to the maximum power
value). The two profiles show the same trend. The
fluctuations are more evident in the theoretical case
due to the fact that the plot represents the sum of four
identical contributions, so that noise components are
visibly amplified.

4.2 Experimental Setup
The scheduler was evaluated on 4 computing nodes
(N = 4) equal to that described in Section 4.1. Hence
the total number of GPUs used is 16. The algorithm
was tested for generating, executing and measuring
10 workloads of 1000 job requests selected from the
previously characterized jobs. In order to create the
workload, a Markov chain model was used [28] [29].
Each job requires 1 GPU and it is assumed that
there is no data dependence between any jobs. Each
measurement was ended after all jobs had finished.
The workloads were generated so as to have more
concurrent jobs needing to be activated than resources
available. This was done in order to verify the perfor-
mance of the algorithm during high-demand periods.
Power profiles obtained using the proposed power-
aware scheduling algorithm were compared with the
results obtained by executing and measuring the same
jobs without the power-aware characteristic, so as to
evaluate the trade-off between performance and peak
power reduction.
As shown in the previous Section, the worst case
scenario of a node, (considering the previously char-
acterized jobs) corresponds to four concurrent exe-
cutions of matrix multiplication (cublas), bringing the
total peak power up to 1120 W (Ppeak {WC}) as shown
in Fig. 5. Although this situation is very rare, the
power supply has to be designed so as to sustain this
condition.

4.3 Analysis of Results
Allocation of workloads to resources was evaluated
for the two different policies (FIFO, BFF) while chang-

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Fig. 6. Average performance obtained using the power-aware scheduling algorithm. In a) one sees the average
peak reduction obtained by the algorithm, while b) shows the increase in time. Fig. c) shows the increase in
energy consumption and Fig. d) the power reduction with respect to the worst case scenario.

ing the constraint on the maximum power value
attainable by the system (PC). Since the scheduling
is done according (3), changing PC the maximum
power consumed by the node and the execution time
of the entire workload change as well. Several indices
are introduced to evaluate the performance of the
proposed technique. A detailed description of these
follows:
Peak reduction (PR)
The peak reduction is computed comparing the peak
power values obtained executing the workload with
and without the power aware characteristic as shown
in (5):

PR =
Ppeak {ST} − Ppeak {PA}

Ppeak {ST}
· 100 (5)

with

Ppeak = max({Pnode (n) : n = 0, . . . , N − 1}) (6)

where Ppeak {ST} is the peak power value measured
during the execution of the algorithm without the
power-aware characteristic while Ppeak {PA} is the
peak power value measured during the execution of
the power-aware version.
Peak reduction with respect to the worst case power
scenario (PW)
Peak reduction with respect to the worst case power
scenario is defined using (5) by substituting the power

value measured during the execution of the algorithm
without the power aware characteristic (Ppeak {ST})
with the worst case power value (Ppeak {WC}, in this
case 1120W).
Increase in time (T)
The increase in computation time is obtained com-
paring the execution time of the workload with and
without the power aware characteristic as shown in
(7):

T =
Tmax {PA} − Tmax {ST}

Tmax {ST}
· 100 (7)

with

Tmax = max({TW (n) : n = 0, . . . , N − 1}) (8)

where TW is the workload execution time.
Increase in energy (EC)
The increase in the energy consumption is evaluated
following (9):

EC =
E{PA} − E{ST}

E{ST}
· 100 (9)

where the total energy consumption E is computed
as shown in 10

E =

N−1∑
n=0

(

TW (n)∫
0

Pnode (n,t) · dt) (10)

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Peak power deviation from the average (MD)
The peak power deviation from the average is ob-
tained as reported in (11):

MD =
Ppeak − Pavg

Pavg
· 100 (11)

where the average power is computed following (12):

Pavg =
E

N−1∑
n=0

TW (n)

(12)

Fig. 6 shows the experimental results measured by
executing the workloads. As shown in Fig. 6a, by
setting the power capping value at 800 W a peak
power reduction of around 15% is measured. How-
ever this reduction is paid for by a time increase
between 17 and 19% (Fig. 6b) and an increase in
energy consumption between 14 and 15% (Fig. 6c),
depending on the scheduling policy. This means that
the threshold chosen (PC) limits full exploitation of
the computational parallelism available. By using a
higher power budget (850 W), better results can be
obtained. In this case the increase in time taken to
compute the entire workload is less than 2% with
the power-aware version of the BFF algorithm, with
a measured peak power reduction of up to 10%. The
increase in energy is negligible since it is less than
2%. Using the power-aware FIFO approach, results are
slightly worse because each time the power constraint
is not met all jobs are delayed. On further increasing
the PC threshold, a peak power reduction between
6 and 7% is recorded without any impact on system
performance. This means that the algorithm removes
the sporadic peaks that take place during workload
execution, thus avoiding power capacity overload.
Another advantage introduced by the algorithm is
that it mitigates the worst case power scenario. As
shown in Fig. 6d, by using the power-aware approach
(with PC = 850W) the worst case scenario is reduced
by up to 24% with a negligible impact on perfor-
mance.

Fig. 7. Power-Performance comparison.

Fig. 7 explains the benefit of the algorithm from
another point of view. The plot shows the peak power
deviation from the average (MD) as a function of the

increase in computational time (T). When no capping
is forced a peak power 60% higher than the average
value is measured. The first part of the curve (i.e.
when power capping is set between 950 and 900 W)
shows how the peak deviation from the mean can be
reduced by 10% without any significant increase in
the execution time of the workload, by scheduling
jobs taking their power consumption into account.
In the last part of the curve the value set in the
algorithm is closest to the average power value of the
workload, so that peak reduction is obtained at the
cost of a significant time increase. As expected, the
BFF scheduling policy allows one to achieve better
results than the FIFO policy because it introduces
fewer constraints on queue management. A summary
of the measurements recorded is shown in Table 3.

TABLE 3
Power-Performance Comparison

p-FIFO p-BFF

PC
PR T E MD PR T E MD
[%] [%] [%] [%] [%] [%] [%] [%]

800 12.0- 11.7- 10.5- 45.5- 11.2- 11.3- 9.5- 45.0-
18.5 22.6 17.8 52.5 18.7 21.8 16.9 54.6

850 6.9- 2.8- 2.3- 43.4- 6.4- 0- 0- 42.2-
14.6 9.7 7.9 52.9 13.2 4.4 3.6 49.5

900 2.0- 0- 0- 45.4- 3.5- 0- 0- 44.9-
9.1 2.6 2.0 56.6 9.0 2.9 2.4 56.0

950 0- 0- 0- 49.9- 0- 0- 0- 49.9-
6.2 2.8 2.3 67.5 8.9 2.5 2.3 67.5

5 DISCUSSION
Although thorough modeling of GPU kernel power
dissipation does not lie within the scope of this work,
several important considerations can be drawn from
the measurement of power profiles taken by the mea-
suring system:
• Execution of a GPU job (for the architecture stud-

ied) is much more peak power-consuming than
execution of the same job on a CPU (although
the execution time is significantly reduced);

• during execution of a kernel the power profile
can be assumed constant;

• power consumption of jobs is not sensitive to
changes in the input data set values;

• different input data sizes for the same kernel lead
to the same trend with different durations. The
run-time depends on the computational complex-
ity of the algorithm used in the kernel.

Fig. 8 shows what has been discussed above. The
first plot (Fig. 8a) was obtained when computing the
same matrix multiplication three times, using three
different algorithms. The first two are mapped on
GPU (matrixMul cublas and matrixMul kernel), while
the third is obtained by computing the same operation
on CPU (host execution). Since the computation on
GPU is much more power consuming than on CPU, in
order to reduce peak power one should focus on con-
current executions of GPU kernels rather than on CPU

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

(a) (b)

(d) (c)

Fig. 8. Analysis of power requirements of different jobs; (a) Comparison between GPU and CPU execution of matrix
multiplication; (b) Four different GPU kernels; (c) Triangular matrix inversion with different sizes of matrix; (d) Analysis of
power requirements of different jobs

tasks. Since the difference between the idle power
state and the maximum power state of a CPU is small
(compared to that of a GPU), the CPU power con-
sumption can be assumed to be equal to its maximum
power consumption each time a new job is activated
on CPU. Fig. 8b shows the execution of different jobs
performed on GPU. A GPU job can be composed of a
single kernel or multiple call to the same kernel per-
formed with different sets of input data to overcome
the limited space of the GPU memory. Fig. 8b makes
it clear that the power consumption of a GPU job
can be considered as a constant contribution (dashed
line) that has to be added to the total power con-
sumption. Fig. 8c and Fig. 8d provide some additional
considerations as to the values and sizes of input data.
Fig. 8c shows four matrix multiplications performed
with different input values. The graph shows that the
power profile of a job depends only on the kernel
computed and is independent of the input values.
The last plot (Fig. 8d) shows that the same kernel,
performed with different input data sizes, leads to
different durations of the kernel, but with comparable
peak power values. These considerations helped to
streamline development of the algorithm (which is
in fact based on these hypotheses) so as to make it
general.

5.1 Application case
As previously pointed out, the purpose of the algo-
rithm is not to save energy, which increases, albeit
slightly. The approach aims to reduce the supply cost
due to high peak power whilst having negligible
impact on the parallelism of computational nodes.
From another point of view the developed model
allows designers to increase the number of cores
without increasing the capacity of the power supply
unit. For example, each node used in this work is
equipped with a power supply unit of 1400 W. As
shown in Section 4 the worst case power scenario is
around 1120 W. In this scenario, since each GPU GTX
590 used in this work consumes up to 365W, to equip
the system with another GPU could lead to system
failure caused by power capacity overload. Using the
proposed approach, it would be possible to add one
GPU GTX 590 to the system, without overloading
the power capacity, thereby reducing supply costs,
cooling systems and power distribution units. The
algorithm can be used as a level of adjustable power
state software services [6], [30] in order to provide an
efficient solution during high-demand periods.

5.2 Limitations of the approach
Experimental results shown in this paper depend
on the target architecture utilized in this work. The

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

execution of these jobs on a different architecture
could lead to a different peak power values. This
is because the technique is based on an a priori
characterization that is architecture dependent. If the
target system changes, the characterization has to be
repeated on the new target system. In addition a new
characterization is needed each time a new kernel is
added to the library. These considerations highlight
how the power-aware scheduling algorithm is related
to the low-cost monitoring system proposed.

6 CONCLUSION

This work presents a new algorithm for parallel
scheduling, executed on GPU cluster nodes. The idea
proposed is to manage both power consumption and
GPUs as finite resources. Since the power configu-
ration may vary widely, there is the likelihood that
job overlapping will result in power spikes high
enough to exceed the specifications of the nodes,
causing catastrophic failures in systems designed to a
better-than-worst-case policy. In addition, peaks syn-
chronized across several nodes could cause localized
power outage. Compared to a system without any
power-aware policy, the model allows one to obtain a
peak power reduction of as much as 10%. Executing
workloads that usually involve high power peaks can
be avoided at the cost of a very slight time increase,
making it possible to reduce the power supply cost.

REFERENCES

[1] M. Showerman, J. Enos, A. Pant, V. Kindratenko, C. Stef-
fen, R. Pennington, and W.-m. Hwu, “Qp: a heterogeneous
multi-accelerator cluster,” in Proc. 10th LCI Int. Conf. on High-
Performance Clustered Computing, 2009.

[2] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W.
Arnold, J. E. Stone, J. C. Phillips, and W.-m. Hwu, “Gpu clus-
ters for high-performance computing,” in Cluster Computing
and Workshops, 2009. CLUSTER’09. IEEE Int. Conf. on. IEEE,
2009, pp. 1–8.

[3] ORNL. (2012, December) Titan project timeline. [Online].
Available: http://www.olcf.ornl.gov/titan/

[4] Federal Energy Management Program, “Quick Start Guide
to Increase Data Center Energy Efficiency,” U.S. Department
of Energy, Tech. Rep., 2012. [Online]. Available: www1.eere.
energy.gov/femp/pdfs/data center qsguide.pdf

[5] C. Lefurgy, X. Wang, and M. Ware, “Power capping: a prelude
to power shifting,” Cluster Computing, vol. 11, no. 2, pp. 183–
195, 2008.

[6] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “Ship: A
scalable hierarchical power control architecture for large-scale
data centers,” Parallel Distrib. Syst., IEEE Trans. on, vol. 23,
no. 1, pp. 168–176, 2012.

[7] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W.
Cameron, “Powerpack: Energy profiling and analysis of high-
performance systems and applications,” Parallel Distrib. Syst.,
IEEE Trans. on, vol. 21, no. 5, pp. 658–671, 2010.

[8] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive,
transparent frequency and voltage scaling of communication
phases in mpi programs,” in Proc. of the 2006 ACM/IEEE Conf.
on Supercomputing. IEEE, 2006, pp. 14–14.

[9] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in time
dynamic voltage scaling: Exploiting inter-node slack to save
energy in mpi programs,” in Proc. of the 2005 ACM/IEEE Conf.
on Supercomputing. IEEE Computer Society, 2005, p. 33.

[10] C.-h. Hsu and W.-c. Feng, “A power-aware run-time sys-
tem for high-performance computing,” in Proc. of the 2005
ACM/IEEE Conf. on Supercomputing. IEEE Computer Society,
2005, p. 1.

[11] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling
of bag-of-tasks applications with deadline constraints on dvs-
enabled clusters,” in Proc. of the seventh IEEE Int. Symp. on
cluster computing and the grid, 2007, pp. 541–548.

[12] X. Wang and M. Chen, “Cluster-level feedback power control
for performance optimization,” in High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th Int. Symp. on. IEEE,
2008, pp. 101–110.

[13] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Parallel
job scheduling for power constrained hpc systems,” Parallel
Computing, 2012.

[14] B. Lin, A. Mallik, P. Dinda, G. Memik, and R. Dick, “User-
and process-driven dynamic voltage and frequency scaling,”
in Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE Int. Symp. on. IEEE, 2009, pp. 11–22.

[15] W. L. Bircher and L. K. John, “Core-level activity prediction for
multicore power management,” Emerging and Selected Topics in
Circuits and Systems, IEEE J. on, vol. 1, no. 3, pp. 218–227, 2011.

[16] H. Ltaief, P. Luszczek, and J. Dongarra, “Profiling high per-
formance dense linear algebra algorithms on multicore archi-
tectures for power and energy efficiency,” Computer Science-
Research and Development, vol. 27, no. 4, pp. 277–287, 2012.

[17] E. Anderson, LAPACK Users’ guide. Siam, 1999, vol. 9.
[18] U. PLASMA, “Parallel linear algebra software for multicore

architectures,” Version, vol. 2, no. 4, p. 5, 2011.
[19] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y. Su,

and K. Cameron, “Power-aware predictive models of hybrid
(mpi/openmp) scientific applications on multicore systems,”
Computer Science-Research and Development, vol. 27, no. 4, pp.
245–253, 2012.

[20] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku, and
D. Takahashi, “Profile-based optimization of power perfor-
mance by using dynamic voltage scaling on a pc cluster,” in
Parallel and Distributed Processing Symp., 2006. IPDPS 2006. 20th
Int. IEEE, 2006, pp. 8–pp.

[21] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“The design and use of simplepower: a cycle-accurate energy
estimation tool,” in Proc. of the 37th Annual Design Automation
Conf. ACM, 2000, pp. 340–345.

[22] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,”
ACM SIGARCH Computer Architecture News, vol. 28, no. 2, pp.
83–94, 2000.

[23] R. Suda et al., “Accurate measurements and precise modeling
of power dissipation of cuda kernels toward power optimized
high performance cpu-gpu computing,” in Parallel and Dis-
tributed Computing, Applications and Technologies, 2009 Int. Conf.
on. IEEE, 2009, pp. 432–438.

[24] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power
consumption analysis and modeling for gpu-based comput-
ing,” in Proc. of ACM SOSP Workshop on Power Aware Comput-
ing and Systems (HotPower), 2009.

[25] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony, “The case for power man-
agement in web servers,” in Power aware computing. Springer,
2002, pp. 261–289.

[26] C. Nvidia, “Nvidia cuda programming guide,” 2011.
[27] F. Ries, T. De Marco, and R. Guerrieri, “Triangular matrix in-

version on heterogeneous multicore systems,” Parallel Distrib.
Syst., IEEE Trans. on, vol. 23, no. 1, pp. 177–184, 2012.

[28] A. Krampe, J. Lepping, and W. Sieben, “A hybrid markov
chain model for workload on parallel computers,” in Proc.
of the 19th ACM Int. Symp. on High Performance Distributed
Computing. ACM, 2010, pp. 589–596.

[29] N. Sharifimehr and S. Sadaoul, “Markovian workload mod-
eling for enterprise application servers,” in Proc. of the 2nd
Canadian Conf. on Computer Science and Software Engineering.
ACM, 2009, pp. 161–168.

[30] J. Heo, P. Jayachandran, I. Shin, D. Wang, T. Abdelzaher, and
X. Liu, “Optituner: On performance composition and server
farm energy minimization application,” Parallel Distrib. Syst.,
IEEE Trans. on, vol. 22, no. 11, pp. 1871–1878, 2011.

http://www.olcf.ornl.gov/titan/
www1.eere.energy.gov/femp/pdfs/data_center_qsguide.pdf
www1.eere.energy.gov/femp/pdfs/data_center_qsguide.pdf

1045-9219 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2014.2315203, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Matteo Chiesi received the MS degree in
electrical engineering from the University of
Modena and Reggio Emilia, Modena, Italy,
in 2009. He has worked for STMicroelec-
tronics and is currently working toward the
PhD degree at the Advanced Research Cen-
ter on Electronic Systems (ARCES), part of
the University of Bologna, Italy. In 2013, he
was a visiting student at the Department of
Computing, Imperial College London. His re-
search interests cover heterogeneous multi-

core systems for high performance computing.

Luca Vanzolini received the informatics &
communication technologies engineering de-
gree from University of Bologna, Bologna,
Italy in 2006.
Since 2006 he has been a consultant for
STMicroelectronics, in the field of reconfig-
urable architectures first, and then in the field
of energy harvesting and low-power systems.
His main research interests include software
and tools development for reconfigurable ar-
chitectures.

Claudio Mucci received the Electronics En-
gineering degree from the University of
Bologna, Italy, in Feb. 2003 and the PhD
degree at the same university in 2007. Since
2003, he has been with the Advanced Re-
search Center on Electronic Systems E. De
Castro (ARCES), Bologna, and during that
period he has been a STMicroelectronics
consultant in the field of reconfigurable com-
puting. Since the 2009, he joined STMicro-
electronics Technology R&D, Agrate Brianza,

Italy. His main research interests include configurable platforms
based on run-time and metal-programmable technologies, digital
signal processing, application development and related methodolo-
gies applied to embedded programmable system. He is co-author of
about 30 publications on international conferences and journals in
the same field.

Eleonora Franchi Scarselli (M’98) received
the M.S. degree in electrical engineering and
the Ph.D. degree in ”electrical engineering
and computer science” from the University
of Bologna, Bologna, Italy, in 1992. From
1994 to 2004, she was a Research Assistant
with the Faculty of Engineering, University
of Bologna, where she has been an Asso-
ciate Professor since 2005 and she currently
teaches design of digital integrated circuits.
She is with the Advanced Research Center

on Electronic Systems (ARCES) at the same University where she
has been and is presently involved in research activities concerning
design of circuits and system for RF and sensor applications, and for
enabling wireless 3-D communication.

Roberto Guerrieri received the Dr.Eng. and
Ph.D. degree from the University of Bologna,
Italy, in 1980 and 1986 respectively.
After working at the Department of Electrical
Engineering and Computer Sciences of the
University of California at Berkeley as Vis-
iting Researcher and at the MIT as visiting
scientist, he joined the University of Bologna
where he is Full Professor and teaches de-
sign of integrated systems.
His research interests are in various aspects

of integrated circuit modeling and design, including digital sys-
tems and biometric sensors, and applications of microelectronics to
biotechnology. His work on VLSI design has been cited by widely
read magazines, such as the Nikkei and Electronic Design and
documented in more than 90 scientific papers.
In 1992 he won the best paper award of the IEEE Transactions on
Semiconductor Manufacturing for his research carried out on issues
related to the modeling of various IC manufacturing steps. In 2004
he received an ISSCC best paper award for his work in the area of
silicon-based lab-on-a-chip.
He is Director of the joint laboratory between STMicroelectronics
and the University of Bologna. In this role, he is involved in the
development of new microprocessors, computational systems and
packaging technologies for advanced silicon circuits.
He has founded two start-up companies in the field of biomedical
devices for patient monitoring in cancer therapy.

