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The Information Carried by Scattered Waves:

Near-Field and Non-Asymptotic Regimes
Massimo Franceschetti, Marco D. Migliore, Paolo Minero, and Fulvio Schettino

Abstract—The question of how much information multiple
scattered electromagnetic waves can carry is addressed. The
number of spatial degrees of freedom of the field radiated in a
two-dimensional setting by a time-harmonic, arbitrary square-
integrable current density and in the presence of a random
distribution of scattering elements is determined. Using the Born
approximation and in the limit of point scatterers, a closed-form
expression for the singular value decomposition (SVD) of the field
observed on a circular cut separating transmitters and receivers is
obtained. It is shown that the active power associated to the kth
singular value of the near field in the presence of scatterers
external to the cut presents a heavy tail decay as a function of
its index, rather than the usual exponential attenuation occurring
beyond a critical index term observed in free space. This near
field “information gain” due to scattering was recently anticipated
by Janaswamy using a stochastic source model, it is extended
here to arbitrary sources, and it is shown to disappear in the
limit of large radiating systems. It is also shown that the same
information gain and asymptotic cut-off occurs for the singular
values of the field radiating in free space. Collectively, these
results show that while the presence of scatterers external to the
cut can increase the number of channels that can be exploited
for communication by the active power in the near field, they do
not change the number of channels associated to the field, nor
the asymptotic behavior of the number of degrees of freedom.

Index Terms—Degrees of freedom, propagation, scattering,
Born approximation, singular value decomposition.

I. INTRODUCTION

THE crossroads of information theory and electromagnetic

theory have been explored extensively since the appear-

ance of Shannon’s breakthrough paper [1]. Early non-rigorous

work of Gabor [2] and Toraldo di Francia [3] has been cast in

solid mathematical grounds with the introduction of Slepian’s

theory of spectral concentration of L2 functions [4]. It is now

well known and rigorously proven [5], [6] that harmonic fields

radiated by multiple scattering systems are essentially spatially

bandlimited, and hence can be represented on an arbitrary

observation domain by a linear combination of an essentially

finite number of basis functions, corresponding to the number

of degrees of freedom of the field. Recently, this basic result

has received renewed attention in the context of multiple-input

multiple-output (MIMO) antenna communication systems and
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Fig. 1. Cut-set limitation. Transmitting antennas are denoted by black dots
inside the circular cut, receiving antennas are denoted by black dots outside
the circular cut, scatterers are denoted in grey.

wireless networks. In this case, joint space-time encoding and

decoding of messages yields parallel spatial channels available

for communication and increases the spectral efficiency. The

number of available parallel channels is limited by the rank

of the communication operator [7], [8], and this is upper

bounded by the number of spatial degrees of freedom of the

field, as pointed out repeatedly in the literature [9]–[16]. This

upper bound holds for arbitrary scattering environments and

is independent of stochastic channel modeling assumptions.

When multiple users are distributed in a large domain, as in the

case of wireless networks, the electromagnetic approach can

also be used to bound the information-theoretic capacity of the

network in terms of a cut-set integral [17], [18]. This integral

represents a suitably normalized measure of the cut separating

sources and destinations. The normalization depends on the cut

geometry and changes as one moves along the cut [19], but for

circular geometries it simply corresponds to the wavelength-

normalized size of the circular cut of radius rs separating

transmitters from receivers, see Fig. 1. All of the above

results are limited to the asymptotic analysis of large radiating

systems, namely rs → ∞.

The recent work of Janaswamy [20] examined near field

effects for radiating systems of fixed size. He focused on

the information carried by the active power flux associated

to the real part of the Poynting vector. He shows that the

number of significant spatial modes increases in the presence

of scattering objects outside the cut, due to the interference

effect of backscattered waves with the radiated field, that

redistributes the reactive power to the modes associated to

the active power flux. His result shows that for near field
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communication, the presence of scattering outside the cut can

increase the spatial information associated to the active power

flux.

In this paper, we present three contributions. First, we

consider the asymptotic regime of large radiating systems. In

this case, we show that even in the presence of scattering

and in both near (reactive) and far (radiative) zone, the spatial

information of the active power flux is asymptotically limited

by the wavelength-normalized size of the cut separating trans-

mitters and receivers. Thus, the presence of scattering outside

the cut does not increase the scaling of the spatial information

associated to the active power flux. The intuitive explanation is

that in the limit of large radiating systems fields are essentially

bandlimited functions [6], and the environment can shape their

spatial spectrum but it cannot increase their spectral support.

Second, we consider the tail decay of the spatial modes

of the near field in the non-asymptotic regime of fixed size

radiating systems. In this case, we show that in free space

near fields exhibit a heavy tail decay in the number of spatial

modes, similar to the one of the active power in the presence

of scattering. The intuitive explanation is that since near fields

radiating in free space carry both active and reactive power,

their information content cannot be smaller than the one of the

active power after recombination due to backscattering. This

result shows that when the receiver is capable of a full field

measurement, namely it can measure both the amplitude and

the phase of the field, the external scatterers do not provide

additional spatial information, even for fixed size systems.

Finally, using the Born approximation, and in the limit

of point scatterers, we compute the SVD of the propagation

operator for arbitrary square-integrable sources and randomly

located scattering elements, and show that Janaswamy’s re-

sults [20] correspond to the same decomposition, but per-

formed on a different Hilbert space, accounting for a stochastic

distribution of sources, and where the norm is expressed in

terms of expectation.

The rest of the paper is organized as follows: in Section II

we describe different propagation scenarios and present our

results, relating them to the previous literature. In section III

we give rigorous statements of our results in the form of

theorems. In Section IV we discuss numerical examples in

some representative cases. In Section V we draw conclusions

and discuss possible research directions.

II. PROPAGATION MODELS

Consider a distribution of time-harmonic source currents

located in a circular region S of radius r, radiating an electro-

magnetic field that is measured on a circle D of radius rd
concentric with S. The number of degrees of freedom of

the field is the minimum number of modes that suffice to

describe the field on D with an arbitrary level of accuracy,

as defined in [5]. The number of degrees of freedom provides

an upper bound on the number of channels that are available

for communication from S to D and thus on the capacity of

any wireless communication system [13], [17].

We distinguish different cases: free space propagation due to

arbitrary L2 sources; propagation in the presence of a random
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Fig. 2. Part (a): Free space propagation model from an arbitrary distribution
of currents inside the disc S. Part (b): Propagation from a random distribution
of line currents inside the disc S in the presence of a random distribution of
circular scatterers in the annulus A.

distribution of scattering objects due to a stochastic distribution

of sources of bounded second moment; and propagation in the

presence of random scattering due to arbitrary L2 sources.

A. Free Space Propagation with Arbitrary L2 Sources

We start considering propagation in the absence of scattering

in the two-dimensional cylindrical geometric setting depicted

in Fig. 2-(a). This case has been treated extensively in the

literature and we review here the basic results useful for our

subsequent derivations.

A time-harmonic current density

I(r) =

∫

S

I(r′)δ(|r − r
′|)dr′, r ∈ S, (1)

is located inside S and is directed along ẑ , perpendicular

to S. The domain outside S is vacuum. The source current

is constrained to belong to the Hilbert space L2(S) of square

integrable functions of support S with inner product

〈f, g〉S =

∫

S

f(r)g∗(r)dr. (2)

and norm

‖I‖2S =

∫

S

|I(r)|2dr < ∞, (3)

The electric field radiated by I and observed at rd ∈ D is

directed along ẑ and is given by

E(rd) = −βη

4

∫

S

I(r)H
(2)
0

(

β|rd − r|
)

dr, rd ∈ D, (4)

where β = 2π/λ is the wavenumber, λ is the radiated

wavelength, η is the wave impedance of an electromagnetic

wave in vacuum, and H
(2)
0 (x) is the Hankel function of the

second kind and of order 0. The magnetic field is given by

H(rd) = (jηβ)−1∂E(r)/∂r|r=rd
, rd ∈ D. (5)

where rd = (rd, φd), r = (r, φ).

The integral operator in (4) is compact, so by the spectral

decomposition theorem it can be diagonalized. Expanding the

integral kernel in terms of the eigenfunctions of the associated
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self-adjoint operator, we can rewrite (4) as

E(rd) =

∞
∑

k=0

σk 〈I, vk〉S uk(rd), (6)

where {vk} and {uk} are the right and left singular functions

of the operator, respectively, defined as

uk(rd) = −H
(2)
k (βrd)e

jkφd

‖H(2)
k (βrd)‖D

, (7)

and

vk(r) =
Jk(βr) e

jkφ

‖Jk(βr)‖S
, (8)

and where the real, non-negative coefficients {σk} are the

singular values of the operator, defined as

σk =
1

4
βη ‖Jk(βr)‖S ‖H(2)

k (βrd)‖D, (9)

where Jk(x) denotes the Bessel function of the first kind. A

similar expression can be derived for the magnetic field

H(rd) =

∞
∑

k=−∞

σ̂k 〈I, vk〉S ûk(rd), (10)

where the left singular functions {ûk} and the singular values

{σ̂k} are given by

ûk(rd) = j
H

(2)′
k (βrd)e

jkφd

‖H(2)′
k (βrd)‖D

, (11)

and

σ̂k =
1

4
β ‖Jk(βr)‖S ‖H(2)′

k (βrd)‖D, (12)

respectively. To prove (6) and (10), it suffices to apply the

addition theorem for Hankel functions to (4) and (5) such that

E(rd) = −βη

4

∫

S

I(r)

∞
∑

k=−∞

H
(2)
k (βrd)Jk(βr)e

jk(φd−φ)dr.

= −βη

4

∞
∑

k=−∞

〈I, Jk(βr)ejkφ〉S H
(2)
k (βrd)e

jkφd

and, by (5),

H(rd) =
jβ

4

∞
∑

k=−∞

〈I, Jk(βr)ejkφ〉S H
(2)′
k (βrd)e

jkφd .

Loosely speaking, the number of degrees of freedom of the

radiated field is the number of terms in the series (6) and (10)

required to obtain an ǫ-approximation of the field. A basic

result in approximation theory [21] states that the magnitude

of the nth largest singular value coincides with the norm of the

approximation error given by truncating the series to the first

n terms. It follows that the number of degrees of freedom can

be inferred by the behavior of the singular values as a function

of their indexes.

The singular values exhibit a phase transition. They are

approximately constant up to a critical value k ≈ βrs,

after which they rapidly decay to zero [5], [17], [18]. When

viewed at the scale of rs, this phase transition becomes more

pronounced as rs increases, and as rs → ∞ it becomes a

step function. The sharpness of the transition ensures that

the number of degrees of freedom is an intrinsic feature

of the field, that is practically insensitive to the accuracy ǫ
of the apparatus with which this is measured. A practical

consequence of the phase transition is that an accurate field

reconstruction is possible by interpolating only slightly more

than βrs orthonormal functions over D. In other words, the

whole information content of the field is essentially given

by βrs real numbers. While the optimal representations (6) and

(10) ensure the mininum number of interpolating functions,

alternative (e.g. sampling) suboptimal representations can also

be used with a slight increase in the number of terms, leading

to a possibly redundant field representation.

B. Random Scattering and Stochastic Sources

We now consider the random scattering model considered

in [20] and depicted in Fig. 2(b) with the objective of determin-

ing whether the phase transition behavior of the singular values

still holds in the presence of scattering. Since the scatterers

inside D can be treated as equivalent sources, it is sufficient

to consider the case of scatterers outside D. Accordingly, a

number Q of perfectly conducting cylindrical scatterers, each

of radius a, are randomly located in the annular region A
delimited by two concentric circles of radii rd and ra , that are

of the same order of rs. The region between the observation

domain D and the source domain S is vacuum. The scattered

field is observed on the circle D of radius rd circumscribing

the source domain S.

The source is a discrete set of N randomly located electric

line currents

I(r) =

N
∑

n=1

Inδ(|r− rn|), r ∈ S (13)

where the {In} are i.i.d. time-harmonic signals of random

amplitude and phase. In this case, the input constraint is

E(|In|2) < ∞, n ∈ {1, · · · , N}, (14)

where E(·) denotes the expected value. This corresponds to

constraining the sources to belong to the Hilbert space L̄2(S)
with inner product

〈f, g〉S = E(fg∗), (15)

and norm

||f ||S = 〈f, f〉S .
Comparing the two source models (1) and (13), we notice

that (1) only allows a smooth current density in virtue of

(3), while (13) consists of space-impulsive currents. The input

constraint (14), however, ensures that superdirective effects

and unbouded information gains [15], [16] are ruled out

when measurements correspond to stochastic averages. Finally,

since N is fixed, we can also write the total input constraint

N
∑

n=1

E(|In|2|) = NP < ∞, (16)

that is the discrete counterpart of (3) in the stochastic model.
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It follows that the two models correspond to two different

Hilbert spaces, where inner products, and hence norms, are

governed by (2) and (15) respectively.

Janaswamy’s [20] results for the stochastic source model

can be viewed in the context of Hilbert spaces as deriving

an approximate closed-form expression for the average real

power carried by the kth singular value of the multiple-

scattering propagation operator, where the average is taken

with respect to the random amplitude and phase of the line

source currents and the random positions of the sources and the

scattering objects. He showed that this average power decays

as a power law of its index in the near (reactive) zone, and

exponentially in the far (radiative) zone. In contrast, he also

showed that in free space the decay is always exponential,

provided that

k >
eβrs
2

.

This critical index value is the same obtained in the dual

problem of external sources and scatterers generating a field

in a vacuum of radius rs considered in [22].

Janaswamy then concluded that due to signal interference

from scattered paths, part of the reactive power is converted

into active power, and the tail of the coefficients representing

the real power exhibits a slower decay rate compared to free

space conditions. We call this effect the “information gain”

for the active power due to scattering in near field conditions.

This result suggests that a phase transition behavior due to

the exponential decay of the singular values beyond a critical

value of their index may not hold for the real power in the

presence of external scatterers. We show that this intuition is

incorrect. We point out that the phase transition is a result

regarding the step-like behavior of the singular values viewed

at an appropriate asymptotic scale, namely βrs → ∞. We

show that in this asymptotic regime the heavy tail effect

uncovered in [20] disappears. In both free space conditions

and in the presence of scattering, the tail of the active power

asymptotically vanishes beyond a critical index value of the

order of βrs. This means that in the limit of large radiating

systems, there is no information gain due to scattering.

We also point out that for fixed size systems the singular

values associated to near fields in free space decay as a power

law of their indexes. This shows that for fixed size systems,

the information gain for the field is a near field effect, rather

than a scattering one.

C. Random Scattering and Arbitrary L2 Sources

Finally, we consider the random scattering model in the

presence of arbitrary L2 sources subject to (2) and consider

the average scattered electric and magnetic fields, where the

average is taken with respect to the random position of the

scattering objects. We compute the SVD of the propagation

operator for the average field using the Born approximation

and in the limit of point scatters. From the SVD we compute

the active radiated power associated to the kth singular value,

showing that in the near (reactive) zone it has a power law

behavior as a function of its index, and an exponential behavior

in the far (radiative) zone. When sources are assumed to be

stochastic, these results recover the ones in [20] and provide

a Hilbert space interpretation of the stochastic source model

with average squared norm constraint (14).

III. MAIN RESULTS

A. Phase Transition for Large-Scale Systems

In the case of random scattering and stochastic sources, by

applying the Born (single scattering) approximation [23] and

in the limit of point scatterers, Janaswamy [20] derived an

approximate closed-form expression for the average real power

associated to the kth singular value of the field, given by

Re(Pk) =
1

πrd

βηNP

8

‖Jk(βr)‖2S
πr2s

×
(

1− Re
{

γ1 E

(

(

H
(1)
k (βR)

)2
)})

, (17)

where k ≥ 0, P is defined in (16),

γj = Q
J0(βa)

H
(j)
0 (βa)

, j = 1, 2, (18)

is a constant that only depends on the size a of the scatterers

and their number Q, and

E

(

(

H
(1)
k (βR)

)2
)

=
2π

π(r2a − r2d)

∫ ra

rd

(

H
(1)
k (βr)

)2
rdr (19)

denotes the expected value of the Hankel function squared

with respect to the radial position R of uniformly distributed

scatterers inside the annular area of radii rd and ra.

By using asymptotic expansions of Bessel functions of large

order, he also computed the asymptotic formula1

Re(Pk) ∼
PJ2

0 (βa)ρar
2
d

|H(1)
0 (βa)|2(πa)2

1

k4

(

rs
rd

)2k

, (20)

as k → ∞. He then noticed that in the near field rd ≈ rs
the exponential term in (20) can be neglected, so that the rate

of decay of Re(Pk) is only polynomial in k. In practice, this

means that there is no exponential tail behavior, provided that

the measurement of the kth mode occurs sufficiently close to

the source.

This result is in sharp contrast with the rate of decay of

the real power Re(P (free)
k ) carried by the kth singular mode in

free-space, that is given by

Re(P (free)
k ) ∼ P

2πk(k + 1)

(

eβrs
2k

)2k

, (21)

as k → ∞. Since (21) decays exponentially for k > eβrs/2,

regardless of how close rs and rd are, Janaswamy’s analysis

shows that in the near field external scatterers in D can provide

a significant increase of the number of modes associated to the

real power, compared to free-space propagation conditions.

Starting from (17), we show that as rs → ∞ this near field

information gain due to scattering disappears, as the singular

1Throughout the paper we use the following asymptotic notation. f(x) ∼
g(x) ⇐⇒ limx→x0

f(x)/g(x) = 1, f(x) ∈ O(g(x)), as x → x0

⇐⇒ lim supx→x0
|f(x)/g(x)| < ∞, f(x) ∈ Θ(g(x)), as x → x0, ⇐⇒

f(x) ∈ O(g(x)) and g(x) ∈ O(f(x)). We also sometime abuse notation
and write O(f(x)), and Θ(f(x)) to indicate elements of these classes.
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modes approach a step function with the same transition point

as in the free space case, at a critical index value of the order

of βrs. It follows that the increase in the number of singular

modes in the near field does not change known asymptotic

limits. The precise statement, proven in Appendix A, is

expressed by the following theorem:

Theorem 1: In both the near and radiative zone, there exist

an N0 = O[βrs log(βrs)] such that for all points on the

observation domain, we have

lim
rs→∞

∞
∑

k=N0

Re(Pk) = 0. (22)

Remark 1: Theorem 1 is the analogous of the one for the

electric field in [17, Theorem 3.1], expressed here in the case

of the average active power for the random scattering model.

B. Fixed Size Systems, Free Space SVD

In the case of fixed size systems, the free space field carries

both active and reactive power and in the near field the singular

values exhibit a heavy tail decay as a function of their indexes.

The precise statement, proven in Appendix B, is expressed by

the following Theorem:

Theorem 2: In the near field, where the exponential term

(rs/rd)
k can be neglected, the singular values of the electric

field in free space are

{σ2
k} ∈ Θ(1/k3), as k → ∞, (23)

and the singular values of the magnetic field in free space are

{σ̂2
k} ∈ Θ(1/k) as k → ∞. (24)

In the radiative zone the singular values exhibit an exponential

attenuation as a function of their indexes:

Theorem 3: In the radiative zone, where (rs/rd) < 1
uniformly in k, the singular values of the electric field in free

space are

{σ2
k} ∈ O[(rs/rd)

2k], as k → ∞, (25)

and the singular values of the magnetic field in free space are

{σ̂2
k} ∈ O[(rs/rd)

2k] as k → ∞. (26)

Remark 2: Theorems 2 and 3 show that for fixed size

systems there is an information gain for the field in free

space that is due to the near field measurement. In order to

use asymptotic expansions valid for large k in Theorem 2,

while neglecting the term (rs/rd)
k, we must ensure that

(rs/rd) tends to one before the index k tends to infinity.

One rigorous way to do this would be to take the limit

rs/rd → 1 first, so that for any fixed k the term (rs/rd)
k

can be neglected, and then let k → ∞. This is essentially the

approach taken in [20]. Unfortunately, on physical grounds

this approach is troublesome. As rs/rd → 1 and the receiving

domain collapses on the boundary of the radiating system,

the field approaches a singularity. It follows that when in the

second step we take the limit for k → ∞, we are led to

the physical impossibility of determining the decay of the

singular values of an infinite field. An alternative approach

could be to let rs/rd → 1 while the index k tends to infinity,

and sufficiently fast so that (rs/rd)
k does not decay to zero

exponentially when k → ∞. Although this can certainly be

done mathematically by taking rs/rd as a function of the index

k, the physical meaning of a field’s measurement location that

depends on the scaling order at which the singular values are

evaluated, also requires clarification.

Despite mathematical sophistications, the physical meaning

of the analysis should be clear: we are interested in the tail

behavior of the singular values, namely in their behavior for

large values of k, but we also want to ensure that for these

values the term (rs/rd)
k is sufficiently close to one so that it

can be neglected. This requires choosing the observation point

to be very close to the source. In this intermediate regime, we

observe a power law decay of the singular values. When k
is increased further however, the approximation does not hold

anymore and the exponential regime of Theorem 3 is entered.

Of course, at this point we may choose rs even closer to rd,

and “push” the exponential regime further away, and so on.

In practice, in order to appreciate the near field information

gain, one needs to be sufficiently close to the field’s singular

point rs = rd to combat the exponential decay of the singular

values. In short: the information gain for the field in free space

is a pure near field effect.

C. Fixed Size Systems, SVD with Random Scattering

We now compute an approximate SVD of the field in the

presence of random scattering. We first consider the case of

arbitrary L2 sources defined by (1) and subject to (3), and then

the case of stochastic L̄2 sources defined by (13) and subject

to (14). In the latter case, we also show that when computing

the average power from the SVD, our results coincide with

the ones of [20]. This provides an interpretation of this work

in terms of spectral decomposition of the propagation operator

in L̄2.

We divide the total field into a direct component and a

scattered component

(E,H) = (Ei, Hi) + (Es, Hs). (27)

The SVD of the direct component (Ei, Hi) is the one given

in Section II-A. The scattered component (Es, Hs) is given

by the current density induced on the surface of the scattering

cylinders. To obtain the SVD of this latter term we make the

following approximations, numerically validated in [20]:

Assumption 1 (Born approximation): The density of the

scatterers is low enough such that multiple scattering is

negligible.

Assumption 2 (Point scatterers): The scatterers are small

enough that only the first term of the Fourier series represen-

tation of the currents induced on their surface is significant.

Using these approximations, in Appendix C we compute the

SVD of the average scattered electric field, for uniformly

distributed scatters inside the annular area of radii rd and ra,
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that is

E (Es(rd)) =

∞
∑

k=−∞

σ
(s)
k 〈I, vk〉S u

(s)
k (rd), (28)

where vk is given by (8),

u
(s)
k (rd) =

wk(rd)e
jkφd

‖wk(rd)‖D
, (29)

and

σ
(s)
k =

1

4
ηβ ‖Jk(βr)‖S ‖wk(rd)‖D (30)

with

wk(rd) = γ2
2π

π(r2a − r2d)

∫ ra

rd

(

H
(2)
k (βr)

)2
rdr Jk(βrd).

= γ2 E

(

(

H
(2)
k (βR)

)2
)

Jk(βrd). (31)

In (31), γ2 is defined as in (18), and the expectation is given

by (19). Notice that the SVD of the incident field (6) and

the one of the average scattered field (28) differ only in

the way the set of functions {uk} and {u(s)
k } are defined.

Both uk and {u(s)
k } are proportional to a basic solution of the

Helmholtz equation in cylindrical coordinates, but the random

scatterers affect the proportionality constant, which in (31)

depends on the average of the Hankel squared over a uniform

radial distribution in A.

Similarly, we obtain the SVD of the average scattered

magnetic field

E (Hs(rd)) =
∞
∑

k=−∞

σ̂
(s)
k 〈I, vk〉S û

(s)
k (rd), (32)

where

û
(s)
k (rd) =

ŵk(rd)e
jkφd

‖ŵk(rd)‖D
, (33)

σ̂
(s)
k =

1

4
β ‖Jk(βr)‖S ‖ŵk(rd)‖D (34)

with

ŵk(rd) = −j γ2 E

(

(

H
(2)
k (βR)

)2
)

J ′
k(βrd). (35)

Notice that, consistently with (5), (32) is obtained from (28)

by differentiation of (31) over the radial distance , which

yields (35).

From the SVD, we obtain the analogous of Theorem 2 and 3

in the case of random scattering:

Theorem 4: In the near field, where the exponential term

(rs/rd)
k can be neglected, the singular values of the electric

field in the presence of random scattering are

{(σ(s)
k )2} ∈ Θ(1/k7), as k → ∞, (36)

and the singular values of the magnetic field in the presence

of random scattering are

{(σ̂(s)
k )2} ∈ Θ(1/k5) as k → ∞. (37)

In the radiative zone field the singular values exhibit an

exponential attenuation as a function of their indexes:

Theorem 5: In the radiative zone, where (rs/rd) < 1,

uniformly in k, the singular values of the electric field in the

presence of random scattering are

{σ2
k} ∈ O[(rs/rd)

2k], as k → ∞, (38)

and the singular values of the magnetic field in the presence

of random scattering are

{σ̂2
k} ∈ O[(rs/rd)

2k] as k → ∞. (39)

Remark 3: Theorems 4 and 5, combined with Theorems 2

and 3, show that for fixed size systems there is an information

gain for both the free space field and for the scattered field

that is a pure near field measurement, occurring when rs ≈ rd.

In contrast, from (20) and (21) it follows that the near field

information gain for the real power occurs only in the presence

of scattering. The asymptotic behaviors of the singular values

of the electric and magnetic fields for fixed size systems with

scattering are different from the behavior of the real power

in (20) because this involves performing an average over the

product of the two fields. When this average is carried out,

the two results match.

D. Expected Power with Random Scattering

From the SVD, we now compute the expected power

associated to each singular value in the presence of scattering.

The complex power per unit length along ẑ is given by

P (rd) = −1

2

∫ 2π

0

rd
(

Ei(rd) + Es(rd)
)

×
(

Hi(rd) +Hs(rd)
)∗
dφd, (40)

Taking the expectation with respect to the random position

of the scatterers and substituting (6), (10), (28), and (32)

into (40), the expected complex power at a point rd ∈ D
can be decomposed as follows

E[P (rd)] =

∞
∑

k=−∞

Pk(rd)

=

∞
∑

k=−∞

P ii
k (rd) + P ss

k (rd) + P is
k (rd) + P si

k (rd),

(41)

where the four terms in the summation (41) have super-

scripts indicating which field components—incident (i) or

scattered (s)—are combined to obtain the corresponding power

term. P is
k (rd), for instance, is the power term due to the

combination of the kth mode in the incident electric field’s

expansion (6) and the kth mode in the scattered magnetic

field’s expansion (32), i.e.,

P ii
k (rd) = −1

2

∫ 2π

0

σk σ̂k |〈I, vk〉S |2

× uk(rd) û
∗
k(rd) rd dφd. (42)

Making use of the SVD’s for the incident and scattered fields

we obtain the following expressions

P ii
k (rd) = −jαH

(2)
k (βrd) H

(1)′
k (βrd), (43)
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P ss
k (rd) = jα

∣

∣

∣
γ2 E

(

(

H
(2)
k (βR)

)2
)∣

∣

∣

2

Jk(βrd) J
′
k(βrd),

(44)

P is
k (rd) = jα

(

γ2 E

(

(

H
(2)
k (βR)

)2
))∗

H
(2)
k (βrd)J

′
k(βrd)

(45)

P si
k (rd) = jα γ2 E

(

(

H
(2)
k (βR)

)2
)

Jk(βrd) H
(1)′
k (βrd),

(46)

where in (43)–(46) we define

α =
πrd
2

β2η

8
‖Jk(βr)‖2S |〈I, vk〉S |2. (47)

The real power can be expressed as a series of the real parts

of (43)–(46). We analyze each term separately. First,

Re{P ii
k (rd)} = α Im{H(2)

k (βrd) H
(1)′
k (βrd)}

= −βη

8
‖Jk(βr)‖2S |〈I, vk〉S |2, (48)

where the last equality uses the Wronskian property of Bessel’s

functions

Im
{

H
(2)
k (βrd) H

(1)′
k (βrd)

}

= Yk(βrd)J
′
k(βrd)− Y ′

k(βrd)Jk(βrd)

= − 2

πβrd
. (49)

Next, we have

Re
{

P ss
k (rd)

}

= 0 (50)

since P ss
k (rd) only comprises of reactive power. Finally,

Re
{

P is
k (rd) + P si

k (rd)
}

= −α Im
{ (

γ2 E

(

(

H
(2)
k (βR)

)2
))∗

H
(2)
k (βrd)J

′
k(βrd)

+γ2 E
(

(

H
(2)
k (βR)

)2
)

Jk(βrd) H
(1)′
k (βrd)

}

=
βη

8
‖Jk(βr)‖2S |〈I, vk〉S |2

× Re
{

γ2E
(

(

H
(2)
k (βR)

)2
)}

, (51)

where the last equality follows from the fact that for every z ∈
C

Im
{

z∗H
(2)
k (βrd)J

′
k(βrd) + zJk(βrd)H

(1)′
k (βrd)

}

= Re
{

z}
(

Yk(βrd)J
′
k(βrd)− Y ′

k(βrd)Jk(βrd)
)

= −Re
{

z} 2

πβrd
. (52)

By combining (41), (48), (50), and (51), it follows that

Re{Pk(rd)} = −βη

8
‖Jk(βr)‖2S |〈I, vk〉S |2

×
(

1− Re
{

γ2 E

(

(

H
(2)
k (βR)

)2
)})

. (53)

We also compute the reactive power in free space

Im{P ii
k (rd)} = −αRe{H(2)

k (βrd) H
(1)′
k (βrd)}

= −α(Jk(βrd)J
′
k(βrd) + Yk(βrd)Y

′
k(βrd)),

(54)

whose asymptotic limit for fixed argument and large orders is

Im{P ii
k (rd)} ∼ βη

8
|〈I, vk〉S |2

r2s
k(k + 1)

(

rs
rd

)2k

. (55)

E. Expected Real Power with Stochastic Sources

We now show that the results in [20] are recovered by the

SVD result derived in Sec. III-D, assuming stochastic sources

and working in Hilbert space L̄2, where the scalar product is

given by (15). Assume that I is as in (13). Then, by (15) and

the independence of the sources, we have

|〈I, vk〉S |2 = E

(

N
∑

n=1

N
∑

m=1

|In||Im|

ej(∠In−∠Im)v∗k(rn)vk(rm)
)

. (56)

Averaging the right hand side of (56) over the phases {∠In}
yields

E∠In

(

|〈I, vk〉S |2
)

=

N
∑

n=1

|In|2|vk(rn)|2. (57)

Then, after averaging (57) over the random locations {rn},

we obtain

E∠In,rn

(

|〈I, vk〉S |2
)

=

N
∑

n=1

|In|2
1

πr2s
. (58)

Finally, by (16) and by averaging over |In|2, we obtain

E
(

|〈I, vk〉S |2
)

=
NP

πr2s
, (59)

where the expectation is with respect to the source’s magni-

tudes, phases, and location in S. By combining (53) with (59)

and making use of the fact that for every complex num-

ber z1 z2

Re{z1z2} = Re{z∗1z∗2} (60)

we have

Re{Pk} = −βηNP

8

‖Jk(βr)‖2S
πr2s

×
(

1− Re
{

γ1E
(

(

H
(1)
k (βR)

)2
)})

. (61)

The result (61) should be compared with (53). The difference

is due to the additional expectation over the sources, required

by the scalar product in L̄2. Finally, (17) is recovered by

dividing (61) by the factor −πrd that has been accounted as

a constant in [20].

IV. NUMERICAL EXAMPLES

We now provide some examples to visualize the physical

meaning of our mathematical results. In all examples distances

are in wavelengths and the numerical values are chosen close

to the ones [20] for comparison. Fig. 3 shows the information

gain unveiled by Janaswamy [20], namely the increase in the

tail of the active power in the presence of scattering. The

plot refers to the case when sources are arbitrary functions

in L2, while in the case of [20] sources are stochastic functions
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Fig. 3. Active power in free space (48), active power in the presence of
scatterers (53), reactive power in free space (54), singular values σk of the
electric field in free space (9), and singular values σ̂k of the magnetic field
in free space (12) versus the normalized mode number k/βrs.
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Fig. 4. Active power in free space (48), active power in the presence of
scatterers (53), reactive power in free space (54), singular values σk of the
electric field in the free space (9), and singular values σ̂k of the magnetic
field in free space (12) versus the normalized mode number k/βrs, for a
large radiating system.

in L̄2, but the effect of increasing the number of significant

modes associated to the active power, compared to free-space

conditions is the same. From the plot it is evident that in free

space the active power decays exponentially as a function of its

index, while in the presence of scattering it presents a heavy-

tail attenuation. The figure also shows the heavy-tail decay

of the singular values of the field in free space (Theorem 2)

and of the reactive power in free space. Due to scattering,

part of the reactive power is converted into active power and

this is responsible for the information gain effect. These results

show that while scattering can increase the number of channels

that can be used for communication by the active power, this

cannot be larger than the number of channels associated to the

free space field, that carries both active and reactive power.

Fig. 4 shows that the information gain effect disappears for

large radiating systems. From the plot it is evident that a much

more pronounced step-like behavior arises for a large radiating

system around a critical index value of the order of βrs, for

both the power (Theorem 1) and the field (Remark 1). These
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Fig. 5. Singular values for electric (9) and magnetic (12) fields in free space.
The asymptotic values correspond to (86) and (89). In the near field regime
the heavy tail is more pronounced, while it transitions to an exponential tail
in the radiative zone.
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Fig. 6. Singular values for electric (30) and magnetic (34) fields in the
presence of scattering. The asymptotic values correspond to (106) and (107).
In the near field regime the heavy tail is more pronounced, while it transitions
to an exponential tail in the radiative zone.

results show that the presence of scatterers does not change

the scaling behavior of the number of degrees of freedom.

Fig. 5 and Fig. 6 take a closer look at the singular values

of the field in free space and in the presence of scattering.

From the plots it is evident that a heavy-tail behavior of the

singular values occurs in the near field, where rs/rd ≈ 1
(Theorems 2 and 4). On the other hand, as rd increases

an exponential tail behavior becomes dominant (Theorems 3

and 5). These results show that there is no information gain

due to scattering for the field. Since both in the presence or

absence of scattering a heavy tail occurs in the near field,

there is an information gain for the field due to the near field

measurement. This information gain disappears in the scaling

limit of large systems, as shown in Fig. 4.

V. CONCLUSION

We have examined the information gain, in terms of number

of spatial channels available for communication, due to near

field and scattering effects. For electromagnetic fields, the

information gain is purely a near field effect, occurring in the
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presence or absence of scattering and manifests itself in terms

of a power law decay of the singular values as a function of

their indexes, when the receiver is very close to the source. On

the other hand, for the active power the information gain in the

near field occurs only in the presence of scattering, that allows

conversion of part of the reactive power into active power.

By interpreting the singular values of the field’s decom-

position as communication channels, our results indicate that

systems of fixed size communicating in the near field can

provide additional multiplexing capabilities compared to their

radiative zone counterparts. However, we have also shown

that the information gain for both the fields and the active

power tends to disappear as the size of the communication

system is increased. For large antenna arrays or distributed

wireless networks, the number of parallel channels available

for communication concentrates at the scale of the circular

cut-set separating transmitters and receivers, normalized by

the wavelength of transmission. This result is independent of

scattering, reactive, or radiative zone assumptions.

Finally, we point out that when our results are applied in

the context of remote sensing, illuminating a spatial scene

by a time-harmonic source, they quantify the information

gain corresponding to the increased resolution available in the

image due to scattering and near field effects.

APPENDIX A

PROOF OF THEOREM 1

From (17) it follows that

Re(Pk) ≤
1

πrd

βηNP

8

‖Jk(βr)‖2S
πr2s

×
(

1 +
∣

∣

∣
γ1 E

(

(

H
(1)
k (βR)

)2
)
∣

∣

∣

)

, (62)

The norm and expectation in (17) can be can be evaluated

using the identity [20], [24], [25]

Fk(r;Z) :=

∫ r

0

xZ2
k(βx)dx

=
r2

2
(Z2

k(βr) − Zk−1(βr)Zk+1(βr))

=
1

2β2
(k2Z ′2

k (βr) − (k2 − β2r2)Z2
k(βr)) (63)

where Zk is any integer valued Bessel function. It follows

from (63) that if Zk is real-valued, then

Fk(r;Z) ≤ k2

2β2
Z ′2
k (βr)

for every k ≥ βx. Hence,

‖Jk(βr)‖2S = 2πFk(rs; J) ≤
k2π

β2
J ′2
k (βrs) (64)

for every k ≥ βrs. Similarly, for every k ≥ βra
∣

∣

∣

∣

∫ ra

rd

(

H
(1)
k (βr)

)2
rdr

∣

∣

∣

∣

≤
∫ ra

rd

∣

∣H
(1)
k (βr)

∣

∣

2
rdr

=

∫

A

(

|Jk(r)|2 + |Yk(r)|2
)

dr

= 2π
(

Fk(ra; J) + Fk(ra;Y )

− Fk(rd; J)− Fk(rd;Y )
)

≤ 2π
(

Fk(ra; J) + Fk(ra;Y )
)

=
k2π

β2

(

J ′2
k (βra) + Y ′2

k (βra)
)

=
k2π

β2
|H(1)′

k (βra)|2 (65)

By combining (62) with (64) and (65), it follows that for

every k ≥ βra

Re(Pk) ≤
1

πrd

βηNP

8

k2

β2r2s
J ′2
k (βrs)

× 2|γ1|
(r2a − r2d)

k2π

β2
|H ′(1)

k (βra)|2. (66)

Next, we use Olver’s uniform asymptotic expansions for

Bessel functions [26] [27] to bound the right-hand side of (66).

It is established that while the derivative of the Hankel function

|H(1)′
k (βra)| is exponentially increasing in k, the derivative of

the Bessel function |J ′
k(βrs)| is exponentially decreasing in k.

By studying the rate of growth and decay of the two functions,

we conclude that (66) decreases exponentially to zero as k
approaches infinity.

Let z1 denote the ratio between the argument and the order

of J ′
k(βrs), i.e. z1 = βrs

k . Identity (5.10) of [27] and the

triangle inequality yield, for 0 < z1 ≤ 1,

|J ′
k(kz1)| ≤

2

k2/3 z1

(

1− z21
4ζ(z1)

)1/4
[Ai

(

k2/3ζ(z1)
)

k2/3

+
∣

∣

∣
Ai′
(

k2/3ζ(z1)
)

∣

∣

∣
+ |η1(k, z1)|

+
|ǫ1(k, z1)|

k2/3

]

, (67)

wherein Ai denotes the Airy function, for 0 < z1 ≤ 1 the

function ζ(z1) is defined as,

2

3
ζ3/2(z1) =

∫ 1

z1

√
1− u2

u
du

= log

(

1 +
√

1− z21
z1

)

−
√

1− z21 , (68)

and |ǫ(k, z1)| and |η(k, z1)| are subject to the following bounds

[27, Section 5]:

|ǫ1(k, z1)| ≤ k−1|Ai′
(

k2/3ζ(z1)
)

|, (69)

|η1(k, z1)| ≤ k−1Ai
(

k2/3ζ(z1)
)

. (70)

Substituting (69) and (70) into (67), and us-

ing Ai(x)/|Ai′(x)| ≤ 2, which holds for all x ≥ 0
[27, page 11], we obtain that, for 0 < z1 ≤ 1,

|J ′
k(kz1)| ≤

14

k2/3 z1

(

1− z21
4ζ(z1)

)1/4
∣

∣Ai′(k2/3ζ(z1))
∣

∣. (71)

Equation (71) provides a bound (uniform in 0 < z1 ≤ 1)

for |J ′
k(kz1)| in terms of the derivative of the Airy function.

Similarly, we can derive a bound for the derivative of the

Hankel function. Let z2 denote the ratio between the argument

and the order of H
(2)′
k (βra), i.e. z2 = βra

k . Similarly to (71),
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it is possible to show that

|Y ′
k(kz2)| ≤

14

k2/3 z2

(

1− z22
4ζ(z2)

)1/4

Bi′(k2/3ζ(z2)), (72)

where Bi denotes the Airy function of the second kind.

Since
∣

∣H
(2)′
k (kz2)

∣

∣ ≤ 2
(

|J ′
k(kz2)| + |Y ′

k(kz2)|
)

, combin-

ing (71) with (72), we obtain

∣

∣H
(2)′
k (kz2)

∣

∣ ≤ 28

k2/3 z2

(

1− z22
4ζ(z2)

)1/4

×
(∣

∣Ai′(k2/3ζ(z2))
∣

∣+ Bi′(k2/3ζ(z2))
)

. (73)

The derivatives of the Airy functions can be bounded

for k2/3ζ(z2) ≥ 1 as follows [28, page 394]:

|Ai′(k2/3ζ(z2))| ≤ k1/6ζ1/4(z2)e
− 2

3
kζ3/2(z2),

|Bi′(k2/3ζ(z2))| ≤ k1/6ζ1/4(z2)e
+ 2

3
kζ3/2(z2).

(74)

By (68), we notice that ζ(z2) is a decreasing function of z2,

which tends to infinity as z2 → 0+ and is 0 when z2 = 1.

Hence, the condition k2/3ζ (z2) ≥ 1, which is required

for (74) to hold, is not satisfied when z2 is close to 1.

Moreover, notice that ζ(z2) < ζ(z1), since |z2| > |z1| for

any ra > rs. It follows that choosing k ≥ βra log ra ensures

that both k2/3ζ(z2) ≥ 1 and k2/3ζ(z1) ≥ 1 hold for ra and rs
large.

Substituting (74) into (71) and (73), it follows that, for k ≥
βra log ra,

∣

∣H
(2)′
k (βra)

∣

∣ = O

(

(1− z22)
1/4

k1/2 z2
e+

2

3
kζ3/2(z2)

)

, (75)

|J ′
k(βrs)| = O

(

(1− z21)
1/4

k1/2 z1
e−

2

3
kζ3/2(z1)

)

, (76)

as ra, rs → ∞. Since ζ(z2) < ζ(z1) for any ra > rs, the rate

of growth of the exponential in (75) is smaller than the rate of

decay of the exponential in (76). Using (75), (76), and the fact

that (1− z22)
1/4(1− z21)

1/4/(kz2z1) ≤ k for k > βra log ra,

we obtain that for k > βra log ra,

|J ′
k(βrs)|

∣

∣H
(2)′
k (βra)

∣

∣ =O
(

ke−
2

3
k(ζ3/2(z1)−ζ3/2(z2))

)

(77)

as rs → ∞.

Let us focus on the exponent at the right-hand side of (77).

By (68),

− k

(

2

3
ζ3/2(z1)−

2

3
ζ3/2(z2)

)

= −k

∫ z2

z1

√
1− u2

u
du

≤ −k

∫ z2

z1

(

1

u
− 1

)

du

= −k log

(

z2
z1

)

+ k(z2 − z1),

= −k log

(

ra
rs

)

+ β(ra − rs), (78)

where the inequality follows from
√
1− u2 ≥ 1−u, for all u ∈

[0, 1]. Substituting (78) into (77) it follows that, for all ra > rs

and for all k ≥ βra log ra ,

|J ′
k(βrs)|

∣

∣H
(2)′
k (βra)

∣

∣ = O
(

ke−k log(ra/rs)
)

, (79)

as rs → ∞. Since ra is of the same order of rs, we can

assume that ra = αrs for some α > 1, and (79) becomes

|J ′
k(βrs)|

∣

∣H
(2)′
k (βra)

∣

∣ = O
(

ke−k logα
)

, (80)

as rs → ∞.

We now go back to (66) and notice that we can group all

factors except J ′2
k (βrs) and

∣

∣H
(2)′
k (βra)

∣

∣

2
into a term of the

order of O(rνs ) for some ν ≥ 0 as rs → ∞. It follows that

letting N0 = βra log ra and using the bound (80), which is

uniform in k ≥ N0 > βrs, there exists a uniform constant C,

such that as rs → ∞, we have

∞
∑

k=N0

Re(Pk) ≤ rνs

∞
∑

k=N0

Ce−2k logα

= rνs
Ce−N02 logα

1− e−2 logα

≤ C
rνs
αβrs

→ 0, (81)

which concludes the proof.

APPENDIX B

PROOF OF THEOREMS 2 AND 3

For fixed argument and large orders with k > z [24, §10.19]

Yk(z) ∼ −jH
(1)
k (z) ∼ jH

(2)
k (z) ∼ −

√

2

πk

( ez

2k

)−k

(82)

and

Jk(z) ∼
1√
2πk

( ez

2k

)k

(83)

From (82) it follows that

‖H(2)
k (βrd)‖2D = 2πrd|H(2)

k (βrd)|2

∼ 4rd
k

(

eβrd
2k

)−2k

, (84)

while combining (63) and (83) yields the asymptotic form

‖Jk(βr)‖2S ∼ r2s
2k(k + 1)

(

eβrs
2k

)2k

(85)

as k → ∞. By combining (9), (84), and (85), we obtain

σ2
k ∼ 1

8
β2η2

r2srd
k2(k + 1)

(

rs
rd

)2k

. (86)

Neglecting the exponential term (rs/rd)
k, we also have

σ2
k ∼ β2η2r3s

8k3
. (87)

Similarly,

‖H(2)′
k (βrd)‖2D = 2πrd|H(2)′

k (βrd)|2

∼ rd
k + 1

(

eβrd
2(k + 1)

)−2(k+1)

, (88)
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from which it can be shown that

σ̂2
k ∼ 1

8
β2 1

k

r2s
rd

(

rs
rd

)2k

(89)

as k → ∞.

APPENDIX C

SVD

In the presence of scatterers, we express the total field as

the sum of the incident filed and the scattered field as in (27),

where the scattered field (Es, Hs) is set up by the currents Js
induced on the surface of the scattering objects. For the TMz

polarization, the induced currents are in the z-direction. The

scattered electric field is related to the surface current densities

through

Es(rd) = −βη

4

Q
∑

q=1

∫

Γq

Jq(rq)H
(2)
0

(

β|rd − rq|
)

dγq, (90)

where Γq denotes the surface of the qth cylinder, rq denotes

a point on it, and rd ∈ D.

Since Γq is a conducting cylinder, we proceed by following

similar steps as in [20] and express the coordinates of rq ∈ Γq

in terms of the local polar coordinates (a, φqq) with respect

to the center of the qth cylinder and then expand the surface

currents Jq in a Fourier series of the form

Jq(rq) =
1

2πa

∞
∑

l=−∞

K
(q)
l ejlφqq , rq ∈ Γq. (91)

where K
(q)
l denotes the Fourier coefficient associated to the

harmonic ejlφqq .

If the polar coordinates of the observation point rd ∈ D
with respect to the center of the qth cylinder are (rqd, φqd),
as depicted in Fig. 7, then by the addition theorem of Hankel

functions

H
(2)
0

(

β|rd − rq|
)

=

∞
∑

m=−∞

Jm(βa)e−jmφqq

×H(2)
m (βrqd)e

jmφqd . (92)

Substitution of (91) and (92) into (90) yields the electric field

on the observation point with respect to the to the center of

the qth cylinder

Es(rd) = −βη

4

Q
∑

q=1

∞
∑

l=−∞

K
(q)
l Jl(βa)H

(2)
l (βrqd)e

jlφqd .

(93)

To determine the Fourier coefficients K
(q)
l in the current

densities (91), we set up an electric field integral equation

by requiring that the total field on the qth cylindrical surface

be identically zero, i.e., E(rq) = Ei(rq) + Es(rq) = 0 for

all rq ∈ Γq . Following similar steps that lead to (93), we

write

Es(rq) = −βη

4

∞
∑

l=−∞

K
(q)
l Jl(βa)H

(2)
l (βa)ejlφqq

|rp − rq |
|r− rq |

Γp

Γq

r

rp

rq

a

a

rqs
rqp rqp0

rpq φpq

φqp0φqpφqqφqs

Fig. 7. Coordinate system with origin at the center of the qth cylinder .

− βη

4

∑

p6=q

∞
∑

l=−∞

K
(p)
l Jl(βa)H

(2)
l (βrpq)e

jlφpq ,

(94)

where the pair (rpq, φpq) denotes the polar coordinates of rq

with respect to the to the center of the pth cylinder (see

Fig. (7)). By the addition theorem of the Hankel functions,

observe that

H
(2)
l (βrpq)e

jlφpq =

∞
∑

m=−∞

Jm(βa)e−jmφqq

×H
(2)
m+l(βrqp0

)ej(m+l)φqp0 , (95)

where (rqp0
, φqp0

) denote the polar coordinates of the center of

the pth cylinder with respect to the center of the qth cylinder.

Similarly, by combining (4) with (92), the incident field can

be rewritten as

Ei(rq) = −βη

4

∫

S

I(r)

∞
∑

m=−∞

Jm(βa)e−jmφqq

×H(2)
m (βrqs)e

jmφqs dr, (96)

where rqs denotes the distance between r and the center of

the qth cylinder and φqs is the polar angle of r with respect

to the center of the qth cylinder.

After multiplying both sides of (94) and (96) by e−jkφqq ,

making use of (95), and integrating φqq over [0, 2π], the

boundary condition Es(rq) = −Ei(rq) , rq ∈ Γq, yields the

integral equation

K
(q)
k H

(2)
k (βa) +

∑

p6=q

∞
∑

l=−∞

K
(p)
l J−l(βa)

×H
(2)
l−k(βrqp0

)ej(l−k)φqp0

= −
∫

S

I(r)H
(2)
k (βrqs)e

−jkφqs dr. (97)

A. Approximate Expression

Next, by Assumption 1 (Born approximation), the series

of multiple scattering terms at the left hand side of (97) is

assumed to be negligible. Then, an explicit solution for the

unknowns Fourier series coefficients is possible:

K
(q)
k ≈ − 1

H
(2)
k (βa)

∫

S

I(r)H
(2)
k (βrqs)e

−jkφqs dr, (98)
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for every q = 1, . . . , Q, and k ∈ Z. Moreover, it follows

from Assumption 2 (Point scatterers) that βa << 1, such

that |H(2)
l (βa)| >> 0 for all l 6= 0 and thus we can assume

that in the Fourier series (91), K
(q)
k ≈ 0 for all k 6= 0 and q =

1, . . . , Q.

The only non-zero Fourier coefficient can be written as

K
(q)
0 ≈ − 1

H
(2)
k (βa)

∫

S

I(r)H
(2)
0 (βrqs) dr

= − 1

H
(2)
k (βa)

∫

S

I(r)

+∞
∑

k=−∞

Jk(βrs)

×H
(2)
k (βrq)e

jk(φq−φs) dr

= − 1

H
(2)
k (βa)

+∞
∑

k=−∞

〈I, Jk〉S H
(2)
k (βrq)e

jkφq .

Then, by resorting once again to the addition theorem and

making use of the relationships Jn(x) = (−1)nJ−n(x)

and H
(2)
n (x) = (−1)nH

(2)
−n(x), we write

H
(2)
0 (βrqd) =

∞
∑

m=−∞

Jm(βrd)H
(2)
m (βrq)e

m(φd−φq). (99)

It follows that (93) can be approximated as

Es(rd) ≈ −ηβ

4

Q
∑

q=1

K
(q)
0 J0(βa)

×
∞
∑

m=−∞

Jm(βrd)H
(2)
m (βrq)e

jm(φd−φq)

=
ηβ

4

J0(βa)

H
(2)
k (βa)

Q
∑

q=1

+∞
∑

k=−∞

〈I, Jk〉SH(2)
k (βrq)e

jkφq

×
∞
∑

m=−∞

Jm(βrd)H
(2)
m (βrq)e

jm(φd−φq). (100)

A similar approximate expression can be obtained for the

magnetic field

Hs(rd) ≈ −j
η

4

J0(βa)

H
(2)
k (βa)

Q
∑

q=1

+∞
∑

k=−∞

〈I, Jk〉S H
(2)
k (βrq)e

jkφq

×
∞
∑

m=−∞

J ′
m(βrd)H

(2)
m (βrq)e

jm(φd−φq). (101)

In the following, we assume that (100) and (101) hold with

equality.

B. The Average Scattered Field

Suppose that the scatterers are independently and uniformly

distributed in the annular circle delimited by two concentric

circles of radii rd and ra > rd, of the same order of rs. Then,

averaging over φq yields

E (Es(rd))

=
1

2π

∫ 2π

0

ηβ

4

J0(βa)

H
(2)
0 (βa)

Q
∑

q=1

+∞
∑

k=−∞

〈I, Jk〉S H
(2)
k (βrq)

× ejkφq

∞
∑

m=−∞

Jm(βrd)H
(2)
m (βrq)e

jm(φd−φq) dφq

=
ηβ

4

J0(βa)

H
(2)
0 (βa)

Q
∑

q=1

+∞
∑

k=−∞

〈I, Jk〉S
(

H
(2)
k (βrq)

)2

× Jk(βrd)e
jkφd . (102)

By further averaging (102) in the radial direction we obtain

E (Es(rd))

=
ηβ

4

J0(βa)

H
(2)
0 (βa)

+∞
∑

k=−∞

〈I, Jk〉S
2πQ

π(r2a − r2d)
∫ ra

rd

(

H
(2)
k (βr)

)2
rdr Jk(βrd)e

jkφd (103)

=
ηβ

4

∞
∑

k=−∞

‖Jk(βr)‖S ‖wk(rd)‖D

× 〈I, vk〉S
wk(rd)

‖wk(rd)‖D
, (104)

where

wk(rd) =
QJ0(βa)

H
(2)
0 (βa)

(

2π

π(r2a − r2d)

∫ ra

rd

(

H
(2)
k (βr)

)2
rdr

)

× Jk(βrd)e
jkφd .

Similarly, the average magnetic field satisfies

E (Hs(r)) = −j
β

4

QJ0(βa)

H
(2)
0 (βa)

×
∞
∑

k=−∞

(

2π

π(r2a − r2d)

×
∫ ra

rd

(

H
(2)
k (βrq)

)2
rqdrq‖J ′

k(βr)‖S

×J ′
k(βrd)e

jkφd
)

〈I, vk〉S . (105)

Finally, it can be easily seen that equation (104) can be

rewritten as (28) and (105) can be rewritten as (32).

C. Proof of Theorem 4 and 5

For fixed argument and large orders, we have

σ
(s)
k ∼ ηβ |γ2|

4
√
π

√
k + 1

k2(k2 − 1)

rs r
5/2
d

r2a − r2d

(

rs
rd

)k

×
(

1−
(

rd
ra

)2(k−1)
)

(106)

and

σ̂
(s)
k ∼ ηβ |γ2|

4
√
π

√
k + 1

k(k2 − 1)

rs r
3/2
d

r2a − r2d

(

rs
rd

)k

×
[

1−
(

rd
ra

)2(k−1)
]

, (107)

from which the results follow.
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