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Robustness of synchronization to additive noise:
how vulnerability depends on dynamics
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Abstract—From biological to technological networks, scien-
tists and engineers must face the question of vulnerability to
understand evolutionary processes or design resilient systems.
Here, we examine the vulnerability of a network of coupled
dynamical units to failure or malfunction of one of its nodes.
More specifically, we study the effect of additive noise that is
injected at one of the network sites on the overall synchro-
nization of the coupled dynamical systems. In the context of
mean square stochastic stability, we present a mathematically-
principled approach to illuminate the interplay between dynamics
and topology on network robustness. Through the new theoretical
construct of robust metric, we uncover a complex and often
counterintuitive effect of dynamics. While networks are more
robust to noise injected at their hubs for a classical consensus
problem, these hubs could become the most vulnerable nodes
for higher order dynamics, such as second-order consensus and
Rössler chaos. From the exact treatment of star networks and
the systematic application of perturbation techniques, we offer
a mechanistic explanation of these surprising results and lay the
foundation for a theory of dynamic robustness of networks.

Index Terms—Consensus, information centrality, mean square,
nonlinear, perturbation, stochastic stability.

I. INTRODUCTION

From the brain to the Internet, the question of vulnerability
is pervasive to biological and technological networks [1], [2],
[3]. Just as the neuroscience community seeks to elucidate
the relationship between clinical outcomes and focal brain
lesions, so engineers attempt at predicting how the failure of
one or multiple routers could challenge the functionality of
the Internet. Across a wide range of applications, we have
learnt that localized faults of a single or a few nodes might
trigger a dramatic cascading process that could lead to the
failure of a large portion of the network [4], [5], [6], [7].
When and how these avalanches occur have been investigated
through a number of complementary methodologies, searching
for answers in the topology of the network and the dynamics
of its constituting units.

Topology is certainly the most common lens to investigate
network vulnerability and, its counterpart, network robustness.
In algebraic graph theory, structural measures of connectivity
[8], [9], [10] and related topological concepts, such as fault
diameter [11], expansion parameter [12], and isoperimetric
number [13], have been systematically leveraged to charac-
terize robustness, measured as the ability of the network to
withstand accidental events. In statistical physics and complex
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networks, several efforts have been devoted to elucidate the
effect of the removal of a fraction of nodes or links on
salient properties of the network, such as its diameter, largest
component, and efficiency [14], [15], [16], [17]. Another im-
portant direction in the study of network robustness entails the
concepts of graph resistance and Kemeny constant [18], which
are particular relevant in the context of networks distributing
flows of critical resources, such as electricity, water, and gas
networks [19]. These concepts have been also applied to
network routing problems, prompting the definition of criteria
for robust network design and optimization [20]. In sum, these
studies have shed light on the role of topological heterogeneity
on the robustness of the network to targeted or random attacks,
suggesting that heterogeneous, scale-free, networks are robust
against random attacks and fragile to the removal of their hubs,
while homogenous networks are resilient to targeted attacks.

A less explored research avenue has examined the role
of dynamics on network robustness. Contrary to topological
approaches where attacks are typically modeled through the
removal of nodes or links, studying the dynamics of the net-
work allows for describing attacks in a more general context.
For example, attacks at network nodes have been modeled
through changes in their dynamics [21], partial malfunctioning
[22], and additive noise [23]. Across these modeling choices,
numerical simulations reveal a rich and complex interplay
between dynamics and topology. Surprisingly, those low-
degree nodes that would be dismissed in a targeted attack
based on a topological lens could be the most critical sites
to hamper or destroy the collective dynamics of the entire
network.

Here, we seek to establish a mathematically-principled
framework to explain the role of the node dynamics on the
network robustness. We tackle the problem within the mod-
eling framework that we have proposed in [23], in which the
synchronization of a network of coupled dynamical systems
is hindered by additive noise at one of the network sites.
Through numerical simulations on random networks with
different chaotic dynamics, in [23], we have found that hubs
could perform better or worse than low-degree nodes and have
proposed a semiempirical approach to apprehend the interplay
between dynamics and topology. We have successfully demon-
strated the approach on real data on power grids [24] and
offered experimental evidence for its practicality on electrical
circuits [25]. Yet, our previous work does not bring forward
the mathematical foundations for a general understanding of
network robustness.

Interestingly, the setup is similar to recent studies on the
selection of leaders to maximize the performance of a network
of integrators tasked with reaching consensus in the presence
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of stochastic disturbances [26], [27], [28], [29], [30]. It is this
very similarity that prompted us to reexamine the problem and
attempt at a focused mathematical treatment in the context
of mean square stochastic stability, upon which these recent
studies are framed. Different from these recent studies, where
all but one of the nodes are noisy, in our setup only one node
is subject to additive noise. Most importantly, our analysis
applies to general time-varying dynamics, rather than to scalar
integrators in a consensus protocol. We comment that a
complementary line of approach to study the robustness of a
networked system consists of examining the effect of system
uncertainty rather than stochastic disturbance, as recently
proposed in [31].

Toward a theory of network robustness, we formulate the
problem in terms of the variational dynamics about the syn-
chronous solution, such that we focus on the forced response
of a linear time-varying system subject to a stochastic input.
We study the evolution of the synchronization error in a
mean square sense to establish a time-varying matrix Lya-
punov equation for the correlation matrix associated with the
variational dynamics. Through modal analysis, we reduce this
high-dimensional Lyapunov equation into a low-dimensional
master equation, from which we define a robust metric that
encapsulates the role of dynamics on robustness. The robust-
ness metric disentangles dynamics from topology: it can be
computed once for all, irrespective of the network topology
and the location of the node where noise is injected. Once
the robustness metric is determined and a specific network is
assigned, the overall synchronization error can be computed
for any choice of the node where noise is injected.

For a star network, we evaluate in closed-form the synchro-
nization error for the case noise is injected at the center or
at a peripheral node to illustrate the process through which
the robustness metric operates on the spectrum of the graph
Laplacian and clarify the key role of the node degree. For a
generic network, we tap into perturbation methods to gain a
similar insight and shed light on the concurrent role of the
node degree and robustness metric on vulnerability. Through
the analysis of the classical consensus problem, second-order
consensus algorithms, and Rössler chaos, we demonstrate a
complex dependence of the robustness metric on the under-
lying dynamics. While a network may be more vulnerable
to added noise at low-degree nodes for a given dynamics, the
opposite may hold true for another dynamics, thereby offering
compelling evidence for a key role of dynamics on robustness.

II. PROBLEM STATEMENT

We build on the mathematical framework posited in [23],
where the failure of a node in the network is modeled by
injecting noise into the dynamics of that particular node. With
slightly different notation from [23], we consider a network
of N dynamical systems whose time evolution is given by the
following set of coupled stochastic differential equations:

ẋi(t) = F (xi(t))− κ
N∑
j=1

LijHx(xj(t)) + νiHηη(t) (1)

for i = 1, . . . , N and t ∈ R+. Here, xi ∈ Rn is the state of
the ith node, F is a smooth function describing the individual
dynamics of each node, κ ∈ R+ is the coupling constant,
Lij’s are the entries of the graph Laplacian L ∈ RN×N
of the network, Hx is a smooth coupling function, νi is an
indicator which is equal to one if the ith node is subject to
additive noise and is zero otherwise, Hη is a constant vector
specifying how noise enters the dynamics of a node, and
η is a zero-mean Gaussian white noise of variance θ

2 . The
solutions of the stochastic differential equations involved in
our study should be interpreted in Stratonovich sense, such that
the mathematical derivations are based on properties stemming
from the Stratonovich integral definition [32], [33], [34].

The graph Laplacian is defined as L = D−A, where D is
the degree matrix and A is the adjacency matrix. The degree
matrix is a diagonal matrix, whose elements are the degree
of the nodes, while the adjacency matrix encodes the links
between the nodes such that its entries are equal to one in
correspondence of connected nodes and are zero otherwise.
By construction, L is a zero row-sum matrix [35].

We linearize the dynamics of each node about the syn-
chronous solution s(t) – common to all the network nodes
– such that ṡ(t) = F (s(t)). By introducing the ith variation
ξi(t) = xi(t)− s(t) and recalling that L is zero row-sum, we
obtain the following set of variational equations:

ξ̇i(t) = A(t)ξi(t)− κ
N∑
j=1

LijB(t)ξj(t) + νiHηη(t) (2)

for i = 1, . . . , N . Here, A(t) and B(t) are the Jacobians of
F and Hx evaluated along the synchronous solution, such
that A(t) = ∂F (x)

∂x |x=s(t) and B(t) = ∂Hx(x)
∂x |x=s(t). These

matrices are generally assumed to be piecewise continuous,
such that the elegant machinery of linear time-varying systems
applies.

We write the linearized dynamics (2) using Kronecker
algebra (see for, example, [36]) toward a more compact
representation of the perturbed synchronization problem. We
aggregate the variations of all the dynamical systems in a
single error vector of length equal to Nn, such that, ξ(t)T =[
ξ1(t)T, . . . , ξN (t)T

]
, where T indicates matrix transposition.

Thus, (2) becomes

ξ̇(t) = [IN ⊗A(t)− κL⊗B(t)]ξ(t) + [ν ⊗Hη]η(t) (3)

where ⊗ is the Kronecker product, IN is the identity matrix
in RN×N , and ν ∈ RN has all zeros except of a one in
correspondence of the node where noise in injected.

The chief objective of this work is to provide a thorough
mathematical treatment of (3), toward an improved under-
standing of how topology and dynamics together determine
the overall effect of noise on synchronization. Topological
aspects pertain to both the structure of the network, encap-
sulated by the graph Laplacian L, and to the location of
the node where noise is injected, encoded by the vector ν.
Our approach applies to a wide class of coupled dynamical
systems, including the classical consensus problem in which
n = 1, A(t) = 0, and B(t) = 1; second-order consensus
algorithms where n = 2 and A(t) and B(t) are constant



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2018.2825024, IEEE
Transactions on Control of Network Systems

PORFIRI AND FRASCA: ROBUSTNESS OF SYNCHRONIZATION TO ADDITIVE NOISE 3

matrices; and chaotic oscillators in which n ≥ 3 and A(t) and
B(t) will vary in time as the synchronous solution covers the
invariant manifold. We present our theory in a general setting
and then specialize our claims to few relevant applications
that help illustrate the complex interplay between topology
and dynamics on robustness.

III. ANALYSIS

We articulate the analysis of (3) as follows. First, we intro-
duce the instantaneous synchronization error, which quantifies
the overall discrepancy between the network nodes and the
synchronous solution. Second, we specialize the results to
the case of noiseless synchronization, recovering the classical
master stability function by Pecora and Carroll [37]. Third, we
study the error dynamics in a mean square sense and establish
a deterministic governing equation for the error dynamics.
Fourth, we diagonalize the deterministic dynamics to establish
a robustness metric that can be used to shed light on the
interplay between topology and dynamics on robustness. The
formal derivation of such a metric is the objective of the
final subsection, which summarizes our main results in a
proposition.

A. Synchronization error

As a first step in the analysis, we introduce the metric by
which we ascertain the robustness of the network to injected
noise. Specifically, by writing the state variable of the generic
ith node xi(t) as the sum of the variation ξi(t) and the
synchronous solution s(t), the instantaneous synchronization
error [23]

E(t) =
1

N(N − 1)

N∑
i,j=1

‖xi(t)− xj(t)‖2 (4)

takes the following form:

E(t) =
1

N(N − 1)

N∑
i,j=1

‖ξi(t)− ξj(t)‖2 (5)

where, without loss of generality, we have used the Euclidean
norm. The dynamical systems are synchronized if their states
are equal, such that the synchronization error vanishes. Note
that, with respect to [23], we have dropped the square root in
the definition of the synchronization error.

Through simple algebra, it is easy to verify that

E(t) =
2

N − 1

N∑
i=1

‖ξi(t)− ξ(t)‖2 (6)

which uses the average mismatch with respect to the syn-
chronous solution, defined by

ξ(t) =
1

N

N∑
i=1

ξi(t) (7)

Thus, the synchronization error can be expressed in terms
of the difference between the variation at each node and
the average mismatch in the network, without the need of
incorporating the synchronous solution, which, however, enters

the equations through A(t) and B(t). The latter two matrices
vary in time with the evolution of the synchronous solution
s(t), about which we perform the linearization.

The synchronization error in (6) can be compactly written
through the Kronecker representation in (3) by using the
matrix R ∈ RN×N , defined as

R = IN −
1

N
1N1TN (8)

where 1N is the vector in RN of all ones. As detailed in [38],
the matrix R is an orthogonal projection onto (Span{1N})⊥
as it is symmetric, idempotent, and Ker(R) = Span{1N}.
Specifically, using R, we may write the instantaneous syn-
chronization error in terms of ξ(t) as

E(t) =
2

N − 1
‖ (R⊗ In)ξ(t) ‖2 (9)

This expression for the instantaneous synchronization error
hints at looking at the linearized dynamics in terms of the
projected variable

z(t) = (R⊗ In)ξ(t) (10)

which quantifies the variational dynamics in the transverse
manifold, orthogonal to Span{1N}. Through the lens of z,
a common mismatch of all the network nodes with respect to
the synchronous solution will be automatically mapped into
the zero vector.

At any time, the variation ξ(t) can be obtained from z(t)
and ξ(t) through

ξ(t) = z(t) + 1N ⊗ ξ(t) (11)

and the variational dynamics can be written in terms of two
decoupled equations for z and ξ, by replacing (11) into (3).
Specifically, we left multiply the equation by R⊗In to obtain
the dynamics of z, namely,

ż(t) = [R⊗A(t)− κL⊗B(t)]z(t) + (Rν ⊗Hη)η(t) (12)

where we have used (11) in the right-hand-side of the equation
and we have accounted for the facts that RL = L and
L1N = 0. Similarly, we left multiply (3) by 1N ⊗In to derive
the following equation for the average mismatch between the
nodes:

ξ̇(t) = A(t)ξ(t) +
1

N
Hηη(t) (13)

where we have accounted for the fact that noise is injected at
a single node in the network, such that, νT1N = 1.

Equation (12) completely determines the stochastic evolu-
tion of the synchronization error in (9), and its study in the
mean square sense (see, for example, [39]) is the objective of
the following analysis. On the other hand, (13) plays no role
on the synchronization error, but it determines how the average
mismatch in the network stochastically evolves in time along
the synchronization manifold. The coupling does not enter the
dynamics of the average mismatch, which is a function only
of the overall intensity of the noise injected in the network and
the individual dynamics of a node. From a control perspective,
we have no ability to modulate this dynamics, which simply
sets a common level of mismatch between the network nodes
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and the synchronous solution, without impacting the extent of
synchrony of the nodes.

For example, for a classical consensus problem, we would
find ξ̇(t) = 1

N η(t), which corresponds to a Langevin equation
with null relaxation. In this case, the effect of the noise will
build up in time, leading to large variations in the average
mismatch, although one may tackle the design a coupling
network such that the nodes are very close to each other at all
times, as further discussed in what follows. More precisely,
ξ(t)−ξ(0) is a Gaussian random variable with zero mean and
with variance proportional to the time variable t.

B. Deterministic dynamics in the absence of additive noise

In the absence of noise, that is, for θ = 0, we obtain
the classical synchronization problem for a network of cou-
pled identical dynamical systems, which has been extensively
studied in the technical literature, as exemplified by a large
number of thorough technical reviews (see, for example, [40],
[41]). In this case, the problem admits an elegant treatment by
projecting the variational dynamics on the eigenvectors of the
graph Laplacian. Here, we summarize this treatment to provide
useful notation for our main claims on dynamic robustness and
familiarize the reader with the notion of modal analysis.

Specifically, let V be the orthogonal matrix whose ith
column is the eigenvector vi of L with corresponding eigen-
value λi, where λ1 = 0 and v1 = 1√

N
1N . Also, let Λ be

the corresponding diagonal matrix of eigenvalues, such that
L = V ΛV T. From V , we construct the RnN×nN orthogonal
matrix Ṽ = V ⊗ In, which we utilize to simplify the study of
the variational dynamics.

Setting η(t) = 0 in (12), left multiplying by Ṽ T, and ap-
plying elementary properties of Kronecker algebra, we obtain
the following chain of equalities:

˙̃z(t) =
(
V T ⊗ In

)
[R⊗A(t)− κL⊗B(t)] z(t)

=
[
V TR⊗A(t)− κV TL⊗B(t)

]
z(t)

=
[
V TRV V T ⊗A(t)− κV TLV V T ⊗B(t)

]
z(t)

=
[
R̃⊗A(t)− κΛ⊗B(t)

]
(V T ⊗ In)z(t)

=
[
R̃⊗A(t)− κΛ⊗B(t)

]
z̃(t)

(14)
where we have introduced the modal coordinates z̃(t) =
Ṽ Tz(t) and R̃ = V TRV . The latter matrix is simply equal
to R̃ = IN − e1e

T
1 , where e1 is the first vector of the

natural basis {ei}Ni=1, since Rv1 = 0 and Rvi = vi for
i = 2, . . . , N . Equation (14) corresponds to a system of N
decoupled differential equations in Rn, such that,

˙̃z1(t) = 0 (15a)

˙̃zi(t) = [A(t)− κλiB(t)]z̃i(t) (15b)

for i = 2, . . . , N .
Since z̃1(0) = 0 by construction, see (10), the asymptotic

synchronization of the network is equivalent to the asymptotic
stability of the following master equation for N − 1 values of
the nonnegative parameter α ∈ {κλ2, . . . , κλN}:

ẏ(t) = [A(t)− αB(t)]y(t) (16)

where y(t) ∈ Rn is the master state variable. Therefore, the
synchronization of a network of N coupled systems reduces
to the study of a single master stability equation in Rn, as
originally established in [37].

C. Mean square dynamics of the synchronization error

From (9), we write the expected synchronization error at
time t as

E[E(t)] =
2

N − 1
E
[
z(t)Tz(t)

]
=

2

N − 1
Tr
(
E
[
z(t)z(t)T

])
(17)

where the expectation is computed with respect to the σ-
algebra induced by the noise. Thus, the analysis of the effect of
noise injected at one of the network nodes reduces to the study
of the time of evolution of the trace of the correlation matrix
Σ(t) = E[z(t)z(t)T] – a symmetric and positive semidefinite
matrix.

By taking the time derivative of Σ(t), applying the chain
rule of differentiation, and using (12), we obtain

Σ̇(t) = [R⊗A(t)− κL⊗B(t)]Σ(t)

+ Σ(t)
[
R⊗A(t)T − κL⊗B(t)T

]
+ (Rν ⊗Hη)E

[
η(t)z(t)T

]
+ E [η(t)z(t)]

(
νTR⊗HT

η

)
(18)

To compute the latter two summands on the right hand side of
the equation above, we replace z(t) with the solution of (12),
which reads

z(t) = Φz(t, 0)z(0) +

∫ t

0

Φz(t, τ)Rν ⊗Hηη(τ)dτ (19)

where z(0) is the initial condition and Φz(t, τ) is the transition
matrix associated with the state matrix [R ⊗ A(t) − κL ⊗
B(t)]. By recalling that the noise is hypothesized to be white,
such that E[η(t)η(τ)] = θ

2δ(t − τ) where δ(t) is the Dirac
distribution, we obtain the following time-varying Lyapunov
equation for the time evolution of the correlation matrix:

Σ̇(t) = [R⊗A(t)− κL⊗B(t)]Σ(t)

+ Σ(t)[R⊗A(t)T − κL⊗B(t)T] + θ[RννTR⊗HηH
T
η ]
(20)

whose initial condition is Σ(0) = z(0)z(0)T = (R ⊗
In)ξ(0)ξ(0)T(R⊗ In).

D. Modal analysis of the mean square dynamics

Toward the objective of crafting a master equation to
examine dynamic robustness, we perform a modal analysis of
the correlation dynamics on the eigenspaces of the Laplacian
matrix, similar to the classical analysis for noiseless systems
reviewed in Section III-B. By left multiplying the governing
equation for the dynamics of the correlation matrix in (20) by
Ṽ T and right multiplying by Ṽ , we find

˙̃Σ(t) = [R̃⊗A(t)− κΛ⊗B(t)]Σ̃(t)

+ Σ̃(t)
[
R̃⊗A(t)T − κΛ⊗B(t)T

]
+ θ

(
V TRννTRV ⊗HηH

T
η

)
(21)
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where we have introduced Σ̃(t) = Ṽ TΣ(t)Ṽ .
Our next step is to write Σ̃ as the summation of N2 matrices

in Rn×n, such that

Σ̃(t) =
N∑

i,j=1

eie
T
j ⊗ σ̃ij(t) (22)

where σ̃ij(t) corresponds to the ijth block of Σ̃(t). By replac-
ing (22) in (21), we obtain N2 decoupled systems of matrix
differential equations in Rn×n. Specifically, we determine the
following set of modal equations:

˙̃σ1j(t) = −κλj σ̃1j(t)B(t)T (23a)

˙̃σi1(t) = −κλiB(t)σ̃i1(t) (23b)

for i, j = 1, . . . , N , together with

˙̃σij(t) = [A(t)− κλiB(t)]σ̃ij(t)

+ σ̃ij(t)
[
A(t)T − κλjB(t)T

]
+ θ

(
vTi ν

) (
vTj ν

)
HηH

T
η

(24)

for i, j = 2, . . . , N . Notably, the initial condition for (21) is
Σ̃(0) = (V TR⊗ In)ξ(0)ξ(0)T(RV ⊗ In), such that σ̃1j(0) =
σ̃i1(0) = 0 for i, j = 1, . . . , N . As a result, (23) implies that
σ̃1j(t) and σ̃i1(t) remain zero for all times. On the other hand,
(24) will in general yield nontrivial dynamics, associated with
the modes of the correlation matrix on the transverse manifold.

Since we are interested in the trace of Σ(t) and the trace is
invariant under a similarity transformation, like the one elicited
by Ṽ (see, for example, [42]), our entire problem reduces
to the solution of N − 1 independent systems of differential
equations

˙̃σii(t) = [A(t)− κλiB(t)]σ̃ii(t) + σ̃ii(t)[A(t)− κλiB(t)]T

+ θ
(
vTi ν

)2
HηH

T
η (25)

for i = 2, . . . , N with initial conditions given by

σ̃ii(0) = (vTi ⊗ In)ξ(0)ξ(0)T(vi ⊗ In) (26)

From the solution of these equations we ultimately evaluate
the expectation of the synchronization error in (17) as

E[E(t)] =
2

N − 1

N∑
i=2

Trσ̃ii(t) (27)

E. Master equation and robustness metric

Given that the coupling enters (25) through the eigenvalue
λi and the component of the eigenvector vTi ν corresponding
to the location of the node where noise is injected, we posit a
master equation for the master correlation matrix ζ(t) ∈ Rn×n
of the form

ζ̇(t) = [A(t)−αB(t)]ζ(t)+ζ(t)[A(t)−αB(t)]T+θu2HηH
T
η

(28)
where α and u should be treated as arbitrary nonnegative
parameters. The study of this time-varying Lyapunov equation
allows for an exhaustive analysis of the interplay between
topology and dynamics on robustness.

It may be convenient to transform the Lyapunov equation
into a linear system in terms of a vector assembled from the
components of ζ(t) by utilizing Kronecker algebra. Thus, we
may write (28) as

Vecζ̇(t) = [A(t)− αB(t)]⊕ [A(t)− αB(t)]Vecζ(t)

+ θu2Vec
(
HηH

T
η

)
(29)

where ⊕ is the Kronecker sum and Vec indicates matrix
vectorization. The solution of (29) can be written using the
transition matrix ΦVecζ(t, τ) associated with the state matrix
[A(t)− αB(t)]⊕ [A(t)− αB(t)] as follows:

Vecζ(t) = ΦVecζ(t, τ)Vecζ(0)

+ θu2
∫ t

0

ΦVecζ(t, τ)dτVec
(
HηH

T
η

)
(30)

Therefore, the contribution to (27) from the mode with Lapla-
cian eigenvalue equal to α

κ and eigenvector component at the
node where noise is injected equal to u is

Eα,u(t) = Vec (In)
T

Vecζ(t) (31)

such that

E[E(t)] =
2

N − 1

N∑
i=2

Eκλi,|vTi ν|(t) (32)

By construction, the transition matrix ΦVecζ(t, τ) can be
expressed as the Kronecker product of two identical matrices

ΦVecζ(t, τ) = Φy(t, τ)⊗ Φy(t, τ) (33)

Here, Φy(t, τ) is the transition matrix of the master equation
for noiseless synchronization in (16). Therefore, the contri-
bution to the expectation of the synchronization error in (31)
becomes

Eα,u(t) = Vec
(
ITn
)

Φ(t, 0)⊗ Φ(t, 0)Vecζ(0)

+ θu2Tr

∫ t

0

Φy(t, τ)HηH
T
η Φy(t, τ)Tdτ (34)

We assume that the network synchronizes in the absence of
noise, such that the transition matrix vanishes in the limit of
t→∞ for λ ∈ {λ2, . . . , λN} – the asymptotic stability of the
noiseless variational dynamics can be inferred from a master
stability function constructed upon (16). Under the premise of
asymptotic stability of (16), for sufficiently large times the
free evolution in the right hand side of (34) vanishes and
the contribution to the synchronization error approaches the
steady-state solution

Essα,u(t) = θu2ρ(α, t) (35)

where the so-called robustness metric ρ is given by

ρ(α, t) = Tr

∫ t

0

Φy(t, τ)HηH
T
η Φy(t, τ)Tdτ (36)

This function is independent of u and can be computed
parametrically for any choice of α as a function of time.
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Through such a parametric analysis, we may ultimately write
the expected synchronization error at the steady-state as

E[Ess(t)] =
2θ

N − 1
νT

[
N∑
i=2

ρ(κλi, t)viv
T
i

]
ν (37)

We formulate this result in the form of the following
proposition for the linearized dynamics in (3):

Proposition 1: Consider the network of coupled linear
systems (3), where L is the graph Laplacian of the network,
A(t) and B(t) are piecewise continuous matrix functions in
Rn×n, ν ∈ RN has all zeros except of the entry corresponding
to the node where noise is injected, Hη ∈ RN is a constant
vector specifying how noise enters the dynamics of a node, and
η is a zero-mean Gaussian white noise of variance 2θ. If the
linear system asymptotically synchronizes in the absence of
additive noise (limt→∞ ‖ξi(t)−ξj(t)‖ = 0 for i, j = 1, . . . , N
and any initial condition), then at steady-state the expected
synchronization error 1

N(N−1)
∑N
i,j=1 E

[
‖ξi(t)− ξj(t)‖2

]
ap-

proaches (37), where vi is the ith eigenvector of L whose
corresponding eigenvalue is λi and the robustness metric
ρ(κλ, t) is computed through (36), from the transition matrix
of the master equation for noiseless synchronization in (16).

Through Proposition 1, we can systematically examine the
interplay between topology and dynamics on robustness. All
the information related to the network dynamics are encoded
in the robustness metric ρ(α, t), which is independent of the
topology of the network and the location of the node where
noise is injected. Computation of the robustness metric re-
quires only knowledge of the noiseless deterministic dynamics
and the way noise enters the state of the network nodes via
Hη . The network topology determines the numerical values
of the eigenvalues and eigenvectors of the graph Laplacian,
which, together with the robustness metric, shape the response
of the network to additive noise. More specifically, from
the topology and the robustness metric, we can evaluate the
matrix

∑N
i=2 ρ(κλi, t)viv

T
i , which might be assimilated to a

generalized function of the graph Laplacian. The diagonal
entries of this generalized matrix function will ultimately
reveal the vulnerability of the network to injected noise at
specific nodes.

Proposition 1 offers some directions on how to expand the
approach to network control. Toward minimizing the effect
of noise on the networked dynamics, this proposition might
inform the selection of nodes where localized interventions
should be applied. For instance, knowledge about the nodes
where noise injection yields the larger synchronization error
may suggest where filters should be introduced to hamper
noise, thereby reducing its impact on the overall networked
system.

IV. COMPUTATION OF THE ROBUSTNESS METRIC

From a practical point of view, it may be difficult to compute
the integral in (36) and one may opt for directly solving
the time-varying Lyapunov equation in (28) or the associated
linear system in (29) in the steady-state. Specifically, ρ(α, t)
corresponds to the trace of the solution of (28) with zero initial
conditions and θ = u = 1.

While for a general time-varying system the dependence of
the robustness metric on time might not be discarded, in our
treatment of time-invariant and chaotic systems we can focus
on a robustness metric that depends only on α. In these cases,
the steady-state solution should be independent of time.

Specifically, for linear time-invariant systems, we could
directly set the left hand side of the equation to zero and
solve the resulting algebraic Lyapunov equation to determine
ρ(α). More specifically, for time-invariant systems, we solve
the following equation for ζ:

(A− αB)ζ + ζ(A− αB)T +HηH
T
η = 0 (38)

and set ρ(α) = Trζ.
For chaotic systems, we exploit the ergodicity of the syn-

chronous solution to tailor the definition of the robustness
metric. Toward this aim, we solve (28), or (29), for a large
time interval with θ = u = 1. Then, we compute the trace of
the solution and average over an integration window to define
a robustness metric that is only a function of α. A similar line
of approach could be proposed for periodic systems, in which
we would design the integration window on the basis of the
period of the variational dynamics.

In what follows, we briefly examine three representative
dynamics: classical consensus, second-order consensus, and
Rössler chaos. These three exemplary cases help illustrate
the complexity of the interplay of dynamics and topology on
robustness.

A. Classical consensus

For the case of a classical consensus, n = 1, A(t) = 0, and
B(t) = 1 and (38) yields the simple expression

−2αζ + 1 = 0 (39)

Thus, the robustness metric is

ρ(α) =
1

2α
(40)

which is, obviously, a monotonically decreasing function of
α.

B. Second-order consensus

As an example of second-order consensus, we consider

A =

[
0 1
−1 0

]
, B =

[
0 0
β 1

]
, Hη =

[
0
1

]
(41)

where β ∈ R. If we were to draw an analogy with mechanical
systems, then the problem would correspond to an array of
mass-spring systems of unit mass and unit stiffness, which are
interconnected by springs of stiffness β and dampers of unit
damping constant. If β is positive, (16) will be asymptotically
stable for any positive α, but if α is negative then asymptotic
stability will be lost for α > − 1

β . Through the lens of the
mechanical analogy, a negative spring constant will cause the
masses to be pushed away from their equilibrium, which can
be contrasted by the restoring damping only up to a certain
extent.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2018.2825024, IEEE
Transactions on Control of Network Systems

PORFIRI AND FRASCA: ROBUSTNESS OF SYNCHRONIZATION TO ADDITIVE NOISE 7

0 20 40 60 80 100

0.005

0.010

0.050

0.100

0.500

1

5

α

ρ

Fig. 1: Robustness metric for second-order consensus. Black
solid curve identifies the case in which β = 1 and the system is
asymptotically stable for any positive value of α. Red dashed
curve refer to the case in which β = − 1

100 and the system is
asymptotically stable for 0 < α < 100.

Solving (38) for ζ, we find

ζ =

[ 1
2α(1+αβ) 0

0 1
2α

]
(42)

from which we define the robustness metric

ρ(α) =
2 + αβ

2α(1 + αβ)
(43)

Fig. 1 illustrates the robustness metric for two exemplary
instances of second-order consensus. For the case of β > 0,
the metric is monotonically decreasing, thereby we expect an
equivalent behavior to the classical consensus problem. On
the other hand, for β < 0, a much more complex scenario
emerges.

The robustness metric depends nonmonotonically on α
and features two vertical asymptotes at 0 and − 1

β . For an
arbitrary linear system, it is tenable to anticipate a similar
response, where the dependence of the robustness metric on α
may be in general nonmonotonic and may feature multiple
asymptotes that separate islands of synchronization in the
absence of additive noise. As evidenced from (43), we expect
the function ρ(α) to grow to infinity as α approaches the
critical values at which the master stability equation loses
stability. Interestingly, even the classical first-order consensus
problem will display an equivalent behavior if formulated in a
discrete-time setting, where stability of the noiseless protocol
is only possible for a finite range of the coupling gains between
the nodes [43].

C. Rössler chaotic oscillators

Next, we examine Rössler chaotic dynamics, whose non-
linear behavior is encoded in the three-dimensional nonlinear
function F (x) =

[
−x2 − x3, x1 + 1

5x2,
1
5 + x1x3 − 9x3

]T
,

where x1, x2, x3 are the three components of the state vector.
As discussed in [44], the Lyapunov exponents for this oscilla-
tor are approximately −8.716, 0, and 0.080. We assume that
the oscillators are coupled on the second variable, such that

0 2 4 6 8 10

1

5

10

50

100

500

α

ρ
(α
)

Fig. 2: Robustness metric for Rössler chaotic oscillators.
Black markers are results from computer simulations and red
solid curve is the empirical fit in (45).

Hx(x) = x2. Thus, the time-varying matrices describing the
system dynamics are

A =

 0 −1 −1
1 1

5 0
s3(t) 0 s1(t)− 9

 , B =

0 0 0
0 1 0
0 0 0

 (44)

where s(t) ∈ R3 is the chaotic solution of an oscillator. As
shown by [44], for this configuration, the master equation (16)
is asymptotically stable for α > 0.157.

Following our previous work [23], we consider noise in-
jected on the first variable so that Hη = [1, 0, 0]T. To compute
the robustness metric, we adopt the following approach. First,
we integrate the original nonlinear dynamics of a single
oscillator from t = 0 to t = 1000 from an initial condition
with all the state variables at 1 to compute s(t). Then, for any
value of α, we integrate (29) in the same time window using
homogenous initial conditions and θ = u = 1. Then, we left
multiply by (VecI3)

T, integrate in [750, 1000], and scale the
result by the length of the interval, 250. We repeat this process
by varying α from 0.160 to 10.000 with a step of 0.010 for
1000 times. We perform the numerical integration using the
MATHEMATICAr built-in function NDSOLVE.

Results of the computation are shown in Fig. 2 where we
report the robustness metric as a function of α. As expected,
the robustness metric has a vertical asymptote approximately
in correspondence to the smallest value of α for which the
master equation is asymptotically stable, that is, α = 0.157.
Interestingly, the order of the singularity identified from nu-
merical fitting of the data seems larger than one, different
from the linear time-invariant problems described above. As
α increases, we see a minimum at approximately 1.293 and
finally a polynomial growth in α, identified from the numerical
data. As shown in Fig. 2, the robustness metric is accurately
fitted by the following function:

ρ(α) =
0.0543

(α− 0.157)4
− 0.754

(α− 0.157)3
+

4.02

(α− 0.157)2

− 6.29

(α− 0.157)
+10.3−3.27α+1.51α2−0.193α3+0.0114α4

(45)
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V. UNDERSTANDING THE INTERPLAY BETWEEN
TOPOLOGY AND DYNAMICS

Here, we systematically apply Proposition 1 to clarify the
relationship between robustness and both the network topology
and dynamics. We start with the analysis of the classical
consensus problem, for which we can compute in closed-form
the synchronization error as a function of salient topological
properties of the node where noise is inserted.

Closed-form computation of both the robustness metric and
the resulting generalized matrix function of the Laplacian
are unfortunately not feasible as we consider more general
dynamics, like the second-order consensus protocol or Rössler
chaotic oscillators. As a result, one may need to compromise
on the class of networks to be examined to establish exact re-
sults for dynamic robustness or devise approximation methods
that could help illuminate the relationship between dynamic
robustness and the topological properties of the nodes under
attack for general networks. Here, we explore both of these
lines of approach. First, we examine a star graph and then
we turn to general networks, for which we first present some
useful analysis tools based on perturbation theory and then
demonstrate the approach on an exemplary complex network.

A. Classical consensus

By assuming that the graph is connected, such that λ2 > 0
(see, for example [35]), the integrators asymptotically reach
consensus in the absence of noise. Thus, the error at steady-
state in (37) takes the following form:

E[Ess] =
θ

κ(N − 1)
νT

[
N∑
i=2

1

λi
viv

T
i

]
ν (46)

where we have used (40). Recalling the definition of the
Moore-Penrose inverse of a matrix (see, for example, [45]),
we can compactly write

E[Ess] =
θ

κ(N − 1)
νTL+ν (47)

where L+ is the Moore-Penrose inverse of the graph Lapla-
cian. Therefore, the error at steady-state is proportional to the
diagonal entry of L+, corresponding to the node where noise
is injected.

From a topological point of view, the ith diagonal entry
of the Moore-Penrose inverse of the graph Laplacian L+

ii for
i = 1, . . . , N can be related to the information centrality of the
ith node, as demonstrated in [30] and concisely summarized
in [29]. In the context of networks, the information encoded
in a path between two nodes is defined as the inverse of the
path length, such that information-rich paths would pertain
to adjacent nodes and information would decay as the nodes
become further and further away [46].

Specifically, from Eq. (8) in [29], we may write

L+
ii =

1

ci
− Kf

N2
(48)

where ci is the information centrality of the ith node and Kf is
the Kirchhoff index or total effective resistance of the network
(see, for example, [47]). Information centrality is defined as
the harmonic average of the total information between the ith
node and any other network nodes, that is,

ci =

 1

N

N∑
j=1

1

Itoti,j

−1 (49)

where Itoti,j is the total information between nodes i and j,
computed as the sum of the information in all paths connecting
these two nodes. Thus, for the classical consensus problem,
robustness is proportional to information centrality: the higher
information centrality is, the lower will be the effect of the
injected noise on the disagreement among the nodes. In other
words, for a classical consensus problem, the network is most
vulnerable to additive noise when injected from a node with
low information centrality.

Information centrality is not entirely controlled by the
degree, which only accounts for connections with nearest
neighbors rather than nonlocal interactions that are built-in the
definition of information centrality (see, for example, [48]).
However, for several networks, large values of information
centrality will typically map into large values of the degree,
and, vice versa, nodes with low information centrality will
correspond to nodes with low degree [49], [50].

Through numerical simulations, in [23], we in fact have
found that dynamic robustness correlates with the node degree
for scale-free and Erdős-Rényi networks. This is in sharp
contrast with a purely topological view of network robustness
which would suggest that the network is most vulnerable to
attacks on the high-degree nodes.

B. Dynamic robustness beyond classical consensus: star net-
works

For a generic linear-time invariant or chaotic dynamics, it
may be difficult or impossible to establish a precise connection
between the network vulnerability and its topology, as we
have done for the classical consensus problem. To illustrate
the complexity of the problem, we examine a star network, in
which node 1 corresponds to the center of degree N − 1. The
graph Laplacian has two nonzero eigenvalues 1 and N−1, with
multiplicity equal to N−2 and 1, respectively. The eigenvector
corresponding to the largest eigenvalue is 1√

N(N−1)
(Ne1 −

1N ) and the eigenspace of dimension N − 2 associated with
the unitary eigenvalue is simply (Span {1N , e1})⊥.

The steady-state synchronization error (37) becomes
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E[Ess−star] =
2θ

N − 1
νT

[
ρ(κ)

(
IN −

1

N − 1
1N1TN −

N

N − 1
e1e

T
1 +

1

N − 1
(e11TN + 1Ne

T
1 )

)
+

ρ(κ(N − 1))

(
1

N(N − 1)
1N1TN +

N

N − 1
e1e

T
1 −

1

N − 1
(e11TN + 1Ne

T
1 )

)]
ν (50)

where we have dropped the dependence on time given our
focus on time-invariant and chaotic systems. We can specialize
the synchronization error to the case in which we inject noise
to the central node, ν = e1, or to any other node in the star,
say ν = e2. In the former case, (50) yields

E[Ess−star] =
2θ

N
ρ(κ(N − 1)) (51)

and in the latter, we find

E[Ess−star] =
2θ

N − 1

[
N − 2

N − 1
ρ(κ)

+
1

N(N − 1)
ρ(κ(N − 1))

]
(52)

Taking the ratio between (51) and (52), we define the
following vulnerability ratio:

Vul

(
ρ(κ)

ρ(κ(N − 1))

)
=

N−1
N

N−2
N−1

ρ(κ)
ρ(κ(N−1)) + 1

N(N−1)

(53)

When the vulnerability ratio is less than one, then the star
network is more robust at its center, and, vice versa, when the
vulnerability ratio is more than one, then the center is the least
robust node.

From a simple analysis of the function (53), we discover
that the vulnerability ratio is equal to 1 when ρ(κ)

ρ(κ(N−1)) =

1. Any value of ρ(κ)
ρ(κ(N−1)) less than 1 value will yield

Vul
(

ρ(κ)
ρ(κ(N−1))

)
> 1, and vice versa if the ratio is above

1, we will find Vul
(

ρ(κ)
ρ(κ(N−1))

)
< 1.

For the classical consensus problem, ρ(α) = 1
2α , such that

ρ(κ)
ρ(κ(N−1)) = N − 1. Provided that N > 2, the vulnerability
ratio will be less than 1 and the network will be more robust
at its center, in agreement with the previous general results.

With respect to the second-order consensus problem with
β > 0, a star network will be more vulnerable to attacks
at the peripheral nodes. But for β < 0, the value of the
coupling gain κ will shape the response of the networks to
attacks at the center or peripheral nodes. As shown in Fig. 3
for three exemplary network sizes, for small values of κ, the
ratio ρ(κ)

ρ(κ(N−1)) is larger than one, such that the network is
more robust to attacks at its center. As κ increases, we have
the opposite behavior and the network becomes more robust
to attacks at its peripheral nodes. The qualitative dependence
does not change with the size of the star network, which
only reduces the range of admissible coupling gains given by
κ < − 1

(β(N−1)) .
Rössler chaotic oscillators will show a similar behavior to

second-order consensus with β < 0, such that we can switch
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Fig. 3: Dependence of ρ(κ)
ρ(κ(N−1)) on the coupling gain and

network size for second-order consensus over a star network
with β = − 1

100 . Solid black curve refers to N = 3, green
dashed curve to N = 5, and dotted red curve to N = 7.
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Fig. 4: Dependence of ρ(κ)
ρ(κ(N−1)) on the coupling gain and

network size for Rössler chaotic oscillators interconnected by a
star network. Solid black curve refers to N = 3, green dashed
curve to N = 5, and dotted red curve to N = 7. Plots are
generated using the empirical fit for the robustness metric in
(45).
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the relative vulnerability of the center and peripheral nodes by
changing κ. More specifically, for small values of κ, the center
is more robust to injected noise, and increasing the value of κ
will lead to the peripheral nodes being more robust, as shown
in Fig. 4.

C. Dynamic robustness beyond classical consensus: perturba-
tion analysis on arbitrary networks

To enable the study of general networks, we posit an
alternative approach based on perturbation theory. Specifically,
by focusing on a compact interval of the stability region where
the robustness metric is a smooth function we expand the
function in a Taylor series and use the resulting polynomial
approximation to write (37) in terms of a polynomial expan-
sion of the Laplacian matrix.

For example, if the spectrum of the network is localized
in an interval [λ2, λN ] for which the function ρ(α) is mono-
tonically increasing or decreasing, as a first approximation,
we may propose ρ(α) ≈ a0 + a1α. As a result, we may
approximate the expected synchronization error in (37) as

E[Ess] ≈ 2θ

N − 1
νT

[
N∑
i=2

(a0 + a1κλi)viv
T
i

]
ν (54)

which yields the following compact expression in terms of the
graph Laplacian

E[Ess] ≈ 2θ

N − 1

[
a0

(
1− 1

N

)
+ a1κν

TLν

]
(55)

where we have used
∑N
i=1 viv

T
i = IN and

∑N
i=1 λiviv

T
i = L.

This equation offers an important insight into the interplay
between dynamics and topology on robustness. If a1 < 0, then
the synchronization error decreases with increasing values of
νTLν, while the opposite holds for a1 > 0. Since νTLν is
equal to the degree of the node where noise is being injected,
then the sign of a1 will determine whether the network is more
vulnerable to additive noise injected at nodes with high or low
degree.

In the context of the classical consensus problem, the
robustness metric is a monotonically decreasing function, such
that a1 < 0. Thus, the affine approximation (55) predicts
that dynamic robustness increases with node degree, in agree-
ment with numerical predictions in [23]. The same behavior
is expected for the second-order consensus algorithm with
β > 0, while a richer landscape of robustness will characterize
second-order consensus with β < 0 and Rössler chaotic
oscillators.

Specifically, if {κλi}Ni=2 is concentrated around the origin
for second-order consensus or around 0.157 for chaotic dy-
namics, then, the network will be more vulnerable to attacks at
its low degree nodes. On the contrary, if {κλi}Ni=2 concentrates
around the asymptote at − 1

β for second-order consensus or
are larger than 1.293 for chaotic oscillators, the network will
be more vulnerable when attacked at its high degree nodes.
If {κλi}Ni=2 is somewhere in the central region where the
robustness metric is nearly flat, then vulnerability will be
largely independent of the degree of the nodes.

Fig. 5: Exemplary network of N = 16 nodes borrowed from
[29] to illustrate the interplay of dynamics and topology. For
this network, λ2 = 0.605 and λ16 = 8.030.

We illustrate these claims on the network depicted in Fig. 5
for the cases of classical consensus, second-order consensus
with β = − 1

100 , and Rössler chaos. The same network has
been used to exemplify leader selection in consensus problems
in [29]. For each type of dynamics, we fix θ = 1 and
evaluate the steady-state error E[Ess] in (37) generated by
noise injected at one of the network nodes. In (37), the
robustness metric is given by (40), (43), and (45) for clas-
sical consensus, second-order consensus, and Rössler chaotic
dynamics, respectively. The node where noise is injected is
systematically varied to cover the entire vertex set, thereby
identifying the most vulnerable nodes in the network for each
type of dynamics. Table I synoptically presents the results of
the analysis, including side-by-side topological properties of
the node where noise is injected and the corresponding steady-
state error in the entire network.

For the classical consensus problem, our results indicate
that the network is most vulnerable to attacks from node 12,
which has, in fact, the lowest information centrality in the
network. Very close values of E[Ess] are associated with two
other nodes, that is, nodes 4 and 13. These are the other two
nodes in the network that have the smallest degree of one.

For the second-order consensus algorithm, we consider two
values of κ. The first one (κ = 0.20) corresponds to a
scenario where {κλi}Ni=2 is close to the origin, such that the
robustness metric will monotonically decrease and the problem
be equivalent to the classical consensus. In agreement with our
perturbation analysis, we find that the nodes which produce
the larger error are those with the lowest degree. The second
value of κ (κ = 12.30) portrays a different scenario, in which
{κλi}Ni=2 concentrates around the asymptote at − 1

β . In this
case, the robustness metric monotonically increases and we
confirm that the network is most vulnerable to attacks at the
node with the highest degree, that is, node 9 with degree equal
to six.

For Rössler chaotic oscillators, we consider three values
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TABLE I: Topological properties of the network in Fig. 5, along with numerical values of the steady-state error induced
by noise injected at one of the nodes for different dynamics. Each row lists the location of the injected noise (column 1),
its degree (column 2), information centrality (column 3), and number of triangles (column 4), together with the steady-state
errors in the entire network for different dynamics (column 5–10). For all the considered dynamics except of Rössler chaos
with κ = 0.65, knowledge of the degree is sufficient to predict the most vulnerable network nodes. For Rössler chaos with
κ = 0.65, knowledge of number of triangles is also required as shown in the very last column (column 11), where we present
the theoretical prediction from the perturbation analysis based on both the degree and number of triangles in (59).

Node di ci ti Classical
consensus

Second-order
consensus,
β = − 1

100
and

κ = 0.20

Second-order
consensus,
β = − 1

100
and

κ = 12.30

Rössler
chaos,
κ = 0.32

Rössler
chaos,
κ = 1.00

Rössler
chaos,
κ = 0.65

Rössler
chaos,
κ = 0.65 -
prediction

1 4 1.227 2 0.021 0.210 0.006 109.759 1.546 1.066 1.234
2 5 1.311 3 0.017 0.175 0.012 103.189 2.021 1.267 1.443
3 4 1.209 0 0.022 0.218 0.007 85.833 1.556 1.080 1.004
4 1 0.587 0 0.080 0.802 0.014 569.280 0.886 1.395 1.445
5 3 1.118 2 0.026 0.263 0.006 10.849 1.162 0.871 1.184
6 4 1.163 2 0.024 0.240 0.006 181.081 1.561 1.122 1.234
7 2 0.903 0 0.040 0.405 0.008 167.336 0.905 0.861 1.063
8 4 1.250 1 0.020 0.200 0.008 31.926 1.546 1.033 1.119
9 6 1.465 2 0.012 0.122 0.029 2.604 2.609 1.438 1.351
10 4 1.224 0 0.021 0.211 0.009 17.725 1.564 1.067 1.004
11 4 1.176 1 0.023 0.233 0.008 145.030 1.569 1.112 1.119
12 1 0.580 0 0.082 0.817 0.014 948.156 0.914 1.462 1.445
13 1 0.591 0 0.079 0.795 0.014 160.080 0.875 1.365 1.445
14 4 1.266 1 0.019 0.193 0.007 56.030 1.542 1.030 1.119
15 4 1.274 0 0.019 0.190 0.008 21.567 1.547 1.020 1.004
16 3 1.086 1 0.028 0.280 0.006 148.299 1.187 0.931 1.069

of κ: 0.32, 1.00, and 0.65. The first one (κ = 0.32) locates
{κλi}Ni=2 close to the asymptote at 0.157 and produces a
scenario similar to that of classical consensus, with higher
vulnerability for nodes with low degree. The second one
(κ = 1.00) places {κλi}Ni=2 in the region where ρ(α)
monotonically increases with α. In this case, the correlation
between vulnerability and degree is reversed: the network is
more vulnerable to attacks at its high-degree nodes. Node 9 is
where the network is most vulnerable, similar to the second-
order consensus with κ = 12.3. For the third value of κ
(κ = 0.65), the set {κλi}Ni=2 is between 0.193 and 2.570,
which is around the minimum of the robustness metric at
1.293. In this case, vulnerability is not correlated with the
degree, whereby injecting noise at nodes 4, 9, 12 and 13 yields
equivalent errors in network synchronization, despite the large
mismatch in the degree of these nodes (d4 = d12 = d13 = 1
and d9 = 6).

A potential line of approach to examine the last case in
which the degree is not a predictor of vulnerability entails the
use of higher order approximation for the robustness metric.
Specifically, when the robustness metric is not changing mono-
tonically, an affine approximation of the robustness metric is
not suitable and one may contemplate retaining more terms
in the expansion such that ρ(α) ≈

∑m
i=0 aiα

i, where m is
the order of the expansion. In this more general setting, the
synchronization error in (37) will be approximated as

E[Ess] ≈ 2θ

N − 1

[
a0

(
1− 1

N

)
+

m∑
i=1

aiκ
iνTLiν

]
(56)

The geometric interpretation of the powers of the graph
Laplacian is not trivial since the degree matrix D and the

adjacency matrix A do not generally commute. However,
some meaningful insight can be garnered by considering the
identities presented in [51] for low order powers of L, based
on classical identities on the diagonal elements of the first
three powers of the adjacency matrix, namely,

Aii = 0,
(
A2
)
ii

= di,
(
A3
)
ii

= 2ti (57)

where i = 1, . . . , N , di = Dii is the degree of node i, and ti
is the number of triangles that touch node i. Based on these
identities, we can compute(

L2
)
ii

= d2i + di (58a)(
L3
)
ii

= d3i + 3d2i − 6ti (58b)

Therefore, up to a third order approximation in the ro-
bustness metric, we propose the following expansion for the
synchronization error in (37):

E[Ess] ≈ 2θ

N − 1

[
a0

(
1− 1

N

)
+ a1κdî + a2κ

2
(
d2
î

+ dî
)

+ a3κ
3
(
d3
î

+ 3d2
î
− 6t̂i

) ]
(59)

where we have identified the node where noise is injected as
î. Equation (59) indicates that as the order of the expansion
of the robustness metric increases, the degree of a node is not
sufficient to predict the degree of vulnerability of the network
as a function of the dynamics and nonlocal measures of
centrality, such as the number of triangles, become important.

Going back to our example of Rössler chaotic oscillators
with κ = 0.65, by least-square fitting the robustness metric at
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{κλi}Ni=2, we find a0 = 17.7, a1 = −15.2, a2 = 5.49, and
a3 = −0.523. By applying (59), we successfully anticipate
that the network is equivalently vulnerable to noise injected at
nodes 4, 9, 12, and 13, as shown in the very last column of
Table I .

VI. CONCLUSIONS

From biological to technological networks, the question of
robustness to local attacks is pervasive to science and engineer-
ing. In this paper, we have examined how networks of coupled
dynamical systems respond to additive noise injected at one
of the network nodes. We have established a mathematical
framework to quantify the effect of noise injected at one of
the network nodes on the overall synchronization among the
coupled dynamical systems. By studying the time evolution
of the synchronization error in a mean square sense, we have
formulated a robustness metric that disentangles the roles of
dynamics and topology on the robustness of the network.
The robustness metric can be computed once for all, for any
network and any choice of the node where noise is injected.
Through the analysis of representative linear and nonlinear
dynamics, we have demonstrated a wide range of feasible
behaviors for the robustness metric, which ultimately shape
how networks respond to additive noise.

Once a specific network topology is assigned, the synchro-
nization error is simply evaluated in terms of the spectral
properties of the graph Laplacian, the robustness metric, and
a vector encoding the node where noise is injected. For the
classical consensus problem, we have established an elegant
relationship between network robustness and information cen-
trality, which echoes recent studies on the effect of leadership
in noisy consensus protocols [29], [30]. The higher is the
information centrality of a node, the more the network will
be robust to noise injected at that node. In contrast with a
topological view of robustness that would suggest to protect
hubs from attacks to preserve connectivity, we have found that
for the classical consensus problem an attack in the form of
additive noise is more detrimental when implemented on the
peripheral nodes of the network.

For second-order consensus algorithms and Rössler chaotic
dynamics, it is difficult to establish a universal relationship
between the topological properties of the nodes where noise
is injected and the vulnerability of the network. To gain
mathematical insight, we have put forward two complementary
approaches. First, we have proposed an exact solution for a
star network that clarifies how the selection of the dynamics
determines whether the network is more vulnerable at its
center or at its peripheral nodes. For second-order consensus
and Rössler chaos, we have identified selections of model
parameters and coupling strengths that lead the center to
be the most vulnerable node, in contrast with the classical
consensus problem. For arbitrary networks, we have proposed
an approach based on perturbation theory to unravel the
dependence of network robustness on node degree and higher
order measures of centrality.

While the proposed mathematical framework builds on the
growing body of literature on leadership in noisy consensus

protocols [26], [27], [28], [29], [30], it offers several technical
improvements that are needed for the study of network robust-
ness. Specifically, our approach is not limited to the classical
consensus problem of coupled scalar integrators, but it is
formulated in a general setting to study higher order linear and
nonlinear dynamics. Embracing nonlinear, higher order dy-
namics significantly complicates the mathematical treatment,
leading to: i) the general study of a time-varying Lyapunov
equation to examine the new construct of a robustness metric,
and ii) the advancement of tailored approaches to clarify the
role of topology on synchronization.

These contributions could, in turn, aid in extending the prob-
lem of leader selection to richer dynamics than the classical
consensus, building on the recent work by [52] that addresses
second-order consensus with β = 1 and small-world scale-free
Koch networks. For example, it may be interesting to explore
whether leadership selection exhibits also a rich dependence
of dynamics, such that the effectiveness of a leader could
depend on the specific dynamics that underlie the collective
phenomenon. A visually alluring instance can be the example
of a fish school. If fish were performing a simple consensus
protocol on their heading, then one might expect leaders to
place themselves in the center of the group where they could
be most visible to others. Experimental evidence suggests that
leaders instead could prefer to occupy frontal positions, hinting
that perhaps dynamics could play a role in the position leaders
choose to maximize their influence on the school [53].

Our results may also contribute to the synthesis of net-
worked control strategies, by helping identify those nodes
where filters should be introduced to enhance noise rejection
of the overall system. With respect to the alluring example
of a fish school, this may open the door to the integration of
robotic fish that could influence the collective dynamics [54],
against the effect of local perturbations.

One of the main limitations of our work is the linearized
treatment of the synchronization problem. Future work should
seek to extend the analysis beyond the variational dynamics
explored in our work and clarify whether network robustness
to large injected noise obeys similar laws as those established
in our work. It is possible that large injected noise could push
some of the coupled dynamical systems to leave the basin
of attraction, destroying network synchronization. Whether
parts of the network could still exhibit synchrony is an open
question that could be addressed in future research.
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