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Abstract—Recent developments in hyperspectral sensors have
made it possible to acquire HyperSpectral Images (HSI) with
higher spectral and spatial resolution. Hence, it is now possible to
extract detailed information about relatively smaller structures.
Despite these advantages, HSI suffers from many challenges also,
like higher spatial variability of spectral signatures, the Hughes
effect due to higher dimensionality, and a limited number of
labeled training samples compared to the dimensions of the
spectral space. Superpixels can be a potentially effective tool in
tackling these challenges. Superpixel segmentation is a process of
segmenting the spatial image into several semantic sub-regions
with similar characteristic features. Such grouping by similarity
can significantly ease the subsequent processing steps. Because of
this, superpixels have been successfully applied to various fields
of HSI processing like Classification, Spectral Unmixing, Dimen-
sionality Reduction, Band Selection, Active Learning, Denoising,
and Anomaly Detection. This paper focuses on Classification, pre-
senting a detailed survey of superpixel segmentation approaches
for the classification of HSI. The Superpixel creation algorithm
framework and post-processing frameworks for superpixels in
HSI are also analyzed. Also, a brief description of various
application areas of superpixels is provided. An experimental
analysis of existing superpixel segmentation approaches is also
provided in this paper, supported by quantitative results on
standard benchmark datasets. The challenges and future research
directions for the implementation of superpixel algorithms are
also discussed.

Index Terms—Hyperspectral Image, Superpixel Segmentation,
Evaluation.

I. INTRODUCTION

In recent years, HyperSpectral (HS) image analysis has
gained significant attention in the remote sensing context,
because of improvements in quality and availability of data.
Indeed, HS data may carry a large volume of information,
as each pixel densely samples the spectral response of the
object contained in it. Such response, called the “signature”
of the object, is unique to the material or mix of materials
composing the object. The practical importance of the spectral
signature concept is testified by the appearance of special HS
sensors with the capacity to recognize distinguishing features
that are then used for signature-based compression [1]], [2].
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When HSI data collection is intended for classification and
mapping purposes, as it is frequently the case, Ground Truth
(GT) information is needed to train the classifiers and perform
accuracy assessments.

Generating reliable GT can be a challenging and expensive
endeavour: visual interpretation can suffer from ambiguities,
whereas direct inspection may be costly and possibly difficult
due to accessibility issues. In any case, GT generation is
a time- and resource-consuming process. Hence, it is often
suggested that solutions be sought in classification techniques
that are capable of:

« utilizing unlabelled samples, and

« predicting the labels of neighboring locations

When the unlabelled neighboring pixel information is also
taken into consideration, the burden on the training sample
collection can be significantly reduced [3[. Recently, indeed,
this type of approach leveraging spatial information - or
the various forms of correlation between spatially adjacent
samples - has been increasingly adopted in several aspects
of HyperSpectral Image (HSI) processing like Anomaly De-
tection, Band Selection, Unmixing, and Classification.

Considering specifically the field of classification, tradi-
tional classifiers (e.g. K-nearest neighbors or KNN [4], SVM
[4], as well as neural-network-based ones [5]], etc.), when
they incorporate spectral features only may often be biased
by atmospheric disturbances and noise. This creates a labeling
uncertainty and salt-and-pepper noise in the classification map
[6]. Often, this is addressed either with inclusion of spatial
features into classification [7], or post classification voting
strategies [8]. In general, the voting strategies rely on window
based neighborhood operation. In this latter case, however, the
selection of window size is tricky and cannot be operated with
a universal assumption [9].

Superpixels have been found to offer a possible solution
to this and other problems in HSI data analysis, thanks to
their capability to change shape and size in relation with
spatial information contained in the hyperspectral scene.
Indeed, superpixels may also help when incorporated in
post-classification voting strategies [10].

Superpixels, due to their inherent properties have gained a
lot of attention since they were first named and introduced in
2003 [11]]. The concept was quickly adopted in a wide range
of applications. Several superpixel segmentation algorithms
available in literature are specifically designed for natural
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images. In [12], a comprehensive evaluation of 28 state-of-
the-art superpixel algorithms are provided. Also, in [13]], the
performance of SLIC algorithm is compared with other state-
of-the-art methods. These survey works mainly focuses on
the superpixel segmentation algorithms. Recently, superpixels
have gained a lot of popularity in the field of HSI processing.
It is desirable to incorporate superpixel segmentation for HSI
processing due to the powerful capability of superpixels to
adapt to the spatial structure of the depicted objects and
group pixels into spatially meaningful clusters. Researchers
have successfully applied superpixels in various applications
like classification []E[], spectral unmixing , dimensional-
ity reduction [I5]], band selection [I6], active learning [17],
denoising [18], and anomaly detection in hyperspectral
images. Frequently, the same algorithms that were developed
for natural images are also utilized for performing superpixel
segmentation. There exist no dedicated superpixel segmen-
tation algorithms that were specifically designed for HSI,
as probably those mutuated from natural image processing
perform satisfactorily in the new domain. In this survey, for
the first time the authors have focused on the different ways
in which known surperpixel approaches can be profitably used
as a pre-processing step for HSI analysis, with special regards
to classification.

To demonstrate the increasing popularity of superpixel, in
Figure. [T] a plot showing the number of available articles
in IEEE Xplore on the subject "Superpixel segmentation for
HSI" during the period 2010 to 2020 is provided. It can be
observed that the number of papers dedicated to this subject
has increased drastically in recent years. Figure [2] contains a
pie chart indicating the percentage of articles using superpixel
segmentation in various application areas of HSI processing
published in IEEE during the same period; the reader’s atten-
tion is drawn to the relative weight of classification, but also
to the range of possible other applications addressed. Due to
such widespread applicability of superpixels in the field of HSI
processing in this work, a detailed survey of various superpixel
segmentation approaches is provided for the reader’s reference.

w
(3]

230
2
S25
2
=
c 20
o
(2]
‘S 15
1
210
§
Z5
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year
Fig. 1. The number of articles available in IEEE Xplore on the subject

Superpixel segmentation for HSI during the period 2010 to 2020

The organization of the rest of the manuscript is as follows.
In section [[I} the concept of superpixel (especially as opposed
to that of a pixel) is introduced and discussed. Then, in Section
[ the effect of dimension on superpixels is described. A
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Fig. 2. Application of superpixels in different applications for HSI

superpixel creation algorithm framework in HSI is explained
in Section [[V] Next, various post-processing frameworks for
superpixels are provided in section |[V| In Section various
applications of superpixels are explained. Open challenges are
discussed in Section|[VIII] Finally, some conclusions and future
research lines are presented in Section [[X] The basic notations
used in the paper are provided in Section [A] in Appendix.

II. FROM PIXELS TO SUPERPIXELS

In the process of HSI image formation, each elementary
piece of information or pixel reports a measured amount of
incoming energy, referring to the observed object. Although
from a technological standpoint this makes perfect sense, in the
context of Earth observation the hyperspectral data generated
in this way suffer from two inherent limitations: 1) Pixels
are basically the result of spatial discretization 2) in extensive
images, a large number of samples, in both spatial and spectral
dimensions, makes many information extraction algorithms
computationally unfeasible [I1]]. To overcome the aforemen-
tioned problems, Ren and Malik introduced the concept of
superpixel segmentation [TT]].

Superpixels, which may serve as a preparation step to
image segmentation, can be defined as an unsupervised over-
segmentation of an image into several semantic sub-regions,
bearing similar characteristic features. Using superpixels for
segmentation has several advantages, like:

o Features can be computed on more meaningful regions
instead of acting on the basis of individual pixels.

o thanks to superpixel segmentation, the computational
complexity downstream reduces drastically as the input
entries for subsequent algorithms are down-scaled from
the order of magnitude of pixels to that of regions,
without losing significant information.

The benefits of using superpixels over pixels include:

o Spatial information: Superpixels provide a robust way
to exploit spatial contextual information as they group
spectrally similar regions [20].
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o Noise robustness: they can extract potential low-
dimensional features even under noisy conditions [15]].

o Pseudo-label generation: As GT is not available for
all the pixels in HSI, superpixels can be utilized to
generate pseudo-labels. Pixels within the same superpixel
are spatially and spectrally related so their labels may be
propagated [21]].

o Impact on Active Learning: In active learning, the most
informative unlabeled samples can be selected by using
the spatial contextual information provided by superpixels
[L7].

« Lower computational complexity: processing steps are
applied to regions instead of each individual pixel; this
opens the way to more efficient processing [22].

o Preservation of Boundary information: Superpixels
can very well preserve the boundary or edge features
in an image [23]], and consequently, the related spatial
information is conserved.

In order to be useful, the generated superpixels must possess

certain properties, listed below:

« Homogeneity: The generated superpixels must have “uni-
form" pixel values.

o Boundary Adherence: Superpixel boundaries must
match the object boundaries.

o Regularity: Superpixels must form a regular pattern in
the image

o Time Complexity: The generated Superpixels should
have lower computational complexity.

o Connected Partition: Superpixels consist of a connected
set of pixels and do not overlap with each other.

III. DIMENSION AND SUPERPIXEL

A basic definition for the objective of superpixel segmen-
tation algorithms can be given as that of grouping together
clusters of spatially adjacent pixels with similar spectral fea-
tures. As a consequence, all pixels within a given superpixel
can be assumed to have the same class label. The quality of the
generated superpixel map greatly depends on the base image
onto which these algorithms are applied; the base image is
the result of pre-processing the HSI image before applying
segmentation.

Hence, the base image must be chosen carefully, prior to
the application of superpixel segmentation algorithms. These
algorithms can be applied either on raw HSI or processed
(e.g. dimension-reduced) HSI images. When applied to the
raw HSI, the very valuable, discriminating spectral information
underlying the image is preserved and fully exploited. In
[21], an example of segmentation approach addressing the
full spectral extent of the original dataset is reported, with
the SLIC algorithm. In the general case, however, since HSI
may have hundreds of bands, some of which may contribute
significant amounts of noise or artifacts, directly segmenting
the whole HSIs with the superpixel method will result in very
high computational cost and possibly also poor performances
due to unsuppressed noisy bands. To address this issue,
processed HSIs can be used as the base images for superpixel
segmentation, which can greatly reduce the computational cost
and improve robustness to noise.

Several types of operations like dimensionality reduction,
band selection, or feature extraction can be performed on
the original HSI image, to extract only the most informative
and significant features from HSI. Dimensionality reduction
techniques like PCA can be employed to extract e.g. the
first three principal component bands, onto which superpixel
segmentation algorithms can be applied. This can significantly
reduce the computational complexity and also the impact
of noise. Another possible approach is to select the most
informative and discriminative bands as the base image upon
which superpixel segmentation algorithms are applied instead
of deriving new, non-spectral bands. By doing so, the inherent
spectral information in HSI can be well preserved while
reducing the impact of noise. Feature extraction can be another
effective approach to obtain an informative base image. When
applied to the extracted features, superpixel segmentation leads
to an enhanced spatial structure, thus reducing the effect of
incorrect region boundaries, decreasing differences within the
same class, and limiting over-segmentation [24]]. The Kurtosis
Wavelet Energy (KWE) [25]] and the Kurtosis Curvelet Energy
(KCE) [26] can also be considered as features upon which
superpixel segmentation can be applied. Hybrid methods may
also be adopted to create the base image. Features may be
extracted from the PCA image. After feature extraction, PCA
may once again be incorporated on the extracted features to
generate the base image [27]. In Figure [3] a scheme is shown,
visually summarizing the possible approaches to generating a
base image for superpixel formation.

Features

[ super-pixel segmentation approach ]

Fig. 3. Base Image for Superpixel Formation. The blue arrows indicate
the dimensionally reduced features, the green arrow refers to the Extracted
features, and the red arrow refers to the Hybrid features upon which Superpixel
Segmentation algorithms are applied.

After obtaining the base image, the next step is application
of superpixel segmentation algorithms to generate superpixel
maps. A detailed description regarding superpixel creation
algorithms is provided in section [[V]

Before delving into the various techniques, it is worthwhile
to mention a cross-cutting issue, i.e. defining the optimal
number of superpixels K. This is generally a difficult task,
still, it is important to solve it opportunely as the quality of
the generated superpixel map heavily depends on this factor.
Several existing methods use manual approaches to determine
a "good" value for K [10]. However, some automatic meth-
ods have also been proposed to determine K based on the
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contextual information in image [27]. If the value of K is
fixed, then a single superpixel map is generated. Often, multi-
scale superpixel segmentation maps (Figure. [4) are generated
as the use of multiple scales allows the capturing of local
spatial structures of various sizes [28]. Instead of varying the
value of K, one may also generate multiple superpixel maps
by considering different features (Fig. @). This approach may
very well generate a superpixel map that takes into account all
the key features. Such a hybrid multiple-superpixel creation
approach has not been deeply explored in literature so far,
despite being very appealing.

Fig. 4. Characterisation of Superpixel

IV. SUPERPIXEL CREATION ALGORITHM FRAMEWORK IN
HSI

In recent years, superpixel segmentation algorithms have
gained a lot of popularity due to the savings in computational
loads that they permit at the subsequent processing stages
of HS data. Hence, several segmentation algorithms have
been proposed by researchers recently. The existing superpixel
segmentation algorithms can be categorized broadly into two
groups: Graph-based and Gradient-ascent-based methods (Fig.
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Fig. 5. Superpixel Segmentation Approaches

A. Graph-Based Approach

In graph-based approaches, each pixel is treated as a node
of the graph and the similarity between neighboring nodes
is represented by edge weights. Similar nodes are assigned
higher weights. Superpixels are then created by minimizing
a cost function defined over the graph [I3]]. Popular graph-
based superpixel segmentation algorithms are: Normalized
Cut (NC) [I1], Felzenswalb and Huttenlocher (FH) [29],
Superpixel Lattice (SL) [30]], Constant Intensity Superpixels
(CIS) [31]], Entropy Rate Superpixels (ERS) [32]. In the field
of HSI processing, ERS is the most popular and frequently
used graph-based superpixel segmentation algorithm. Instead
of applying ERS on the original HSI, it is often applied on
the reduced HSI. A detailed description of the ERS algorithm
is provided in the subsection below:

1) ERS: ERS is a graph-based clustering approach where
superpixels are generated by performing graph partitioning
[32]. For the generation of superpixel from an image, four
steps are followed: Graph construction, entropy rate definition,
balancing function definition, and optimization.

o Graph Construction: An image is initially mapped to a
graph G = (V, E'), where V represents a set of vertices v;
corresponding to each pixel in an image and E indicates
the corresponding set of edges e; ; between V. The edge
weight w; ; measures the similarity between neighboring
pixels by calculating the spectral distance. The goal of
the superpixel segmentation task is to find K connected
subgraphs from the graph G = (V, E’) where, £’ C E is
the selected edge set.

« Entropy Rate: For the creation of compact and homoge-
neous superpixels, the criterion used is the entropy rate of
the random walk on the constructed graph G = (V, E’).
The expression for entropy rate function is as follows

(Eqn. [I):
H(E') = —Zm Zpi,j(E')log(H,j(E’)) (1)

where P ; is the transition probabilities in H(E’) which
is expressed as follows (Eqn. 2)):
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With the inclusion of a new edge, the uncertainty of a
jump of the random walk increases. The entropy rate dras-
tically increases when the selected edges form compact
and homogeneous clusters.

« Balancing Function: To obtain clusters of similar sizes
a balancing function is introduced which is defined as in
Eqn. 3]

B(E')=H(Zr') — N

==Y PZp (i)log(PZp (i) — Np S
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where the selected edge set is E’, the cluster membership

distribution is represented by Zgs and the number of

connected components is denoted by Ng/. If Sp =

S1,52,...,8N,,, is the graph partitioning for the edge

set ', then Zg distribution is as follows (Eqn. [4):

_ 15

P
When edges from similar-sized clusters are selected, the
value of the balancing function increases.

o Optimization: The objective function for ERS is for-
mulated by combining the entropy rate function and
balancing terms together Eqn. [5] Hence, more compact,
balanced, and homogeneous clusters can be obtained
using ERS. To achieve accurate superpixels, the objective
function is optimized on the edge set.

PZp (i)

1={1,...,Ng'} “)

H}E@XH(E') + AB(E)
subject to £/ C Eand Ng: > K
where the weight of the balancing term is A > 0.

B. Gradient-Ascent-Based Approaches

In such kind of approaches, an initially defined tentative
set of clusters points is iteratively refined using a gradient
ascent method until some convergence criteria are met. Some
of the popular gradient-based approaches are: Mean Shift
(MS) [33]], Quick Shift (QS) [34]], Watershed [35]], Turbopixels
(TP) [36], Simple Linear Iterative Clustering (SLIC) [37].
Among these gradient-based approaches, the SLIC algorithm
is the most popular superpixel algorithm for HSI processing.
A brief description of the SLIC algorithm is presented in the
subsection below.

1) SLIC: Let the input HSI be denoted as H =
{h8, RS, ..., hb} with n pixels, where {h%} represents the value
at it" pixel for the b*" spectral band and i = 1,2,...n,
b = 1,2,..B. B is the total number of spectral bands. In
SLIC, distance is computed within a 2Q) x 2¢) window around
the cluster center, where () = \/% . The distance between the
cluster center and pixel ¢ is calculated as follows (Eqn. [6):

w
agspatial (6)

where, w is the weighting factor between spectral and
spatial features. The spectral and spatial distance between pixel
i and j are represented as in Eqn. [7] and [§]

D= Qspectral +

(7

gspectTal =

where, Dgpectrqr 1S the measure of homogeneity within the
superpixels.

:Dspatial = \/(Tz - Tj)z + (ul - uj)2 (8)

where, (r,u) denotes the location of pixel ¢ in superpixel. The
spatial distance ®,pq¢iq; €nsures regularity and compactness
in the generated superpixels.

C. A remark

As the reader may note after the above discussion, there
exist several superpixel algorithms that are usable in the
HSI context. However, it is to be noted that the concept
for most of them originated outside HSI. This means that
nowadays there exist practically no dedicated superpixel
algorithms specifically designed for HSI, and hence capable
of leveraging the benefits of HSI data to a full extent. Hence,
in our opinion, the development of a dedicated superpixel
algorithm for HSI is still an open challenge.

V. POST-PROCESSING FRAMEWORKS FOR SUPERPIXELS

The generated superpixel map can now serve as a convenient
primitive entity, upon which further processing tasks may be
carried out to obtain desirable results. As superpixels can
adaptively change the object boundaries based upon the avail-
able contextual information, they are often used for object-
level image analysis. The superpixel may be either used
as a guidance map [10]] for refining the final classification
result or it may be used to directly compute features from it
[3]]. The different approaches to combining segmentation and
classification are treated in the next four subchapters.

A. Superpixel-Guided Classification

Fig. [6] shows the framework for superpixel-guided clas-
sification. An initial classification map is first generated
based on the probability description of each pixel belong-
ing to every class. Later, the classification map is further
optimized/regularized with the guidance of the segmentation
map. Initially, classification maps are obtained by adopt-
ing standard feature extraction (Local Binary Pattern (LBP),
Gabor, Extended Morphological Attribute Profile (EMAP),
etc.) followed by classification (e.g. SVM) approaches. For
supervised HSI classification, let there be C' classes present
in the scene and J training samples in total for all classes.
For each feature, t € T (¢t = 1,2,...,7), training set
Xtrain — [Xtrain xirain X iein] ¢ REXT represent the
corresponding training samples for each class. The classifier
generates 1" predicted labels for each pixel using SVM to
classify each feature. Finally, the class label of test sample
y is associated with the class having the highest frequency
over all T features, that is (Eqn. [0)

T
Class(y) = argmaxz 5(P,c), ¢=1,2,..,C (9
¢ =1
o ]., Zf gzt =cC
(P, c) = {07 it P4 (10)

where &2, represents the predicted label of the test sample
obtained from ¢! feature and § is an indicator function (Eqn.
[I0). Hence, an initial label for each pixel is obtained by the
classifier. Simultaneously, superpixel segmentation maps are
also computed over the original HSI, hence the location infor-
mation is the same for both the maps. Let S =[Sy, Sa, ..., Sk]
denotes the superpixel map, with KX = number of superpixels.
In the K'" superpixel, the labels of all the pixels can be
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identified by adopting the majority voting strategy [38]], which
is computed by using the following formula (Eqn. [TT):

Class(Sk) = argmax Z 4(Class(y),c), c¢=1,2,..,C

¢ YyESk

1D
Hence, the majority voting (MV) strategy (Fig. [7) is mostly
utilized to regularize the classification map based on the
segmentation map [39]]. Majority voting is sub-optimal by
design since it only fuses class labels based on a vote over
individual class labels from each classifier in the ensemble.
Weighted MV (WMV) [40] is an upgraded version of MV, as it
weighs the vote of each pixel by the distance between the pixel
and its cluster. However, both of them are quite dependent on

the preliminary classification accuracy.
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Fig. 7. Majority Voting

Instead of directly assigning class labels for each pixel,
it is better to assign a probability description for each pixel
belonging to a particular class; this also permits taking into
account the presence of mixed pixels in an image. Hence,
the class probability of each pixel belonging to each class is
determined by using an SVM-based classifier [41]]. Let P, ()
denote the probability of pixel x belonging to the c** class.
Then, for each superpixel S; in HSI data, the label of all the
pixels contained in the superpixel is identified by calculating
the following formula (Eqn. [T2):

Class(S;) = argmax Z P.(x)

¢ TES;

12)

. Hence, decision fusion strategies are applied to classify each
pixel based on superpixel-label guidance [10].

Final Classification Map

Optimization/
Regularization

Y

Another approach is to perform superpixel-level classifi-
cation by fusing pixel-level classification outcomes by using
the Logarithmic Opinion Pool (LOGP) approach. The main
advantage of LOGP is that it treats output from various classi-
fiers independently [20]. The initial class probability obtained
from different features can also be combined adaptively by
computing joint class probability for each pixel x;. The cer-
tainty degree of class probability (CDCP) and the confidence
score of the classifier (CSC) can be utilized to compute the
joint class probability [42]]. A higher value of CDCP indicates
higher discriminative capability between different classes for a
specific pixel. CSC assigns a higher weight to a classifier with
higher discriminative ability. The computed joint probability
helps in determining the final class estimate for z; according to
maximum probability. However, some isolated pixels may also
exist due to poor probability estimation. Hence, often Markov
Random Field (MRF) regularization is adopted to refine the
final classification map [43]).

B. Direct Classification using Superpixels

/ SP Map

Training Samples

/
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Feature |,

N uperimpose of SP and HSI for F

&

SP as Graph Node

.

Fig. 8. Direct superpixel classification

Fig. 8] illustrates the framework for direct classification
using superpixels. In this approach, features are computed
directly upon the superpixels based on which the classification
is performed. Superpixels can be used to generate the test set
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as they group spatially connected and spectrally similar pixels
together into one class. The training set can be constructed by
considering labeled pixels from each class. Then, techniques
like Convex Hull or Affine Hull models can be utilized
to represent training and test sets as these models consider
both the variance and similarity within each set to adaptively
characterize it. Then set-to-set distance is computed to measure
the similarity between train and test set. Finally, a classification
label is assigned to each test set based on distance criterion
[44], [45]l.

The generated superpixels are quite informative and hence
features can be extracted directly from them. Spatial features
within each superpixel can be exploited by using filtering
operation S7*¢*". This operation also minimizes the effect of
noise in each superpixel. Filters like mean filters, guided filters,
non-local filters, Domain Transform Recursive Filter (DTRF),
etc. may be used for within-SP feature extraction. The spatial
features among superpixels can be exploited by performing a
weighted average operation on neighboring superpixels S; ;)
where, j = 1,2,...,J. J represents the number of neighboring
superpixels. Since the mean pixel is the representative feature
of each superpixel, the weighted average operation can also be
applied on the mean pixels 32’53‘%", j =1,...,J of neighboring
superpixels, and a weighted average pixel can be obtained by

Eqn. [T3]
(13)

J
WA _ E o Mean
S; = Wi, 5 X Si,j
i=1

where, w; ; is the weight defined as in Eqn.
ean ean 2
exp(— Hs% — sf‘/[ H2 /h)

Zj:l 61’[)(* ’|S£\7/[jean _ 51{\/[6an’|§ /h)

where h is a predefined scalar. Then s!V4 is assigned to all

pixels in each superpixel SP'¥ and all the superpixels constitute
a weighted average feature image 1“¢9" [46|). These extracted
features may be further utilized to generate a composite kernel
which is used for classification. Hence, superpixels play a
crucial role in improving the classifier performance.
Superpixels can also be used to construct undirected graphs
G = (V, E,WW) where each superpixel acts as a graph node.
As opposed to traditional graphs, the graphs constructed using
superpixels are computationally more efficient. The weight be-
tween the two connected superpixels S; and S; is constructed
based on the features extracted from the superpixels [47]].

(14)

wij =

C. Superpixel-based Sparsity Methods

1) Sparse-Representation-based Methods: Let each pixel of
HSI be denoted by X € REX1 where B is the number of
spectral bands. The structured dictionary formed by all classes
is represented by D. The sparse representation can be defined
for superpixels instead of individual pixels. Let SP'F represent
a superpixel, which is composed of a number of similar
spectral pixels [S; 1,S;2, ...]. As pixels within each superpixel
have similar spectral characteristics, their correlation can be
exploited by joint sparse regularization [48]]. Each superpixel
SSP can be appropriately represented by a linear combination

of atoms (training samples from all classes) from dictionary
D as in the following Eqn[T5}
ST =DATT + NPT (15)

The sparse coefficient matrix A7 can be calculated as in Eqn.
16

APP = argminHSfP —DAfPHF s.t. ||Al$PH < L. (16)

where, ||.|| is the Frobenius norm. L is the sparsity level
representing the number of selected atoms in the dictionary.
The above optimization problem can be solved by Orthogonal
Matching Pursuit (OMP) or Simultaneous OMP (SOMP).
After obtaining AP, the reconstruction residual error is
computed. This error is the difference between the original
superpixel and the reconstructed superpixel,and it is computed
as in the following Eqn.

Err(S77) = || X7 - DA, an

Finally, the class label of SPF can be obtained through the
following Eqn. [T§]

Class(S?T) = argmin Err(SPT) (18)

2) Collaborative-Representation-based Methods: 1t has
been argued that it is the “collaborative” nature of atoms,
as opposed to “competitive”, imposed by the sparseness con-
straint, that actually improves the classification accuracy. Thus,
classifiers based on Collaborative Representation (CR) were
proposed for HSI classification. The superiority of CR-based
hyperspectral classifiers is due to the utilization of the similar
training samples from different classes to represent the test
pixel. Recently, superpixel-level collaborative representations
proved to be much more efficient than pixel-level collaborative
representations as they can extract more adaptive, pure, non-
overlapping parcels and they utilize convex combinations of
pixel sets, thereby resulting in more stable feature repre-
sentation [49]], [50]. To classify unlabelled superpixels S, a
regularized multitask learning model is defined as follows

(Eqn. [T9):

T
{%}Xt: |Stat — D'|[; + M| + Bl

st =[al,...,aT];B =[b', ..., b7]
Zaz;t =1.T

where, {S'},_, ; denotes the convex hull of multiple
different T features extracted from different perspectives of
an unlabelled HS superpixel S. {D'},_; . represents the
corresponding sub-dictionaries of S* constructed with features
of the same training samples. {a’},_, .7 1s the pixel weight
set and {b'},_, o is the collaborative coefficient set. The
label to be assigned to unlabelled superpixels is determined
by minimal total residual (Eqn. 20).

19)

T
Class(S) = i Stat — Divt||? 20
ass(S) ?:r%mlggn k 1H2 (20)
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3) Low-rank representation approach: Low-rank represen-
tation (LRR) overcomes the limitations of sparse represen-
tation by extracting the intrinsic global structure of HSI.
Different from the sparse representation, the LRR is no longer
sparse on a single pixel, but looks for the common sparsity
support of all test samples, which is the lowest rank. Rank is
a reasonable measure of the matrix’s sparsity [51]. Compared
with sparse priors, the low-rank constraint does not need to
consider specific correlation patterns and is self-adaptive as
well as robust, which can effectively measure the global cor-
relation of the hyperspectral data. The spectral characteristics
of neighbor pixels are highly correlated, and the low-rank
prior can efficiently preserve the intrinsic structure of the
data. Based on the observation that the pixels within a small
neighborhood usually consist of similar materials, it is rea-
sonable to enforce the low-rank constraint on their coefficient
matrix in a small neighborhood. Hence, superpixels are often
employed to extract spatial-structural information by grouping
similar pixels together. Let S be a segmentation map and
¥ ={r:r=1,2,...,p} be the region number. p is the amount
of homogeneous regions in S. X = {xl eRB =1, ...,N}
is an unknown test set with [V as the number of test samples.
D € RB*Y is a structured dictionary consisting of training
samples from all classes. J is the total number of training
samples. In a homogeneous region S” all pixels make up a
matrix X” € RBXN" where N” is the number of pixels in
the region S”. Then the LRR in each region can be represented

as (Eqn. [21):

main% |X" — Da" |5+ Ala”]|, 1)
where @ € R7*¥ is the coefficient matrix that is to be
restored. A > 0 is a scalar regularization parameter. Nuclear
norm ||« |, is convex relaxation of rank function.

LRR is also widely applied for image denoising applications
as it can simultaneously remove different types of noises [52],
[18]. HSI is first segmented into homogeneous regions using
superpixel segmentation, then a noise model is defined for
each region as follows (Eqn. 22)):

H= H/ + Espa’rse + Ngaussian (22)

where, H is the observed HSI and H'’ is the clean HSI.
Eparse Tépresents the sparse error term denoting outliers and
non-Gaussian noise. Nyqyssian 15 the Gaussian noise present
in each homogeneous region. Spectra in each homogeneous
region have high correlation, hence have underlying low rank
property. Eg,qrse 1s €xpected to be sparse, as the percentage
of outliers/non-Gaussian noise Eyy,qrse is much smaller than
Y. Hence, Eypqrse has a large number of zero elements. The
optimisation problem is formulated as follows (Eqn. [23):
min
H'\E

ssparse

1
||H/H* +A ||E5paTSE||1 + ﬂ ||H - H/ - Esmrse”F

(23)

[|H'||, is the nuclear norm of H' which is defined as sum of
singular values of H' i.e. |H'||, =Y ;_, o:(H').

4) Non-negative matrix factorization approach: The non-

negative matrix factorization (NMF) approach aims to decom-

pose a given nonnegative matrix X P>~ into two smaller

nonnegative matrices M € RE*S and A*N which can
approximately represent matrix X (Eqn. [24).

X~MA 4)

This non-negativity makes the resulting matrices easier to
inspect. The non-negative features helps in learning the spatial
structural information [53]. In HSI, NMF is widely used for
unmixing applications as it can simultaneously decompose
mixed pixels X into endmembers M and abundances A. A
cost function (Eqn. 23) is defined to quantify the quality of the
approximation, which is constructed according to the distance
metrics.

minf(M, A) = || X — MA|3 st. M>0,A>0 (25)

To address the above optimization problem, various al-
gorithms have been proposed. Alternating non-negative least
squares (ANLS) is one of the most popular algorithm where
optimisation problem is decomposed into two sub-problems
[54]. Recently, for effective incorporation of spatial informa-
tion into the NMF, various sparsity inducing spatial regular-
izers are introduced. The optimisation problem with spatial
group sparsity regularization becomes as follows (Eqn. [26):

min

P
1 2

_ 1 - ,
MZO,A,'ZOf(M’ A) = 5 g | XP — MAP|%

p=1

P
A D WPl

p=1la;€v,

(26)

where, A, = (Al,..., AP) is the abundance matrix divided
into P superpixel groups. XP? represents pixels belonging to
the p'" superpixel. A? = [ay, ..., a,,] € R¥*"» is abudance
matrix for spatial superpixel group ¥,,. A controls tradeoff be-
tween reconstruction and regularizer. c; is pixel by superpixel
confidence index that weights local similarity between pixel
and superpixel it belongs to. W? = diag(wy,...,w%) is a
diagonal matrix that represent superpixel-wise weight matrix.

D. Superpixel based Deep Learning

In recent years, deep learning has emerged as a powerful
feature extraction tool that can effectively address the existing
non-linearity problem in hyperspectral data. As compared to
the traditional machine learning algorithms, the deep learning
techniques utilize a series of hierarchical layers to extract
discriminative features from original data. Texture information
and edge information are usually extracted by the initial
layers whereas, more complicated features are extracted via
the deeper layers. Hence, deep learning algorithms can ef-
fectively deal with the large spectral variability of spectral
signatures. The most popular deep learning architectures in
this context are: stacked autoencoders (SAE) [55]], deep belief
networks (DBN) [56]], Convolution neural networks (CNN)
[57], Recurrent Neural Networks (RNN) [58], Generative
Adversarial Networks (GAN) [59] etc. These networks are
utilized to extract features of HSI. The extracted features
may be spectral, spatial, or spatial-spectral. However, instead
of extracting either spectral or spatial features, it is better
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to extract spatial-spectral features simultaneously. In [60],
a SAE-based method for HSI classification is proposed by
incorporating a spatial constraint in the energy function to
better maintain the spatial information. Dimensionality reduc-
tion methods are often combined with CNN for extraction
of higher-level spectral-spatial features [61]. For 3D spectral-
spatial feature learning, in [57] a 3D CNN is introduced for
HSI classification. In [62], a deep pixel-pair feature-based
HSI classification method was proposed. Although the HSI
classification methods mentioned above have achieved higher-
level representations of HSIs, a neighborhood window with a
fixed size and shape is used to extract the spatial information
without considering the different HSI spatial structures. With
a fixed window, the scale information of objects is not taken
into account, which results in less structural information and
the sample is susceptible to spectral distortion and hence noisy
classification result. To overcome these problems, superpixels
are incorporated to extract adaptive object information.

In [63]], the spectral classification module and the spatial
constraints module are employed where the spectral classifi-
cation module uses a deep network called ‘Stacked Denoising
Autoencoders’ (SdA) to learn feature representation of the
data. Then pixel-wise classification is performed using a
logistic regression model. Finally, the superpixel constraint is
used as a spatial constraint to refine the classification result. In
[64], the latent relationship between a pixel and the superpixel
constraints is integrated into the stacked SAE model. The
constraint from superpixels is utilized to avoid the “salt-and-
pepper" problem by providing feedback information to the
latent relationship learning. The loss functions constructed
by superpixels are integrated into the objective function of
SAE. To effectively exploit the spatial-spectral information
within a superpixel in [[65]], HSI is first segmented from coarse
to fine scales using superpixels. Then, the spatial features
within each superpixel and among superpixels are sufficiently
exploited by the local and non-local similarity measures.
Finally, recurrent neural networks with stacked autoencoders
are proposed to learn the high-level multiscale spectral-spatial
features. To fully exploit three complementary characteristics
of subpixel, pixel, and superpixel a novel HSI feature learning
network (HSINet) is developed in [[66]] which learns consistent
features by self-supervision for HSI classification. HSINet
contains a three-layer deep neural network and a multifeature
convolutional neural network. It automatically extracts the
features such as spatial, spectral, color, and the boundary as
well as context information. To boost the performance of self-
supervised feature learning with likelihood maximization, the
conditional random field (CRF) framework is embedded into
HSINet. A novel marginal SAE with adaptively spatial regular-
ization (ARMSAE) is proposed in [67]] to address the problem
of an insufficient training sample problem. Initially, superpixel
segmentation is performed. Then, pre-training is performed
based on adaptively-spatial regularization to extract contextual
information of samples in the homogeneous regions. It utilizes
unlabeled adjacent samples to alleviate the lack of training
samples. At the fine-tuning stage, the marginal samples based
on the geometrical property are selected to tune the ARMSAE
network. Finally, the label of each test sample is determined

by all the samples located in the same homogeneous region.

V1. SUPERPIXELS AND THEIR APPLICATIONS

Due to the underlying properties of superpixels, in recent
years it has been successfully applied in a variety of applica-
tions like: Classification, Spectral Unmixing, Dimensionality
Reduction, Band Selection, Active Learning, Denoising, and
Anomaly Detection.

A. Classification

The prime objective of hyperspectral image classification is
to designate a unique class label to each pixel in the image. For
accurate classification results, the feature extraction process
must be done perfectly. In traditional classification approaches,
however, a rectangular window is often utilized as a local
probe for extraction of contextual features; this fails to extract
local spatial structural information as pixels in a particular
area may belong to different classes. Hence, to solve the above
problem, superpixel segmentation was introduced into the HSI
classification framework as it can adaptively modify its shape
and size according to the spatial structural information. The
superpixel segmentation map may be used as a guidance map
to optimize/regularize the initially obtained classification map
to produce the final classification map [10], [39]. Another
approach is to compute features directly upon the superpixels
based on which classification is performed. Often training and
test sets are constructed from superpixels and then the set-to-
set distance is computed to measure the similarity between
train and test set based on distance criterion [44], [45], [3l].
Instead of that, inter- (among) and intra-superpixel (within)
features may be computed directly from superpixels. These
extracted features are then utilized to generate composite
kernels which are then used for classification [46], [42],
[24], [27], [9]. Superpixels can also be used as graph nodes
to perform graph-based learning for HSI classification [71],
[47]. Various sparsity-based classification approaches using
superpixels are also proposed in literature to perform HSI
classification. Sparse-representation-based methods [81]], Col-
laborative representation based methods [49] and Low-rank
representation based methods [66], [51]] are some of the popu-
lar sparsity based methods used for HSI classification. Various
deep-learning-based methods were also proposed in recent
years, which utilize superpixels to improve their classification
performance for HSI [63]], [67]], [65], [64].

B. Spectral Unmixing

In HSI, the problem of mixed pixels is very prominent
mainly due to the lower spatial resolution of the HS sensor and
atmospheric interference during image acquisition. This results
in mixed spectra, in which spectra from different materials
may be available on the spectrum of a single pixel. Hence,
it is necessary to reduce the effect of mixed pixels as they
conceal essential information regarding the pure substance and
their distribution in the HSI. The aim of spectral unmixing
is to segregate the spectra of the mixed pixel in HSI into
a set of constituent spectra (endmembers) and its associ-
ated fractional abundances. Endmembers represent the pure
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TABLE I
APPLICATION OF SUPERPIXEL SEGMENTATION IN VARIOUS APPLICATION AREAS FOR HSI
Application References
Fang et al. [46], Lu et al. [44], Li et al. [43], Li et al. [28], Lu et al. [42], Jia et al. [|68],
Liu et al. [24], Liu et al. [69], Yu et al. [70], Jia et al. [10], Fang et al. [27], Cui et al. [71],
Jia et al. [39], Cao et al. [45], Sun et al. [9], Mei et al. [72], Duan et al. [[73], Chen et al. [74],
Classification | jia et al. [75], Jia et al. [76], Ji et al. [77], Hong et al. [78], Sellars et al. [47],
Huang et al. [79], Leng et al. [80], Fang et al. [[81], Li et al. [49], Zhang et al. [82], Wang et al. [66],
Dundar at al. [48], Liu et al. [51], Tu et al. [83],Xu et al. [84], Liu et al. [63], Feng et al. [67],
Wang et al. [66], Shi et al. [|65], Li et al. [85],Liu et al. [|64]
Spectral Wang et al. [14], Wang et al. [86], Borsoi et al. [87], Yang et al. [88], Borsoi et al. [89],
Unmixing Li et al. [90]
Dimentionality . | ] ] . |
Reduction Mukherjee et al. [91], Jiang et al. [15], Hang et al. [92], Beirami et al. [93]
Band ] |
Selection Yang et al. [|[16], Tan et al. [94]
Active Guo et al. [95], Zhou et al. [96], Xue et al. [17], Liu et al. [97], Zheng et al. [98],
Learning Zhang et al. [21]
Denoising Fan et al. [52], Sun et al. [18], Jiang et al. [99], Tu et al. [100]
Anomaly | ] ] | |
Detection Ren et al. [[19], Huang et al. [101], Huang et al. [|102], Gao et al. [[103], Huang et al. [|104]

substances available in the image, and fractional abundance
refers to the percentage of each endmember available in that
pixel [105]. The Linear Mixing Model (LMM) is the simplest
and most widely used model to represent mixed pixels. Each
pixel is modeled as a positive linear combination of all the
radiated spectra of the materials making up the pixel. Let,

X = [z1,...,zn] € RBXN denotes the HSI data matrix
with B bands and N pixels. Then for the j** mixed pixel,
z; = [v1j,.,2p;]7 € RP the LMM representation is

represented as:

S
wj =y miai; +e; = Maj + g 27
1=1

— X~ MA+¢

where S denotes the number of endmember signatures. M =
[m1,...,mg] € RBX9 is the mixing matrix consisting of S
distinct endmember spectral signatures. a; = [a1, ...,as;]T €
R? is the abundance vector of Tj. €5 € RE is the additive
noise. In general, the same set of endmembers M is shared
by each pixel in a scene. Hence, A = [ay,...,ay] € RI*N
and ¢ = [e1,...,ey] € REXN. Here, we need to estimate
both M and A simultaneously. NMF is the most widely
used algorithm for this task. With the incorporation of spatial
information to spectral unmixing, significant improvement
in both endmember and abundance estimation is observed
mainly due to the spatial autocorrelation of the ground surface.
Recently superpixels are utilized to incorporate spatial neigh-
borhood information where the shape and size of superpixels
are adaptive and are related to the spectral similarity of
neighboring pixels. These are utilized to naturally incorporate
spatial priors into the unmixing process. In [14]], a spatial
group-sparsity-regularized NMF is proposed, which incorpo-
rates a spatial group sparsity regularizer constraint into the
NMF-based unmixing process. Then in [86]], a new Group
Low-rank constrained NMF technique is developed for linear

HS unmixing. This method combines a low-rank prior of
abundances with semantic information. Also, a new NMF
method is proposed in [88]], which combines non-local spatial
information with spatial group sparsity.

C. Dimensionality Reduction

Dimensionality reduction (DR) is extensively utilized as
a preprocessing tool to discard the highly redundant and
correlated information in the initial high-dimensional HSI
spectral space while at the same time preserving crucial
information in a low-dimensional subspace [91]]. It can dras-
tically minimize the computational load, and at the same
time, effectively train the classifier with a fewer number of
available training samples. Several DR techniques have been
used in literature, which can be broadly categorized into
either supervised or unsupervised methods. Principal Com-
ponent Analysis (PCA), Independent Component Analysis
(ICA), and Minimum Noise Fraction (MNF) are popular linear
unsupervised methods. Whereas, locally linear embedding
(LLE), neighborhood preserving embedding (NPE), locality-
preserving projection (LPP), local pixel NPE (LPNPE), iso-
metric mapping (ISOMAP), and Laplacian eigenmap (LE) are
popular non-linear unsupervised methods. The most popular
supervised methods are: local Fisher discriminant analysis
(LDA), Fisher’s linear discriminant analysis (LFDA), gener-
alized discriminant analysis (GDA), nonparametric weight-
ing FE method (NWFE), and decision boundary FE method
(DBFE). Generally, these algorithms utilize only spectral fea-
tures for DR, neglecting the information contained in spatial
features. Providing a spatial context to spectral classification
algorithms may be helpful because spatially neighboring pixels
in images frequently belong to the same classes of interest and,
as such, are spectrally similar. In recent years, superpixels
came to be widely used for DR applications as a means to
incorporate spatial contextual information. In [91]], a semi-
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supervised feature extraction algorithm is proposed, in which
the angular similarity between the spectrally analogous spatial
neighbors is minimized, and the angular separation between
pixels belonging to different classes is maximized by uti-
lizing unlabeled samples in the projected lower-dimensional
subspace. A superpixel-wise PCA approach (SuperPCA) is
developed in [[15]], which applies PCA on each homogeneous
region acquired by superpixel segmentation. Further, a multi-
scale segmentation-based SuperPCA algorithm (MSuperPCA)
is also presented, that can fully exploit the spatial information
available in the HSI cube. It effectively integrates the mul-
tiscale spatial information to achieve superior classification
results by decision fusion. In SuperPCA, however, the indi-
vidual, traditional PCA implemented in each superpixel will
be dominated by those bands with higher spectral variances.
In that respect, individual superpixel-based PCA (SuperPCAs)
over a homogeneous set of bands can be thought of as a
solution. By doing so, SuperPCA can be implemented on
only those bands that feature the highest levels of correlation.
Accordingly, a method is devised that first categorizes the
highly correlated bands of a hyperspectral image via the
analysis of its correlation matrix. These band groups are then
introduced to a SuperPCA feature extraction [93]]. A Spatial
Regularized Local Graph Discriminant Embedding (LGDE)
approach is used in [92] where a regularization method is
proposed to incorporate the spatial information into the LGDE
model naturally. Specifically, an over-segmentation method
is first used to divide the original HSI into non-overlapping
superpixels. Then, for each superpixel, an intra-class graph
is constructed to describe the spatial structure information.
Finally, the constructed superpixel level intraclass graphs are
used as a regularization term for LGDE, resulting in a spatially
regularized LGDE (SLGDE). Moreover, to take into account
the possible non-linearity of an HSI caused by the complex
acquisition process as well as the impacts of atmospheric and
geometric distortions, the linear SLGDE model is extended to
its kernel counterpart (KSLGDE).

D. Band Selection

Band Selection is another approach for dimensionality re-
duction, in which a smaller subset of the original HS bands
is chosen as per a specific criterion. For ranking the spectral
bands, either their discriminant capability or their degree of
correlation is often considered. For selection of the optimal
set of bands, several algorithms have been proposed by re-
searchers that only utilize spectral features, neglecting spatial
information. In HSI, the neighboring pixels of the original land
surface has a higher probability of belonging to the same class
as these have a spatial correlation. Hence, it is more likely
that the adjacent similar pixels belong to the same class; this
information should be intercepted by superpixels.

Different from the rigid structure of the pixel grid, the
boundaries of superpixels align well with the natural object
boundaries. An unsupervised BS approach proposed in [16]
considers both the spatial and spectral information for accu-
rate HSI classification. First, the ERS algorithm is employed
to construct several smaller spectral homogeneous and spa-
tial neighboring pixel chunklets called Superpixel Chunklets

(SCs). Based on the observation that the produced SCs achieve
higher homogeneity and consistency within land-cover classes,
two bands criteria (BCs) are defined: Metric Learning-based
BC (ML-BC) and Representation Learning-based BC (RL),
by estimating the optimal transformation through the relevant
component analysis (RCA). In the ML-based scheme, to assess
the within-SC covariance, the whitening transformation of
RCA is utilized. In the RL-based strategy, the discrimination
capability of the individual bands is determined by exploiting
the within-SC and the total variability. Next, the learned BC
is provided as an input to the Affinity Propagation (AP) al-
gorithm. Finally, highly discriminative and weakly-redundant
band subsets are selected by using the AP algorithm. Similar
to [16]], an HS Band Selection strategy was developed for
Lithologic Discrimination and Geological Mapping in [94].
A new spectral-spatial structure,i.e. the lithologic superpixel
(LS), is constructed by using an improved SLIC superpixel
algorithm based on spectral angle distance (SAD), which uses
spatial correlation combined with spectral information.

E. Active Learning

Accurate classification of HSI requires sufficient high-
quality informative training data. During HS data collection,
however, only the spectral information for each pixel is ac-
quired by an instrument, whereas the label information is often
manually acquired by experts. Hence, the label annotation
process is often time-consuming, tedious, and expensive. This
results in the availability of very few initial labeled samples
available for training. To overcome this, Active Learning (AL)
is adopted where the labeling process is guided by certain
defined rules instead of the subjective opinion of the human
interpreter who tags samples with labels. Active learning
is quite popular in the remote sensing community, and a
detailed survey on these techniques is provided in [[106], [107].
Recently, a lot of attention is gained by those AL approaches
which use the joint spectral-spatial information in HSI. Based
on the spatial information incorporation process, the existing
AL strategies can be broadly categorized into three types:
Postprocessing, Preprocessing, and Integrated approaches. In
preprocessing-based methods, the spatial-spectral features are
directly fed as an input to the AL systems. In the case
of postprocessing-based approaches, the regularization of the
final classification map is performed by using the spatial
segmentation results. Integrated methods, on the other hand,
guide the query selection by exploiting the spatial information
during the AL process. Depending on the query strategy, AL
strategies can be classified into Uncertainty sampling or Break-
ing Tie [107]. The spatial-contextual information generated by
superpixels is found to be quite effective in enhancing the AL
process [97]. In [95]], gray-level co-occurrence matrix (GLCM)
based texture features are first derived from superpixels and
are integrated into an AL framework. Next, at each iteration,
unlabelled samples are classified using the subspace-based
multinomial logistic regression (MLRsub). Then to select the
most informative samples, the breaking ties (BT) criterion is
utilized. A new approach combining AL and semi-supervised
learning (SSL) for HSI classification is proposed in [96].
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Initially, morphological component analysis (MCA) is adopted
for the decomposition of the original HSI into morphological
components. Next, the enlargement of the training dataset
based on superpixels is carried out by combining AL and
SSL in each feature domain. At last, the decision fusion is
performed for the integration of the predictions from extracted
components. Spatial uncertainty and spatial homogeneity must
also be considered to improve the AL performance. In [17], an
enhanced uncertainty measure considering the neighborhood
information is proposed. The SLIC algorithm is utilized for
generating superpixels, where the selected batch samples are
constrained to be from different superpixels, in order to
improve the diversity of the selected samples. A superpixel-
guided training sample enlargement strategy is developed in
[98]] to deal with the problem of the small size of the training
sample set. First, superpixel segmentation is performed and
only those superpixels that contain training samples belonging
to no more than one class are explored, and all the pixels
of each of these superpixels are assigned to the class of the
training samples it contains. Next, with the identified labels,
all these classified pixels are added to the initial training
sample set for training sample set enlargement. Later, using
this enlarged training sample set, the distance-weighted linear
regression classifier (DWLRC) is applied to classify each
mean vector of each SP. Finally, the last classification map
is obtained by assigning each SP with the same label as its
mean vector. In [21]], the learned superpixel map and initial
classification maps are utilized to select the pseudo-labeled
samples (PLSs). For the superpixel which contains labeled
training samples, the labels of the pixels in this superpixel are
likely to be the same as that of the labeled training sample.
Hence, the label of pixels in that superpixel made same as
that of the labeled training sample. For the superpixels which
do not contain labeled training samples, another condition is
considered: if the labels of all pixels in that superpixel are the
same, this is assumed to be an indicator that the superpixel has
sufficient local homogeneity, and these pixels are also selected
as PLSs.

F. Denoising

The obtained HSI is usually corrupted with various types
of noise, which not only scale down the visual quality of
HSI, but especially has an adverse effect on the subsequent
image processing steps. For several HSI applications like
spectral unmixing, super-resolution, object classification, and
matching, HSI denoising act as a crucial preprocessing step.
The spatial-spectral information should be simultaneously
considered to suppress noise. Total variation (TV) denoising
[108], tensor decomposition-based denoising [[109], multi-
dimensional wavelet packet transform (MWPT) [[110], and
sparse-representation-based denoising [[111] are some of the
popular HSI denoising techniques recently proposed by re-
searchers. Due to the lack of prior knowledge, however, the
aforementioned methods cannot eliminate more than two types
of noise. However, for the real-world HSIs, the primary source
of noise is not only the additive noise. Various other types
of noise like gaussian, impulse, and stripes noise also exist

in practice. To remove these mixed noise, low-rank repre-
sentation (LRR)-based approaches are often used [52f, [18].
In [52], superpixel segmentation is integrated into the LRR
based method. LRR helps in the removal of different types
of noise simultaneously. Meanwhile, superpixel segmentation
is utilized to extract the spatial information of HSI, which
can further boost the performance of LRR-based denoising.
A novel, fast superpixel-based subspace low-rank learning
method is presented in [[18] which explores the spatial low
rankness within superpixel-based regions for HSI denoising.
The method simultaneously imposes the spatial correlation and
spectral low-rank properties of the HSI.

G. Anomaly Detection

Anomaly Detection is an unsupervised target detection
technique, which detects a specific target or anomaly against a
complex background without any prior information. The term
anomalies refers to pixels that have distinct spectral-spatial
differences with respect to their surroundings, together with a
lower probability of appearance.

For the detection of anomalies, specialized detectors have
been developed, which utilize the difference between the
background pixels and anomaly pixels. The existing anomaly
detection approaches can be broadly divided into two cate-
gories: Statistical modeling-based and geometric modeling-
based techniques. The statistical modeling-based approaches
primarily concentrate on the spectral feature differences
and are generally correlated with the Gaussian distribu-
tion. The most popular statistical modeling-based method is
Reed—Xiaoli (RX) technique. It usually employs multivari-
ate Gaussian distributions for modeling the background. In
geometric modeling-based approaches, the main focus is on
the difference in spatial distribution. These techniques usually
assume that a group of primary spectra can be utilized for
the approximate construction of the background pixels. But,
it cannot be employed for the representation of the sparse
anomaly targets. The sparse representation-based, collabora-
tive representation-based, and low-rank representation-based
detectors have been developed recently for anomaly detec-
tion. Also, neural networks with hybrid algorithm of CNN
and multilayer perceptron (CNN-MLP) can be suggested for
anomaly/target detection [[112]

In [19]], for anomaly detection, a superpixel-based dual-
window (SPDW) RX is proposed. In the case of the conven-
tional dual window, both the outer and inner windows are
rectangular and have fixed sizes. Whereas for the SPDW, only
the outer window is rectangular and has a variable size, but
the inner window has an irregular shape. Another approach in
[101] considers the similarity between anomaly pixels, along
with the variation between anomaly pixels and background
pixels for detection. The approach consists of three key steps.
First, anomaly queries are automatically generated by applying
RX for measuring the spectral difference between background
pixels and anomaly pixels. Next, for the characterization of
spatial similarity between adjoining nodes (each node refers
to a superpixel), a closed-loop graph is constructed. At last,
the manifold ranking technique is adopted to assign a ranking
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value to each node. Lastly, a final detection result is generated
by normalizing the ranking value of each node. In [102], for
the detection of anomalies, a game theory-based detection
approach is proposed for HSI. In these approaches, for each
superpixel, one specific payoff function is defined. The pay-
off function consists of several energy functions, which can
jointly exploit the spectral-spatial features of anomalies and
similarities among superpixels. By utilizing multiple energy
functions, the detector can be made more powerful in a
complex background.

VII. EXPERIMENTAL ANALYSIS OF EXISTING SUPERPIXEL
SEGMENTATION APPROACHES

For experimental analysis of popular superpixel segmen-
tation algorithms three benchmark datasets, namely: Indian
Pines, Pavia University, and Houston 2013 were used. Sub-
section [VII-A] contains a concise explanation of these datasets.
The description of various compared state-of-the-art superpixel
segmentation approaches is presented in subsection[VII-B] The
result and discussion are presented in subsection

A. Dataset Description

1) Indian Pines: The dataset was acquired over the North-
western Indiana region by using the AVIRIS sensor. It features
220 spectral bands, with wavelengths between 0.4 to 2.5 pum.
About two-thirds of the imaged area consists of agricultural
land, and the rest contains forests. It is a quite challenging
dataset due to the presence of highly mixed pixels due to the
low spatial resolution (20 m/pixel) of the sensor. Also, there
exists a severe mismatch in the number of samples collected
per class that further complicates the classification task. The
scene contains sixteen classes and has a size of 145 x 145
pixels. Figure [9 contains the pseudo color image, GT map
and class names for the dataset.

2) Pavia University: This dataset was collected over the
University of Pavia, Italy by using the ROSIS sensor. It
originally contains 115, spectral bands in the wavelength range
of 0.43 to 0.86 pum, and it has a spatial resolution of 1.3
m. After the removal of noisy channels, the remaining 103
bands are used for our analysis. The image size is 610 x 340
pixels, and the GT is composed of nine challenging classes
with similar spectral reflectance trends. The false-color image,
GT, and class names are provided in Figure. [I0}

3) Houston 2013 Dataset: The data was captured using the
ITRES CASI-1500 sensor, over the campus of the University
of Houston and the neighboring areas of it in Texas, USA.
The “IEEE GRSS Data Fusion Contest 2013" also utilized this
dataset. The image size is 349 x 1905 pixels and has a spatial
resolution of 2.5 m. 144 spectral channels are available in this
dataset in the wavelength range of 364 to 1046 nm. In the
scene, 15 challenging classes are defined. Figure |11 contains
the pseudo-color image, GT and class names for the dataset.

B. State-of-the-art superpixel segmentation approaches for
HSI classification

A comparison of various benchmark state-of-the-art su-
perpixel segmentation algorithms for HSI classification is
presented in this section.

1) SCMK [46|]: It stands for superpixel-based classification
via multiple kernels (SCMK). In this approach, the spatial-
spectral information within and among the superpixels is
utilized via multiple kernels to enhance the classifier’s per-
formance.

2) ULBP-SPG [10]: a uniform, local, binary-pattern-based
superpixel guidance (ULBP-SPG) approach for HSI classifi-
cation, which first extracts local image features by employing
ULBP and later refines the classification map with the guid-
ance of a superpixel map.

3) R2MK [69]: is a region-based relaxed multiple ker-
nel(R2MK) technique that fuses multiscale spatial features
and spectral features via a kernel collaborative representation
classification approach.

4) ASGSSK [9]: it is an adjacent superpixel-based gen-
eralized spatial-spectral kernel (ASGSSK) method that can
very well preserve the image structure by introducing the AS
approach to GSSK.

5) ASMGSSK: a multiscale framework is adopted here
on the ASGSSK method to achieve superior classification
performance and solve the problem of optimal superpixel
number selection.

6) SuperPCA [15]]: is a superpixel-based PCA approach
that can effectively learn the intrinsic low-dimensional features
in HSI even in noisy conditions.

7) MsuperPCA: is a multiscale segmentation-based Super-
PCA model (MSuperPCA) which can effectively integrate
multiscale spatial information to obtain the optimal classifi-
cation result by decision fusion.

8) IAP [78)]: it extracts the spatial invariant features by
exploiting isotropic filter banks or convolutional kernels on
HSI and spatial aggregation techniques (e.g., superpixel seg-
mentation) in the Cartesian coordinate system.

C. Result and Discussion

Classification results for the Indian Pines dataset with 3%
training samples from each class are provided in Table
Figure [12] contains classification maps for the different su-
perpixel segmentation methods that were compared. From the
classification results, it can be clearly noticed that approaches
adopting the multiscale segmentation strategy achieve better
classification performances, because they consider different
scale structures of the particular scene. Also, it solves the
problem of selecting the optimal superpixel scale. R2MK,
ASMGSSK, and MsuperPCA approaches show better clas-
sification accuracy levels as compared to their single-scale
segmentation counterparts. Still, the performance of the AS-
MGSSK technique is superior amongst all other approaches.
From the classification map plot in Figure [12] it can also
be clearly noticed that the map for the ASMGSSK approach
closely resembles the ground truth map.

The second analysis was conducted on the Pavia University
dataset. In Table the classification result with 30 training
samples from each class is provided and the corresponding
classification map is displayed in Figure.[I3] The performances
of all superpixel segmentation algorithms are comparable. Yet,
in the case of the ASMGSSK algorithm, the highest improve-
ment of about 3.09 % in OA is observed as compared to
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Fig. 9. (a) False Color Composite Image, (b) Ground Truth Image and (c) Class names for Indian Pines Dataset
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Fig. 11. (a) False Color Composite Image, (b) Ground Truth Image and (c) Class names for Houston-2013 Dataset

SCMK approach. The next rank goes to the IAP algorithm with
an increment of about 2.23 % in accuracy. The performance
of R2ZMK, ASGSSK and MsuperPCA are almost identical.
ULBP-SPG and SuperPCA classification results are very much
similar to SCMK algorithm. Similar conclusions can be drawn
from the classification map also (Figure [T3)

The third experiment was conducted on the Houston 2013

dataset. To evaluate the performance of the investigated ap-
proaches, 50 labeled samples from each class were selected
as training samples. In Table [[V] the classification results are
presented. A visual comparison of performance among the
different methods is displayed in Figure [I4] For this dataset
also, ASMGSSK and IAP shows the best classification results
as compared to other tested algorithms. The performance of
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TABLE II
CLASSIFICATION RESULT FOR INDIAN PINES DATASET WITH 3% TRAINING FOR SCMK, ULBP-SPG, R2MK, ASGSSK, ASMGSSK, SUPERPCA,
MSUPERPCA, AND IAP ALGORITHMS

#  Samples SCMK ULBP-SPG R2MK ASGSSK ASMGSSK  SuperPCA  MsuperPCA  IAP
1 46 95.65 100 95.65 100 100 100 95.65 97.83
2 1428 94.26 96.43 95.87 95.52 96.5 93.56 96.08 96.15
3 830 89.76 91.2 94.58 93.01 94.7 89.71 94.58 94.58
4 237 99.58 94.94 99.58 98.31 96.2 89.89 99.58 99.58
5 483 94 91.93 95.86 95.24 95.86 98.34 93.79 94
6 730 97.53 96.16 98.08 97.53 97.53 99.45 97.95 97.81
7 28 82.14 92.86 92.86 92.86 92.86 100 92.86 92.86
8 478 99.58 99.37 98.54 98.33 99.58 99.72 99.37 99.37
9 20 85 70 60 90 70 46.67 70 65
10 972 90.53 91.46 96.09 95.37 95.58 93.96 94.03 95.68
11 2455 96.05 97.52 98.21 98.37 99.31 95.06 98.21 98.53
12 593 86.34 92.58 91.74 91.4 95.78 84.04 93.09 94.94
13 205 88.78 97.07 99.02 97.07 98.54 100 99.02 96.59
14 1265 98.34 97.79 98.58 97.39 98.97 97.05 99.29 99.05
15 386 99.48 94.3 97.93 95.85 99.22 93.45 95.08 99.48
16 93 95.7 95.7 95.7 95.7 95.7 98.55 95.7 95.7
OA:: 94.66 95.49 96.87 96.35 97.47 94.5 96.71 97.15
AA:: 93.3 93.71 94.27 95.75 95.4 92.47 94.64 94.82
Kappa:: 93.92 94.86 96.43 95.84 97.12 93.73 96.25 96.75
TABLE III

CLASSIFICATION RESULT FOR PAVIA UNIVERSITY DATASET WITH 30 TRAINING SAMPLES FOR SCMK, ULBP-SPG, R2MK, ASGSSK, ASMGSSK,
SUPERPCA, MSUPERPCA, AND IAP ALGORITHMS

# Samples SCMK ULBP-SPG R2MK ASGSSK ASMGSSK  SuperPCA  MsuperPCA IAP
1 6631 94.5368 95.1 96.2771 97.5809 98.736 95.691 95.42 98.475
2 18649 99.6991 99.5 99.7598 99.7822 99.97 99.8085 99.73 99.935
3 2099 75.5955 84.87 85.7072 83.5732 90.83 80.6028 87.04 86.0176
4 3064 89.7769 93.64 96.1578 96.0218 98.53 90.8394 95.13 96.6998
5 1345 100 100 99.4578 100 100 100 99.9 100
6 5029 96.1453 96.42 98.2394 98.3844 99.7 96.3474 96.82 99.0274
7 1330 88.7951 81.11 91.0658 92.4765 96.15 92.1719 85.46 94.6034
8 3682 93.0155 92.09 91.9072 93.5201 95.99 96.8902 92.11 92.6505
9 947 95.7974 98.81 96.1496 96.4835 97.89 93.2185 99.16 96.789
OA:: 95.6 96.11 97.06 97.37 98.69 95.69 96.66 97.83
AA:: 92.6 93.5 94.97 95.31 97.53 92.84 94.53 96.02
Kappa:: 94.14 94.83 96.15 96.52 98.26 94.27 95.56 97.12

R2MK, ASGSSK and MsuperPCA algorithms are similar.
SuperPCA, ULBP-SPG and SCMK results are identical for
this case also.

VIII. OPEN CHALLENGES

A. Determination of number of superpixels

Determination of the number of superpixels is an important
function because this factor controls the segmentation scale.
It is a quite challenging task to select an optimal value
of K for the inexperienced users. Depending on the image
structure, the correct value of K must be chosen. Usually,
for a dataset having more complex structure and texture
information, a larger value of K must be selected, whereas
for a homogeneous dataset the value of K must be smaller.
A larger number of superpixels implies a relatively smaller
number of pixels in each superpixel. In that case, the same
object may end up being separated into various superpixels.
This may result in an inferior classification performance under
a small training sample condition. On the contrary, when the
number of superpixels is too small, it implies a relatively larger
number of pixels in each superpixel. Also, within a single
superpixel, several objects may be included. Hence, incorrect
classification results may be obtained.

In most cases, the value of K is chosen manually ( [20],
[24], 390, [113]], [21]]) based on observation and experience of
the user. In very few works, automatic estimation of the correct
K value is done. In [46] and [27]], a texture ratio is computed
to characterize the level of complexity of the texture in HSI.
Based on the value of such ratio, the value of K is determined.
Even edge detection can be introduced for estimating K [44],
[73]. Complex structures generally include more edges and
hence, more superpixels are expected. Still, these methods
for automatic estimation of K are prone to errors as it is
practically difficult to determine an optimal value for the num-
ber of superpixels that can adapt to all materials. Hence, the
multiscale superpixel segmentation approaches were proposed.
Different objects exhibit indiscriminately smaller or larger
portions in the spatial domain; hence, it is justifiable to fuse
the multiscale superpixel segmentation maps so that the spatial
structure of various objects can be exploited in a unified frame-
work [76]]. By doing so, one can overcome the deficiencies
of each scale to spatial constraints and effectively improve
the classification performance [114]. Multiscale segmentation
approaches, however, increase the computational complexity.
Hence, there is a need for development of more advanced
strategies for optimal estimation of number of superpixels.
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TABLE IV
CLASSIFICATION RESULT FOR HOUSTON 2013 DATASET WITH 50 TRAINING SAMPLES FOR SCMK, ULBP-SPG, R2MK, ASGSSK, ASMGSSK,
SUPERPCA, MSUPERPCA, AND IAP ALGORITHMS

# Sampless SCMK ULBP-SPG R2MK ASGSSK ASMGSSK SuperPCA  MsuperPCA  IAP
1 1073 96.37 98.59 96.51 98.37 98.43 98.25 97.36 96.96
2 810 96.79 96.35 93.78 97.71 97.75 98.01 97.54 98.87
3 697 96.19 9291 99.38 95.99 98.6 99.23 95.43 97.66
4 1053 94.77 97.66 94.23 98.79 95.2 94.73 95.47 98.86
5 1242 99.08 98.91 99.75 99.74 99.91 99.75 99.74 99.82
6 325 85.61 91.7 95.67 82.78 80 95.67 89.18 90.33
7 978 81.03 85.33 87.62 88.47 89.45 85.98 87.92 88.77
8 624 77.49 82.53 86.12 85.12 90.04 86.79 91.03 85.93
9 1031 71.72 7591 79.82 89.44 89.83 83.39 86.49 89.05
10 382 91.66 93.47 89.31 91.59 94.86 89.82 91.76 97.7
11 114 83.93 78.6 85.85 84.86 87.24 85.09 86.91 83.73
12 1233 87.18 94.43 93.92 95.2 97.09 85.65 93.7 96.12
13 449 88.11 84.56 88.12 71.75 77.96 80.05 72.05 75.64
14 428 98.71 99.47 99.21 95.23 98.48 96.32 95.27 91.37
15 660 98.39 99.51 99.35 99.67 98.03 98.69 97.91 99.01
OA:: 89.56 90.8 91.7 92.74 93.69 91.4 92.48 93.31
AA:: 90.2 91.33 92.58 92.05 92.86 91.83 91.85 92.66
Kappa:: 88.72 90.06 91.02 92.16 93.18 90.7 91.87 92.71

Fig. 12. (a) Ground Truth Image, Classification Maps of (b) SCMK (c) ULBP-
SPG (d) R2MK (e) ASGSSK (f) ASMGSSK (g) SuperPCA (h) MsuperPCA
(i) IAP for Indian Pines dataset

B. Position of superpixel seed points

The initial cluster seed points in the superpixel segmentation
algorithms must be carefully chosen in order to obtain accurate
segmentation maps. In the case of a standard SLIC algorithm,
square grids are used for generating the initial cluster seed
points [13[]. Hexagonal grids are proposed in place of square
grids in [[14] as each corner and each side of the hexagon
is shared by three and two hexagons, respectively. Compared
with the original SLIC based on a square grid, choosing a
hexagonal grid for image segmentation has noticeable benefits
as it can adequately learn the neighboring spatial information.
More non-diagonal neighbors are present for each hexagon

rather than a square. Also, hexagonal grids generate less
distance distortion of boundary pixels [[77].

In [73], the position indexes of pixels within the i super-
pixel map S; are employed on the i*" edge-preserving feature
F; to extract the corresponding non-overlapping superpixels.
Hence, superpixels are generated within the edge-preserving
feature.

C. Superpixel evaluation metrics

The standard superpixel evaluation metrics developed for
RGB images are: Boundary Recall, Under-segmentation error,
Explained Variation, and Compactness. Let S = {9, }JKZ1
and G = {G,;} represents the superpixel segmentation and
GT segmentation respectively for the same image I. A brief
explanation of the aforementioned matrices is provided below.

o Boundary Recall (Rec): It computes the fraction of

ground truth edges that fall within at least two pixels of
a superpixel boundary. A higher value of boundary recall
indicates that few number of true edges are missed and
hence, better boundary adherence [[115]]. Rec is expressed

using Eqn. [2§]

TP(G,S)

Rec@.5) = 7G5+ FN(G.S)
where, FN (G, S) and TP(G, S) are the number of false
negative and true positive boundary pixels in S with
respect to G respectively.

¢ Under-segmentation error (UE) It computes the error
made by the algorithm while segmenting an image with
respect to the GT [37]]. Let g1, g2, ..., gv be the GT seg-
ments and s1, S, ..., Sk represents the superpixel output.
Then, the UE error for GT segment g; can be expressed

using Eqn. [29]

(28)

Y

1
UE =5 >

1=1

- F

by

s;|s;Ngi>0

|54 (29)

where, |.| denotes the size of segments in pixels and F’
is the image size in pixels. O is the minimum number of
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Fig. 13. (a) Ground Truth Image, Classification Maps of (b) SCMK (c) ULBP-
SPG (d) R2MK (e) ASGSSK (f) ASMGSSK (g) SuperPCA (h) MsuperPCA
(i) IAP for Pavia University dataset

pixels required for overlapping. s;Mg; is the overlap error
of superpixel s; with respect to ground truth segment g;.
The value of O is set to 5% of |s;]

« Explained Variance (EV): It is used to quantify the
variation in the image based on superpixel segmentation
quality without depending on the ground truth. It mainly
assesses the strong changes in color and structure exhib-
ited by the image boundaries [30]. EV is expressed as in

Eqn. 30
S, 1851 (4(85) — (D))’
>, (I(xn) = (1))

Where (S;) is the mean color of the superpixel S; and
wu(I) is the mean color of image I

EV(S) = (30)

o Compactness (CO) : It compares each superpixel (5;)
area (Ar(.S;)) with the area of a circle which is having the
same perimeter (Peri(S;)) (Eqn. [116]. The higher

the value of C'O the better it is.
4 Ar(S;)
- F Z 155l Perits,) Peri(S;)
Even though the above metrics are popular for natural RGB
images, for hyperspectral images it is difficult to compute these
parameters. Hence, to assess the performance of the segmen-
tation algorithm, the standard metrics generally used for eval-
uating the classification performances (overall accuracy (OA),
average accuracy, and kappa coefficient («)) are adopted. If for
a particular superpixel segmentation algorithm, a substantial
enhancement in classification performance is observed, then
it means that a particular segmentation algorithm is superior
as compared to other algorithms. At the moment, however, no
dedicated segmentation evaluation metrics seem to have been

developed yet for hyperspectral images. Hence, more work
needs to be done in this regard.

CO(G,S) (3D

D. Selecting the base image for generation of superpixels

The base image upon which the superpixel segmentation
algorithm is applied impacts heavily on the final segmentation
result. Hence, the choice of the most suitable base image
before applying the superpixel segmentation algorithm is a
crucial decision. These algorithms may be applied directly
to the raw HSI or processed (dimensionality-reduced, band-
selected, or feature-extracted) HSI.

E. Selecting an appropriate superpixel segmentation algo-
rithm for HS image

Several superpixel segmentation algorithms are available in
literature which were originally developed for computer vision
applications. These algorithms basically expect a natural RGB
image as input and were conceived under this assumption.
While applying superpixel segmentation algorithms, often the
dimension of HS images are down-scaled in accordance with
the segmentation algorithm. However, there exist no dedicated
superpixel segmentation algorithms designed for HSI, despite
these could enjoy the full benefits of HSI data and its informa-
tion content. Hence, finding a dedicated superpixel algorithm
for HSI is still an open challenge. Moreover, HS compression
techniques can be considered when generating superpixels.

IX. CONCLUSION AND FUTURE SCOPE

In recent years, superpixels have been extensively ap-
plied in a broad range of applications due to their inherent
properties. Superpixels can partition a particular image into
several smaller meaningful regions upon which features can
be computed. Hence, by using superpixels the computational
complexities can be reduced drastically as superpixel-based
processing significantly reduces the input entries for the
subsequent algorithms. Due to the aforementioned benefits,
superpixels have been widely employed in various application
areas of hyperspectral image processing like classification,
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Fig. 14. (a) Ground Truth Image, Classification Maps of (b) SCMK (c) ULBP-SPG (d) R2MK (e) ASGSSK (f) ASMGSSK (g) SuperPCA (h) MsuperPCA

(i) IAP for Houstan 2013 dataset

spectral unmixing, dimensionality reduction, Band selection,
Active learning, denoising, and anomaly detection. In this
work, a unified post-processing framework for superpixels is
presented. Also, a brief survey on various application areas
of superpixels is provided. In spite of so many advantages,
there exist several open challenges also in the implementation
of superpixel segmentation. Determination of the number of
superpixels and their position is a challenging task. There is
also a need to develop dedicated superpixel evaluation metrics
for hyperspectral images. Even though several superpixel
segmentation algorithms exist in the literature, most of them
are developed for RGB images. These algorithms are often
modified before applying them to HSI. There is a need to
develop dedicated superpixel segmentation algorithms specific
to HSI. Also, deep learning techniques may be incorporated
for generating superpixel segments in the future for HSI.
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APPENDIX
GENERAL NOTATIONS

The general notations used in the paper are provided in

Table. [V
TABLE V
GENERAL NOTATIONS
Symbol Meaning
K number of superpixels
g Graph
|4 Vertex
E Edge
w weight
H entropy rate function
E’ selected edge set
P probability
B balancing function
Z cluster membership distribution
N number of connected components
S graph partitioning for edge set / Superpixel map
A weight of balancing term
H input HST
n pixels
B spectral bands
Q window size
D distance
(r,u) location of pixel i
C classes
J total training samples for all classes
T number of features
P predicted label of test sample
0 indicator function
h predefined scalar
D structured dictionary
N number of samples in D g
X each pixel of HSI, X € RBx1
L sparsity level
A sparse coefficient matrix
Err Error
A pixel weight set
B collaborative coefficient set
H' clean HSI
Esparse sparse error term
Ngaussian Gaussian noise
endmembers
A abundances
Up spatial superpixel group
4 superpixel confidence index
w superpixel-wise weight matrix
G Ground truth
FN False positive
TN True negative
UE Under-segmentation error
F image size in pixels
EV Explained Variance
m mean
I image
cO compactness
Ar Area
Peri Perimeter
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