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ABSTRACT The problem of maximizing lifetime of a sensor network is still challenging mainly due to
the stringent delay-deadline of real-time applications and heterogeneity of sensor devices. The problem is
further complicated when the network contains many obstacles. In maximizing network lifetime, existing
literature works either merely address issues of application delay-deadline and presence of obstacles,
or analyze primitive data collection approaches for such an environment. In this paper, we formulate
optimal data collection schedule of a mobile sink in an obstructed sensor network as a mixed-integer linear
programming (MILP) problem. The proposed data collection scheduling finds an optimal set of rendezvous
nodes over a preformed Starfish routing backbone, and corresponding sojourn duration so as to maximize
the network lifetime while maintaining delay-deadline constraint in an obstructed network. The proposed
Starfish-scheduling ensures a loop-free traveling path for a mobile sink across the network. The results of
performance evaluation, performed in network simulator-2, depict the suitability of Starfish scheduling as it
outperforms state-of-the-art-works in terms of extending network lifetime and data delivery throughput as
well as reducing average end-to-end delay.

INDEX TERMS Network-lifetime; Data collection schedule; Obstructed sensor networks; Starfish routing
backbone; Mobile sink; Sojourn location; Sojourn duration.

I. INTRODUCTION

In this era of Industry 4.0 [1] [2], sensor networks play
important roles for collecting data from wide-range of real-
time applications including industrial process monitoring,
nuclear power plant monitoring, precision agriculture, big-
data gathering, e-health, smart grid, smart city [3], etc. In
the upcoming years, the sensed data will lead to developing
embedded intelligent systems for most industrial and do-
mestic applications [4] [5]. The efficiency of these real-time
applications highly depends on delivering data within the
bounded delay-deadline and minimizing end-to-end data de-
livery delay. Consequently, sensor networks inherently focus

on ways of efficient data routing so that energy consumption
is minimized and network lifetime is maximized. In mobile-
sink based sensor networks, the sink typically collects data
traveling across the network and this technique has already
been proven not only to enhance the network lifetime but
also to minimize average end-to-end data collection latency
to a great extent compared to its static counterpart [6] [7].
However, still, there is room to further optimize the network
lifetime while maintaining delay-deadlines for real-time ap-
plications.

The problem of maximizing lifetime of sensor networks
has been well studied in the literature [8] [9]. The primitive
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strategies follow optimal coverage and connectivity [10],
opportunistic transmission schemes, dynamic beam-forming
[11] [12], etc. Further improvement of network lifetime is
achieved through greedy energy-efficient routing, clustering
techniques, and machine learning approaches [13]. Though
the strategies can achieve an extended network lifetime, they
lack to maintain delay-deadline for real-time applications.
A set of recent studies has been found to further minimize
energy consumption by designing an efficient traveling path
of a mobile sink while collecting sensed data from different
regions in the network [14] [15]. These are achieved through
predictable path planning or dynamic cluster-based data col-
lection strategies [16].

In the literature works, data collection strategies using a
mobile sink are broadly grouped into two categories: direct-
contact based and rendezvous-node based. In the former
strategy [17] [18] [19] [20], the mobile sink periodically trav-
els to all source sensor nodes and collects sensed data directly
from them. Even though this strategy can completely avoid
message-relay overheads and increase network lifetime, the
strategy sacrifices application delay-deadline and therefore
it’s not applicable for real-time data collection applications.
Moreover, it increases the traveling path length for the mobile
sink, causing higher data delivery latency.

In rendezvous-node based data collection strategy [21]
[22] [23], a mobile sink only visits and collects data from
a few rendezvous nodes over a designated tree-like backbone
[24], cluster-heads [25] [26] or routing-backbones (e.g., Hon-
eycomb [27], Fish-bone [28], Starfish routing backbone [29],
etc.), instead of visiting all sensor nodes in the network. In
this strategy, ordinary sensor nodes send their data packets
to a few rendezvous nodes ahead of time, reducing the
moving path length of the sink as well as the data collection
delay. The problem of selecting rendezvous nodes over a
given routing backbone (at which a mobile sink halts) has
been addressed in [22] [30] [31] [32]. The key philosophy
of these works is to develop an energy-efficient traveling
path avoiding multi-hop communication, to minimize end-
to-end data collection latency, or to reduce computational
complexity for determining mobile sink’s path. The problem
is further investigated in [33] [34] [35] [36] [37] for networks
containing several obstacles, opposing free movement of the
sink.

In [29], we developed a routing backbone following
the water vascular process of a sea fish, namely starfish.
The work aimed to minimize energy consumption in an
obstacle-free sensor network, and later, in our pioneer work
[38], it was investigated for an obstructed-network. How-
ever, both works have considered the random sink mobil-
ity model rather than finding an efficient data collection
scheduling based on data arrival rate, sojourn duration at
rendezvous nodes, etc. Moreover, exhaustive visits through
all rendezvous-nodes on cluster-heads or backbone nodes
also become infeasible for real-time applications due to
violation of application delay-deadline. Thus, the problem
of determining an optimal set of rendezvous nodes together

with sojourn duration at each of them aiming to maximize
network lifetime for a time-constraint application is still chal-
lenging. Moreover, in presence of obstacles in the network
and heterogeneous data generation rates of sensor nodes, a
data collection strategy that might further enhance network
performances and lifetime of the network has not yet been
well-explored in the literature.

In this paper, we offer a novel data collection scheduling
for a mobile sink in an obstructed sensor network adopting
Starfish routing backbone [29] [38]. The Starfish routing
backbone has been developed in our earlier work that spreads
backbone nodes throughout the network. In this work, the
proposed data collection schedule addresses the problem
of determining an optimal set of backbone nodes over the
Starfish routing backbone, together with sojourn duration at
those backbone nodes aiming to maximize network lifetime.
This mechanism is also driven by time-constraints of un-
derlying applications and data generation rates around the
backbone nodes. The key contributions of this paper are
summarized as follows:
• We formulate the problem of maximizing lifetime of an

obstructed network as a mixed-integer linear program-
ming (MILP) that finds an optimal set of rendezvous
nodes along with corresponding sojourn duration

• The proposed data collection schedule of a mobile sink
maintains application requirements on end-to-end data
delivery delay.

• It also guarantees loop-free travel-scheduling among the
rendezvous nodes, ensuring balanced energy consump-
tion as well as reduced data delivery delay.

• An experimental analysis, performed in network sim-
ulator version-2 [39], shows significant performance
improvements on network lifetime, end-to-end delay,
data throughput over state-of-the-art-works.

The rest of this paper is organized as follows. Section
II provides a study on state-of-the-art works related to
backbone-node based data collection scheduling of a mo-
bile sink. The network model, along with assumptions, and
the proposed optimal data collection scheduling (namely,
Starfish) of a mobile sink are stated in Section III and Section
IV, respectively. Section V presents the simulation envi-
ronment and experimental results of the proposed Starfish
data collection scheduling with comparative analysis. Finally,
Section VI concludes the paper.

II. RELATED WORKS
Recently, diverse developments of the Internet of Things
(IoT) devices and applications have dramatically changed
data collection strategies in sensor networks. Devising an
efficient data collection mechanism is important for increas-
ing the network lifetime and decreasing the end-to-end data
collection latency from source nodes to the mobile sink. We
have come across a handful of literature works focusing on
mobile sink based data collection strategies that are grouped
into two categories: direct-contact based [18] [19] [20] and
rendezvous-node based [22] [24] [25] [36] [37].
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(a) Moore-curve [19] (b) Z-curve [20] (c) Spanning-graph [35] (d) VPS [36] (e) LAS [37] (f) Starfish-backbone [38]

FIGURE 1: Data collection strategies of a mobile-sink in state-of-the-art works

In a direct-contact based data collection strategy, a mobile
sink travels all source nodes in the field of interest, and a typ-
ical traveling path is determined by a well-known traveling
salesman problem (TSP) [17]. Apart from that Hilbert- [18],
Moore- [19], and Z-curves [20] are employed in a network
to formulate traveling paths for a mobile sink to collect
data through one-hop communication. A mobile sink visits
along a Hilbert-curve [18], a continuous fractal space-filling
curve, to collect data from the sensors. However, a mobile
sink cannot return to the starting location along Hilbert-
curve. Therefore, a Moore-curve [19] is developed as the
loop version of the Hilbert curve, as shown in Fig. 1(a). Data
collection scheduling along both Hilbert- and Moore-curves
is easy to develop with similar recursive constructions for
a large network. However, the path length of a mobile sink
shows polynomial growth for the larger networks. Besides,
their constructions become more complicated, while the net-
work contains either path-restricted or location-restricted ob-
stacles in the network [8]. Z-curve [20] tried to minimize data
collection time through bypassing obstacles in the network,
as depicted in Fig. 1(b). Since a mobile sink collects data
from each sensor directly, these approaches can completely
avoid message relay overhead, broadcasting sink’s fresh loca-
tion, etc. Thus, direct-contact based data collection strategies
essentially increase network lifetime. However, they suffer
from exaggerated traveling path distance, higher data deliv-
ery latency, buffer overflow, and meeting application’s hard
delay-deadline, etc. Therefore, direct-contact based strategies
are not suitable for time-constraint data collection in sensor
networks.

To mitigate these problems, in rendezvous-node based data
collection strategy, a mobile sink collects data from a few ren-
dezvous nodes [22] [23] over a designated tree-like backbone
[24] [28], cluster-heads [35] [36] [37] or routing-backbone
[29] [38], instead of traveling all source nodes in the network.
In the literature, rendezvous-node based strategies have been
developed for two varieties of networks: obstacle-free and
obstructed-networks. In the former type, a mobile sink can
travel to any rendezvous node along a straight-line direction
without any interruption. On the contrary, an obstructed-
network area may contain building, tree, pond, lake, forest,
mountain, etc. opposing free movement of the mobile sink
along the straight-line direction between two rendezvous
nodes.

In an obstacle-free-network, a set of rendezvous nodes

(RNs) constructs a one-time stationary path for data col-
lection based on residual energy of sensors to maximize
network lifetime [21] [22] [30] [31] [33] [34]. In [21],
weighted rendezvous planning (WRP) selects RNs, and to
avoid hot-spot problems in sensor networks through adopting
the shortest path tree and traveling salespersons for path con-
struction. Though it works efficiently for a smaller network,
it has higher computational complexity for larger networks.
Meanwhile, the expected sojourn time to the corresponding
RN is optimized to enhance network lifetime in different
works [22] [30]. The sojourn time of a mobile sink in [30]
is determined over each grid of a network. This work suffers
from buffer overflow, increased data loss, and energy hole
problems while collecting data. To further improve the net-
work lifetime, Basagni et al. [22] determine an optimal tour
over rendezvous-nodes so as to maximize network lifetime.
Sensor nodes, located within the transmission range of RNs,
can send data directly to the mobile sink, while others send
data through multi-hop communication to the mobile sink.

However, these works lack from applying in a non-grid
network, or an irregular node distribution in the network.
Recently, Wen et al. [33] proposed energy-aware path con-
struction (EAPC) scheme by selecting RNs on the spanning-
tree and constructing a data collection path using a convex
polygon algorithm. Since the path is not the shortest and
the mobile sink traverses more distance in the network,
application delay-deadline is violated. In [31], Gharaei et
al. proposed a collaborative approach (namely, CMS2TO) to
balance the energy consumption of the cluster heads (CHs)
in the network. Since it focuses on the lifetime of CHs,
hot-spot regions are created around the CHs. In [34], the
authors proposed an efficient path planning for reliable data
gathering (EARTH) that determined RPs based on distance
and hop-count. Similar to the CMS2TO, the nearby nodes
to the RPs die quickly in EARTH approach for large-scale
wireless sensor networks (WSNs). To enhance the reliable
data collection, trust-based energy-efficient data collection
techniques have been proposed in [40] [41].

Based on the aforementioned literature review, we observe
that these works optimize network performances in terms of
energy consumption, data delivery delay, network lifetime,
data throughout, sojourn time [42] [43], etc. for obstacle-
free networks. However, obstacles are an integrated part in a
practical scenario, and aforementioned cluster-head and tree-
based routing protocols become complicated to construct

VOLUME 4, 2016 3



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3021623, IEEE Access

M. A. Habib et al.: Lifetime Maximization of Sensor Networks Through Optimal Data Collection Scheduling of Mobile Sink

sink’s tour. Moreover, a few work addresses data collection
schedule in an obstructed network [35] [36] [37] [38] [44]
[45]. In this consequence, to overcome the complexity of the
data collection scheduling in a network containing obstacles,
Xie and Pan introduced spanning graph-based data collection
scheduling [35] of a mobile sink, in which they developed a
heuristic path planning algorithm to skirt obstacles, as shown
in Fig. 1(c). In [36], the authors developed the shortest viable
path scheduling (VPS) for a mobile sink based on a road-
map, as shown in Fig. 1(d), which aimed to construct a tree-
like graph (or similar to a convex-hull) using dynamic pro-
gramming for a unicycle robot or mobile sink. Though this
approach reduces data collection time significantly, it suffers
from higher data traffic load. Besides, it is inappropriate for
larger networks since its computational complexity isO(N3),
where N is the number of all sensor nodes. In another work,
Redhu and Hegde proposed the landmark-assisted scheduling
(LAS) [37] for a mobile sink, as shown in Fig. 1(e). The key
philosophy of the work is to identify the optimal clusters and
associated landmark nodes to minimize energy consumption.
Since this approach uses random walks over a network, and
then it performs matrix multiplication operations over its
Markov model, its computational complexity is also O(N3),
similar to VPS.

Recently, rendezvous node selection and data collection
approaches have been developing for obstructed-networks
using artificial intelligence [44], fuzzy logic [45], and ma-
chine learning algorithms. In [44], Ghabel et al. proposed
DGOB algorithm for data collection over an obstructed-
network that was executed into two phases, cluster- and
tour- constructions. This approach exploited hierarchical ag-
glomerative clustering, ant colony optimization, and genetic
algorithms to construct clusters in the presence of obstacles.
In [45], Verma et al. developed fuzzy-logic based effective
clustering (FLEC) that used three-tier communication-based
approaches: nodes to cluster heads (CHs), CHs to super
cluster heads (SCH), and then SCH to mobile sink. Both
works [44] [45] exhibit higher computational complexity to
select efficient rendezvous nodes in a large scale network.

Moreover, most of above works for obstructed-networks
exhibit higher end-to-end data collection latency using a
mobile sink due to scheduling periodically over a large
circular-path [36] or cluster heads [37] [44] [45] to collect
data. These works also violate the delay-deadline of real-
time applications and increase energy consumption among
the sensor nodes significantly. To mitigate these issues, as a
preliminary version of this work, we developed the Starfish
routing backbone in an obstructed-network [38], as shown in
Fig. 1(f). A brief description of its construction is presented
in subsection III-A. Though we improved network lifetime
by balancing energy consumption throughout the network
and minimized end-to-end delay in [38], data collection was
scheduled by random mobility of a sink in the network.
Therefore, this work still lacks an efficient data collection
scheduling over the Starfish routing backbone by a mobile
sink.

Furthermore, in an obstructed-network, a few works have
considered sojourn duration and data arrival rate at ren-
dezvous nodes (RNs), and application delay-deadline in se-
lecting visiting nodes. Consequently, what would be the
optimal rendezvous nodes and sojourn duration at individ-
ual RN have been left unexplored. Motivated by the above
challenges of real-time data collection, in this paper, we
have developed data collection scheduling of a mobile sink
aiming to determine an optimal set of rendezvous nodes in
an obstructed-network at each round, together with sojourn
duration at each rendezvous node so as to maximize the
lifetime of sensor networks. The proposed data collection
scheduling mechanism, over an established routing back-
bone, is driven by delay-deadline of underlying applications
including sojourn locations, sink’s sojourn duration, and data
generation rates around the rendezvous nodes. Such a data
collection schedule is expected to offer an extended network
lifetime and reduced end-to-end data delivery delay. What we
unfold in the next section is the obstructed-network model
followed by operational details of an optimal data collection
scheduling over the Starfish routing backbone [29].

III. NETWORK MODEL AND ASSUMPTIONS
This section introduces the network model of an obstructed
wireless sensor network (WSN) of 2a × 2b m2 (a ≥ b)
area with network-center at (u, v), as shown in Fig. 2 and
Fig. 3. Here, obstacle means a bounded area in WSNs across
which a mobile sink cannot travel (e.g., forest, ponds, hills,
mountains, etc.). The network contains a mobile sink (acts
as a central controller) that travels throughout the network
to collect sensed data from nodes. We assume, N is the set
of stationary sensor nodes in the network each having initial
residual energy ε0, and transmission range r (0 < r < b).
Since connectivity among sensor nodes and mobile sink
needs to be guaranteed to receive all sensed data for future
processing, we consider a pre-constructed routing backbone
in the network. In this paper, we have adopted the Starfish
routing backbone from one of our earlier works as discussed
in [29] [38]. Its backbone nodes are categorized into ring-
canal nodes (Z) and radial-canal nodes (B). The construction
of a Starfish routing backbone is briefly described in subsec-
tion III-A.

In this work, we consider the classic energy consumption
model for a sensor node, as described in [15] [43]. Since most
of the energy is dissipated during transmitting and receiving
states of a node, the energy consumption for transmission (E)
and reception (Ẽ) for each bit is measured as follows.

E = Etransmit =

{
ξelec + ξfsd

2 if d < d0

ξelec + ξampd
4 if d ≥ d0

(1)

Ẽ = Ereceive = ξelec (2)

In the equations, ξelec, ξfs, and ξamp represent energy
dissipated by the transmitting circuit, required energy for
amplification in free space, and for multi-path attenuation
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model, respectively. If the transmission distance d is less
than the threshold value d0, as considered a boundary value
between free space and multi-path, the power amplification
loss adopts as a free space model. On the other hand, if the
transmission distance is greater than or equal to the threshold
value d0, the multi-path attenuation model is adopted.

A. CONSTRUCTION OF STARFISH ROUTING
BACKBONE
The key philosophy of designing a Starfish routing backbone
is to spread backbone nodes throughout the network aiming
to balance energy consumption among the nodes. Motivating
from the water vascular process of a sea-fish called "Starfish",
we construct a Starfish routing backbone that contains back-
bone nodes on a central ring-canal and several radial-canals
throughout the network [29]. The central ring-canal is formed
in the middle of the network and is also circularly connected
with ring-canal nodes, as depicted in Fig. 2(a). On the other
hand, the radial-canals are spread out to the periphery from
the principal-axes of the network, as depicted in Fig. 2(b).

The primary objective of constructing ring-canal is to
alleviate the hot-spot problem at the network center. To
construct the ring-canal, an optimal radius (R) of a reference
circle is estimated, and then the ring-canal nodes are selected
nearby every r distance away starting from any node on it, as
depicted in Fig. 2(a). To ensure the efficiency of the Starfish
routing backbone, an optimal radius of the ring-canal R is
estimated proportionally to the maximum number of radial-
canals using mixed-integer linear programming (MILP), as
explained in Lemma 1, in the light of our another work in
[46]. Then the ring-canal nodes Z ⊂ N are selected over the
reference circle (having radius R) every r distance interval.
For instance, Z = {z1, z2, . . . , z6}, as shown in the Fig. 2(a).

On the contrary, the key philosophy of constructing radial-
canals is to spread the backbone nodes across the network
so that the source nodes from all areas of the network can
access at least one of the backbone nodes on radial-canals.
At first, few designated nodes are chosen every 2r distance
away along principal-axes, as shown in Fig. 2(b), and then the
radial-canals are prolonged toward the edge of the network
parallel to both principal-diagonals. Later, a central controller
(or the mobile sink) selects radial-canal nodes (e.g., B ⊂ N)
over principal axes, principal diagonals, and all radial-canals

(u,v)

R r

z6 z1

z2

z3z4

z5
2r 2r 2r

2r 2r 2r

2
r

2
r

2
r

2
r

r r

r r

a ) Ring-canal formation b) Radial-canal formation

FIGURE 2: Ring-canal and radial-canals of a Starfish routing
backbone

a

b

Source node Radial-canal node (B) Ring-canal node (R)

(u,v)

Obstacle

FIGURE 3: Network model and Starfish routing backbone in
an obstructed-network

approximately every r distance away. Finally, all of these
ring-canal and radial-canal nodes are connected to construct
the Starfish routing backbone. Since the network model con-
tains obstacles in the network, the controller selects backbone
nodes for both ring-canal and radial-canal surrounding the
obstacle following the obstacle-detection strategy described
in [47]. In the network, any application may adopt trust-
based energy-efficient data collection techniques [40] [41]
for secured data transmission.

Lemma 1. Given that a and b (a ≥ b > r) are the
halves of two sides, respectively, of a rectangular network.
Then the optimal radius of the ring-canal of a Starfish routing
backbone is estimated as R ∼= (a + b)/π, if and only if
the number of radial-canals has a linear relationship with the
number of backbone nodes on the ring-canal.

Proof. Since the backbone nodes on the ring-canal are
positioned approximately every r distance away, the num-
ber is measured for the central ring-canal with radius R
as 2πR/r. Meanwhile, the number of radial-canals of the
Starfish routing backbone is estimated for the given network
as (2a+2b)/2r, since the radial-canals are rayed out approx-
imately every 2r distance away along both principal-axes. If
and only if the number of backbone nodes on the ring-canal
and that of radial-canals has a linear relationship, or equal
proportion (i.e., 2πR/r ∼= (a + b)/r), the Starfish routing
backbone contains the optimal radius of the ring-canal that is
estimated asR ∼= (a+b)/π, and thus the Lemma 1 is proved.

B. PROBLEM STATEMENT
In this paper, we assume a network containing obstacles
like trees, forest, building, mountains, etc. that oppose free
movement of the mobile sink between the nodes, as shown
in Fig. 3. In the network, each source node i ∈ N sends data
packets to nearby radial-canal (B) or ring-canal (Z) backbone
nodes, which then relays to the mobile sink in multi-hop fash-
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TABLE 1: Notations

Symbols Descriptions
2a×2b Network area
N Set of all sensor nodes
r Transmission range of a sensor node
R Optimal radius of the ring-canal
T Minimum value of application delay-deadline
C Set of cycles be completed by mobile sink
Dc The worst-case end-to-end delay of a packet in a cycle c
σc
m Data arrival rate at sojourn location m in cycle c
Sc
m Sojourn duration at m in a cycle c

B Set of nodes on radial-canal
Z Set of nodes on the ring-canal
Rc Power set on ring-canal nodes Z during cycle c
Mc

n Set of optimally selected sojourn locations during cycle c
εcm Residual energy of a rendezvous node m at cycle c
ε0m Initial residual energy of a node
ecm Total energy required at m in cycle c
E Energy expenditure to transmit a bit of data
Ẽ Energy expenditure to receive a bit of data
qcm Bit-length of a packet at m in cycle c
Ac Set of sink’s traveling-arcs in cycle c
fclm A variable determining sink from l to m at cycle c
hcm A variable determining sink’s sojourn at m in a cycle c
δ The expected end-to-end delay per hop for a packet
Hc Hop-distance for a packet in a cycle c
ρz

c

Hc Inter-hop transition probability of a packet

ion over the preformed Starfish routing backbone. We assume
that source nodes are producing data packets with different
delay-deadlines and T is the minimum value of deadlines in
the network. While any backbone node collects data from
a source node, it takes responsibility to forward data to the
mobile sink over starfish routing backbone nodes. However,
scheduling the sink’s mobility within the obstructed-network
would still improve the efficiency of data collection and
network lifetime.

The details of the proposed optimal data collection
scheduling, namely Starfish scheduling, are explained aiming
to maximize network lifetime and improve data collection
efficiency in Section IV. The symbols and notations are
summarized in Table 1.

IV. DATA COLLECTION SCHEDULING
In this section, we have developed an optimal data collection
scheduling of a mobile sink so that lifetime of a sensor
network can be maximized while maintaining application
delay-deadline. In the network, a mobile sink visits any set
element of Rc in each cycle c ∈ C, where Rc denotes the
power set on Z (i.e.,Rc = P (Z)), and C = {0, 1, 2, . . . }.
This choice is motivated by the fact that data collection
over the optimal size of the ring-canal (of Starfish routing
backbone [29] ) offers minimum energy expenditure in the
network, in the light of our earlier work in [46]. Moreover,
the computational complexity of finding optimal sojourn
locations over ring-canal nodes would be less compared to
that when all nodes are explored. The following subsections
describe optimal data collection scheduling, namely Starfish
scheduling, in detail.

A. OPTIMAL DATA COLLECTION SCHEDULING

In the proposed scheduling, we assume, the mobile sink
sojourns (or halts) at sojourn locationm ∈Mc

n and Mc
n ∈ Rc

for a duration of Scm in a cycle c, where n = {1, 2, . . . , |Rc|−
1}. Since the network contains obstacles among nodes, arc
set is defined as follows, Ac = {(l,m) : f clm = 1}, where
f clm = 1 indicates that there exists a traveling path avoiding
obstacles between sojourn locations l ∈ Mc

n and m ∈ Mc
n

in a cycle c ∈ C; 0 otherwise. The sojourn duration of
the mobile sink at a rendezvous node in a particular cycle
depends on the data arrival rate. Here, sojourn locations are
those that are optimally selected among rendezvous nodes
in a cycle. We assume σcm and Scm are, respectively, the data
arrival rate and the sojourn duration at corresponding location
m ∈ Mc

n in a cycle c ∈ C. The sojourn duration Scm is
measured as follows,

Scm =
σcm∑
j∈Z σ

c
j

× Dc, ∀c ∈ C,∀m ∈Mc
n (3)

whereDc is the worst-case end-to-end data collection latency
from the farthest source node of the network to the mobile
sink for a cycle c. Since the central controller is aware of
both data arrival rate at each rendezvous nodes on the ring-
canal and sink travels around the preformed ring-canal, it can
determine the worst-case end-to-end delay Dc for a network
instance [29]. To support real-time applications, worst-case
end-to-end delay Dc for a cycle cannot exceed the minimum
value of application delay-deadline T (i.e., Dc ≤ T ).

Now, we assume εcm be the residual energy of a rendezvous
node m ∈ Mc

n at a particular cycle c ∈ C. While routing
data, a node requires energy E and Ẽ for transmitting and
receiving each bit, respectively. Therefore, the total energy
required by a rendezvous node m ∈ Mc

n during sojourn
period Scm can be computed as,

ecm = Scm · σcm · qcm · (E + Ẽ), ∀m, ∀c, (4)

where qcm is the bit-length of a packet. While selecting a
sojourn location m ∈Mc

n in a cycle c, its residual energy εcm
must be greater than the required energy ecm. At the end of a
cycle, the residual energy of a rendezvous node is updated
as, εc+1

m = εcm − ecm. At the initial cycle, i.e., c = 0,
ε0m is considered as the initial residual energy and energy
expenditure, e0m = 0.

The key objective of the proposed Starfish data collection
scheduling is to maximize network lifetime that is translated
as maximizing sojourn duration over the optimal set of ren-
dezvous nodes of Starfish routing backbone. A rendezvous
node is interpreted as a sojourn location when the mobile sink
halts for a certain duration and collects data. We maximize
total sojourn duration so as to increase the network lifetime
since sink’s data collection lasts until the network is dead.
The objective function and the constraints of the mixed-
integer linear program (MILP) are formulated as follows.
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Maximize :

L = argmax
Mc

n∈Rc

∑
∀c∈C

∑
∀m∈Mc

n

Scm, (5)

subject to,

ecm < εcm, ∀c ∈ C, ∀m ∈Mc
n (6)∑

m∈Mc
n

ecmh
c
m/S

c
m <

∑
m∈M̃c

n

ecmh
c
m/S

c
m,∀c,∀M̃c

n (7)

hcm ∈ {0, 1}, ∀c ∈ C (8)

Dc ≤ T, ∀c ∈ C (9)

Pc(j k m) = True,∀j ∈ Z ∪ B,∃k ∈ Z ∪ B ∪ ∅,
∃m ∈Mc

n,∀c ∈ C
(10)

wcl − wcm + |Mc
n| · f clm ≤ |Mc

n| − 1, ∀(l,m) ∈ Ac,
∀c ∈ C

(11)

0 ≤ wcl < wcm, ∀c ∈ C (12)

f clm ∈ {0, 1}, ∀c ∈ C (13)

Here, Eq. (5) is the objective function and Eq. (6) - Eq. (13)
are the constraints. The objective function schedules the
mobile sink so that it can maximize network lifetime L,
which is translated as finding out optimal sets of rendezvous
nodes Mc

n to maximize sojourn duration for allowable cycle
c ∈ C. In the objective function, sojourn duration Scm is
related to the data arrival rate at that location in a cycle c
that is measured following Eq. (3).

We formulate the network lifetime maximization problem
in such a way that the mobile sink persistently travels over
rendezvous nodes (RNs) until the residual energy of an RN
is exhausted. The energy constraint in Eq. (6) finds candidate
RNs on the ring-canal to be selected as a sojourn location, if
and only if energy expenditure ecm in a cycle c is less than
the remaining residual energy εcm of the node. At the end of a
cycle, residual energy of RNs is updated as εc+1

m = εcm − ecm
in order to discover its feasibility to be a sojourn location in
the next cycle.

The energy efficiency constraint in Eq. (7) helps us to
single out all the alternative paths that are not as energy-
efficient as the selected one Mc

n in a cycle. In Eq. (7), the
set of all alternative paths M̃c

n ∈ R̃c and R̃c = {Rc \Mc}.
Both constraints in Eq. (6) and Eq. (7) force to select a set
of energy-efficient rendezvous nodes as sojourn locations for
a cycle c so that energy consumption is minimized per unit
time. Moreover, as there exists at least one energy-efficient
path during data collection for each cycle, the lifetime of
the network is maximized for all completed cycles. Eq. (8)
defines a binary variable hcm that determines whether the

mobile sink sojourns at m in a cycle c or not. Therefore, the
constraints in Eq. (6) - Eq. (8) jointly select Mc

n among ring-
canal nodes in the network.

The Eq. (9) ensures that the worst-case end-to-end delay
Dc for a cycle cannot exceed the minimum value of appli-
cation delay-deadline T . The worst-case end-to-end delay
Dc is bounded by hop-distance Hc

min ≤ Hc ≤ Hc
max that

is estimated using Lemma 2 and Lemma 3. This constraint
guarantees the effectiveness of data collection schedule for
a real-time application in the network. The connectivity
constraint in Eq. (10) ensures that there exists at least one
path from any backbone node j ∈ Z∪B to a sojourn location
m ∈ Mc

n, either directly or via a forwarding backbone node
k ∈ Z∪B. Since there exists Starfish routing backbone in the
network and it guarantees single-hop connectivity of at least
one backbone node from any source node, the connectivity
constraint in Eq. (10) holds until the network is dead.

In the network, the mobile sink travels to the selected
sojourn locations over the ring-canal nodes, where it may
exist sub-loop nodes due to the presence of obstacles. The
constraints in Eq. (11) and Eq. (12) jointly determine the
order of visiting sojourn locations and ensure that no sub-tour
would be formed among the nodes. At last, f clm represents a
binary variable in Eq. (13) determining whether the mobile
sink travels from sojourn location l to m among rendezvous
nodes during path selection; therefore, if f clm = 1, then
wcl < wcm. Since each sojourn locationm ∈Mc

n is associated
with a weight wcm > 0 and an increasing weight (i.e.,
wcl < wcm) is maintained for each visiting sojourn location,
it inherently prevents forming any sub-loop of a path for the
mobile sink during traveling sojourn locations.

Finally, the formulation maximizes sojourn duration over
the optimal set of sojourn locations for a maximum number
of cycles until the residual energy is exhausted. This inher-
ently helps to achieve extended network lifetime during data
collection in the network.

B. FEATURES OF THE PROPOSED SCHEDULING

In this subsection, we explain different characteristics of the
proposed Starfish data collection schedule. We analyze the
worst-case end-to-end data delivery delay using Lemma 2
and Lemma 3. Since the network contains sub-cycle nodes on
the ring-canal due to the presence of obstacles, the proposed
Starfish scheduling could be inefficient if the mobile sink
travels over sub-cycles. Therefore, we present Lemma 4
to prove that the MILP model avoids sub-loop among the
sojourn locations for a cycle c. Finally, Lemma 5 proves that
the selected set of rendezvous nodes Mc

n for a cycle c over
the Starfish routing backbone is optimal.

Lemma 2. For a given network 2a × 2b (a ≥ b > r)
containing a Starfish routing backbone and sensor nodes
with transmission range r, the extreme hop-distance Hc is
bounded by d(b−R)/re ≤ Hc ≤ d(

√
a2 + b2+R(π−1))/re

for a data packet.
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Proof. In the network, the minimum hop distance of a
packet to the ring-canal typically exists along the minor axes
(ignoring obstacles), and thus the minimum hop distance is
bounded by Hc

min = d(b−R)/re, since b ≤ a. Accordingly,
the maximum hop distance from the farthest node (e.g., the
corner node of the network) to the mobile sink is typically
bounded by two reference distances, e.g., corner node to
the ring-canal node, and then to the farthest opposite node
around the ring-canal. The longest distance from the corner
node to the ring-canal lies along the principal diagonal that
is estimated as

√
a2 + b2 − R. Meanwhile, since the sink

visits around the ring-canal, the longest traveling path to
the farthest opposite node is estimated as half-perimeter
of the ring-canal, i.e., πR. Therefore, the maximum hop-
distance Hc

max is estimated as
√
a2 + b2 − R + πR, and

thus the extreme hop-distance for a packet is bounded by
d(b − R)/re ≤ Hc ≤ d(

√
a2 + b2 + R(π − 1))/re, and

hereby, Lemma 2 is proved.

Lemma 3. Given that δ is the expected end-to-end data
delivery delay of a packet for one hop (including medium
access, processing, queuing delay, propagation, transmission,
retransmission) in a network, then the worst-case end-to-end
data delivery delay Dc = δc × Hc

max for a packet traveling
Hc
max hop in a cycle c ∈ C.
Proof. Since the network contains obstacles, end-to-end

delay (i.e., δ) of a packet greatly depends on both hop-
distance from the source node to the mobile sink and the
number of retransmission(s) at each hop.

To prove the Lemma 3, as motivated from [29], we
assume ρz

c

Hc be the inter-hop transition probability of a
packet in a Markov chain model for a cycle c, where hop
Hc ∈ {1, 2, . . . ,Hmax} and retransmission attempt per
hop till success zc ∈ {0, 1, 2, . . . , φ}. Therefore, the ex-
pected retransmission attempt for a packet is expressed as
zc =

∑φ
zc=0 z

cρz
c

Hc , and the expected delay is expressed as
δc = δ zc for a packet.

Finally, the average end-to-end data delivery delay for a
data packet traveling maximum Hc

max hops is expressed as
Dc = δ

c×Hc
max, which is bounded by extreme hop-distance

Hc, as computed in Lemma 2, and thus it is proved.

Lemma 4. Given that wcl ≤ wcm, as stated in Eq. (12),
the optimal data collection scheduling of a mobile sink in the
Starfish routing backbone is sub-cycle free for l,m ∈ Mc

n

and c ∈ C.
Proof. Suppose, for the sake of contradiction, the hypoth-

esis is not true. Then there exists the constraint wcl ≤ wcm for
which there is a sub-cycle between sojourn locations such
that Mc

n = {l, l2, l3, . . . ,m, l} in a cycle c.
According to the constraint in Eq. (11) of the MILP formu-

lation, the mobile sink travels from l to l2 that follows wcl ≤
wcl2 . Similarly, for the sub-cycle through {l, l2, l3, . . . ,m, l},
it also maintains wcl ≤ wcl2 ≤ w

c
l3
≤ wcm ≤ wcl .

Now, as on hypothesis, since the mobile sink also travels
from m to l maintaining wcm−wcl + |Mc

n| · f cml ≤ |Mc
n| − 1,

that gives wcm ≤ wcl − 1. However, this contradicts the given
fact wcl ≤ wcm. Since we have arrived at a contradiction,
our original supposition that there exists a sub-cycle between
sojourn locations l and m in a cycle c could not be true.

Thus, the optimal data collection scheduling by mobile
sink over the Starfish routing backbone is sub-cycle free for
a particular cycle c, and hereby the Lemma 4 is proved.

Lemma 5. Given that ∀c ∀M̃c
n

∑
m∈Mc

n
ecmh

c
m/S

c
m <∑

m∈M̃c
n
ecmh

c
m/S

c
m, as stated in Eq. (7), the selected set

Mc
n ∈ Rc of sojourn locations for a cycle c over the Starfish

routing backbone is optimal.
Proof. Suppose, for the sake of contradiction, the hypothe-

sis is not true. Then there exists an M̃′cn 6= Mc
n that maximizes

the sojourn duration Scm.
According to the MILP formulation, the key philosophy of

energy efficiency constraint in Eq. (7) is to single out a set
Mc
n from Rc.
Now, as on hypothesis, for the selected set M̃′cn

of rendezvous nodes for a cycle c, it maintains∑
m∈M̃′c

n∈R̃c
n
ecmh

c
m/S

c
m <

∑
m∈Mc

n
ecmh

c
m/S

c
m. However,

this inequality contradicts according to the constraint in
Eq. (7) to achieve maximum sojourn duration Scm for a
particular cycle c simultaneously with Mc

n, since M̃′cn 6= Mc
n

and M̃′cn ∈ M̃c
n ∈ R̃c = {Rc \Mc

n}. Hence we have arrived
at a contradiction, our original supposition that the selected
set M̃′cn of rendezvous nodes is optimal in a cycle c could
not be true simultaneously with any other alternative set of
rendezvous nodes.

Therefore, the selected set Mc
n ∈ Rc of rendezvous nodes

for a cycle c over the Starfish routing backbone is optimal,
and consequently, it is true for all cycle c ∈ C, and hereby
the Lemma 5 is proved.

C. DATA FORWARDING POLICY
After selection of an optimal set of sojourn locations follow-
ing the above MILP formulation, the mobile sink (or a central
controller) broadcasts both the selected sojourn locations
m ∈ Mc

n and corresponding sojourn duration Scm at the
beginning of each cycle c ∈ C. Since the network runs real-
time applications, it follows a continuous forwarding policy
to send data to the mobile sink over ring-canal and radial-
canal nodes of the Starfish routing backbone.

The key philosophy of the continuous forwarding policy
employed by backbone nodes is to send data to the mo-
bile sink immediately. If a source node senses data within
the transmission range of a ring-canal node, it immediately
forwards data to the nearest ring-canal node. Afterward, the
ring-canal node takes responsibility to send data to the mobile
sink. If any source node is out of transmission range of
the ring-canal, it transmits data to the nearest radial-canal
node; then the node immediately forwards data to the nearest
ring-canal node. As soon as a ring-canal node collects data
from the source nodes, or radial-canal nodes, or neighbor
nodes, it instantly forwards data over backbone nodes to the
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FIGURE 4: Data forwarding in obstructed network environ-
ment

current sojourn location m ∈ Mc
n of the mobile sink for

a cycle c. Here, we consider the shortest routing path in
the network that is implemented in [29]. When a ring-canal
node runs out of energy, it migrates the role to neighbor-
ing node(s) maintaining circular property of the ring-canal.
This continuous data forwarding policy minimizes end-to-
end delay significantly, even in an obstructed network envi-
ronment. The simulation results prove the efficiency of the
proposed Starfish scheduling to maximize network lifetime,
as depicted in Section V.

D. AN ILLUSTRATIVE EXAMPLE
We consider a set of rendezvous nodes {A,B,C, . . . ,H} on
the ring-canal, as shown in Fig. 4. Due to the presence of
obstacles in the network, the mobile sink cannot travel to
every rendezvous node from any of those. Table 2 shows
the traveling route matrix of the mobile sink among the
rendezvous nodes {A,B,C, . . . ,H} in the presence of ob-
stacles. When the mobile sink halts at a sojourn location A,
it can only travel either to C or H due to obstacles in the
network. Similarly, in the case of halting at B, it can travel
only to {D,F,H}. Now, the key philosophy of the proposed
Starfish data collection scheduling is to determine the op-
timal set of sojourn locations based on data arrival rates,
energy expenditures at corresponding rendezvous nodes so
that the mobile sink can travel through a sub-loop free path.
As an example, we consider the maximum delay-deadline
of real-time application is 250ms and data arrival rates at
corresponding rendezvous nodes {σcA, σcB , σcC , . . . , σcH} are
tabulated in Table 3.

According to the proposed Starfish scheduling, at first, the
central controller (or the sink) finds a set Rc as a power set
on the ring-canal nodes Z. When the MILP formulation runs,
the central controller selects the most energy-efficient set
of sojourn locations Mc

n for a cycle c to maximize sojourn
duration. Meanwhile, it computes energy expenditures over
the sets of Rc based on available traveling paths of the

TABLE 2: Traveling route matrix for mobile sink

A B C D E F G H
A - 0 1 0 0 0 0 1
B 0 - 0 1 0 1 0 1
C 1 0 - 0 1 0 1 1
D 0 1 0 - 1 1 0 1
E 0 0 1 1 - 1 1 0
F 0 1 0 1 1 - 1 1
G 0 0 1 0 1 1 - 1
H 1 1 1 1 0 1 1 -

TABLE 3: Data arrival rates (packet/sec) and set of sojourn
locations

c σc
A σc

B σc
C σc

D σc
E σc

F σc
G σc

H Mc
n

1 40 7 20 10 30 13 35 17 {A,C,E,G}
2 10 35 16 40 10 45 8 50 {H,B,D,F}
3 40 10 30 50 20 12 45 13 {G,A,C,D}
4 50 10 20 40 12 45 20 38 {F,D,A,H}

mobile sink in presence of obstacles and data arrival rates,
as mentioned in Table 2 and Table 3, respectively. In this
example, Starfish scheduling finds a set of sojourn locations
M1
n = {A,C,E,G}, for c = 1, and then it determines the

sojourn duration at corresponding sojourn locations (using
Eq. (3)). For an efficient routing of data packets throughout
the network, the central controller acknowledges selected so-
journ locations (m ∈ Mc

n) along with corresponding sojourn
duration {S1

A, S
1
C , S

1
E , S

1
G} before starting data collection.

Similarly, Starfish scheduling gets another set of sojourn
locations M2

n = {H,B,D, F} for the second cycle c = 2
satisfying the required constraints in Eq. (6) - Eq. (13), and so
on until the network is dead. The lifetime of the network can
be estimated when the central controller finds the maximum
number of cycles. As soon as the central controller deter-
mines the optimal set of sojourn locations, it acknowledges
to the ring-canal nodes along with sojourn duration. After-
ward, each designated sojourn location broadcasts locally to
the neighbors on the radial-canal backbone nodes so as to
forward their sensed data up to the sojourn locations.

In continuous data forwarding policy, a source node imme-
diately forwards sensed data to the nearest ring-canal node
directly (or via the radial-canal nodes). Since each ring-canal
node (or rendezvous node) is aware of the data collection
schedule along with sojourn duration, it instantly forwards
data to the mobile sink via sojourn location m ∈ Mc

n.
This data forwarding policy minimizes end-to-end packet
delivery delay significantly for real-time applications even in
an obstructed network environment. The details of simulation
results are discussed in Section V.

In the following section, we have carried out an exhaustive
experimental analysis to compare the proposed data collec-
tion scheduling with state-of-the-art-works.

V. PERFORMANCE EVALUATION
This section presents the performances of the proposed
Starfish data collection scheduling compared with recent
works such as Viable Path-based scheduling (VPS) [36]
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TABLE 4: Simulation parameters

Parameters Values
Network area 600× 450m2

Deployment type Uniform random
Node density 0.002m−2

Transmission range 90m
MAC WirelessPhy/802.15.4
Size of data packet 512 Bytes
Channel bandwidth 512Kbps
Application type Event-driven
Initial node energy 6J
Sensor’s transmit power −3dBm
Receive power −85dBm
Pass loss exponent 2-4
d0 70m
Simulation time 1000s

TABLE 5: List of events and the burst duration

Event-A Event-B Event-C Event-D
Burst-1 10s-20s 70s-80s 110s-120s 365s-375s
Burst-2 105s-115s 190s-200s 370s-380s 570s-580s
Burst-3 430s-440s 650s-660s 730s-740s 750s-760s

and Landmark-assisted scheduling (LAS) [37] in network
simulator version-2 (NS-2) [39].

A. SETUP ENVIRONMENT
In the simulation setup, a WSN of 600 × 450m2 area
is considered, where sensor nodes are randomly deployed
following uniform random distribution having node density
0.002 per unit area. In the network, each sensor has a
transmission range 90m, and initial energy of 6J . In the
simulation, constant bit rate (CBR) traffic is modeled while
data are transmitted under UDP protocol, 512 bytes of each
data packet are transmitted over 512 Kbps of channel band-
width. The parameters of the simulation-environment setup
are listed in Table 4.

B. EVALUATION METRICS
The following six evaluation metrics [29] have been used
to gauge the performances of the studied data collection
scheduling systems.
• Network lifetime is measured as the time duration from

the deployment of the network to the time at which any
backbone node has exhausted its energy to transmit data
packets in the network.

• Standard deviation of residual energy refers to the dis-
tribution of backbone nodes’ residual energy when the
lifetime of a network is exhausted. This measure is
expected to be the smallest so that energy consumption
among the backbone nodes is balanced to enhance net-
work lifetime.

• Data throughput refers to the average data rate of suc-
cessful data that is received by the mobile sink. The
higher value of throughput is expected for better net-
work performance.

• Packet delivery ratio (PDR) refers to the ratio between
the number of data packets successfully delivered to the

mobile sink and the number of packets generated by the
source node within certain application delay-deadline.
The higher value of PDR represents the reliability of the
data routing over the backbone nodes.

• Average end-to-end (e2e) packet delivery delay refers
to the difference in time delay from generation time of
a packet to its reception time. The lower value of e2e
packet delivery delay indicates the effectiveness of data
collection scheduling for real-time applications.

• Operational overhead refers to the ratio of network
control bytes exchanged to the data bytes received by
the mobile sink during experimental evaluation. Perfor-
mance is better when the operational overhead is lower.

C. EXPERIMENTAL RESULTS
We performed 50 times of simulation experiments with dif-
ferent randomly generated seed values, and the average result
is plotted for each data point in the graph. In the network, if
there is no direct, line-of-sight path between the transmitter
and the receiver due to obstacles, data propagation is bounced
off objects and it causes multipath fading with path loss
exponent value of 2–4. However, the simulation trace file
data depicted that the average value of the path loss exponent
used by the transmitters during the experiments was around
2.8. We considered 250ms for the maximum delay-deadline
of application and events in the simulation experiments hap-
pened randomly at 30 different locations. Table 5 provides
events with corresponding burst duration for the experiment.

1) Impacts of varying data generation rates

This section presents the performances of the studied proto-
cols for varying data generation rates 1−8 packets/second.
In the experiment, the network size was fixed at 600 ×
450 m2, sink speed was fixed at 6 meter/second and the
number of obstacles was fixed at 40 occupying around 15%
of the corresponding network area.

The graphs, as shown in Fig. 5(a), illustrate that average
data throughput (within delay-deadline) rises sharply with
the increasing rate of packet generation in all the studied
protocols. This is trivial because of generating more packets
and successful reception of these packets by the mobile
sink. It is obvious that the proposed Starfish data collection
scheduling is effective in terms of bandwidth utilization as
the rate of packet generation increases. However, for a higher
rate of data generation (e.g., more than 5 packets/second),
data throughput decreases steadily due to the exceeding max-
imum channel bandwidth, buffer overflow, and packet drop,
etc. The average throughput for the proposed data collection
scheduling over Starfish backbone is significantly higher than
those of VPS [36] and LAS [37] strategies because of faster
data forwarding is offered over starfish routing backbone and
continuous data collection scheduling from the optimal num-
ber of sojourn locations on the ring-canal. It is noteworthy
that both sojourn location and duration are selected based on
corresponding data arrival rates.
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FIGURE 5: Impacts of varying rates of data generation

For similar reasons, the proposed scheduling over the
Starfish routing backbone exhibits higher PDR with progres-
sive data generation rate in the simulation experiments, as
depicted in Fig. 5(b), and afterward PDR declines steadily
for a higher rate of data generation. These results prove the
reliability of using Starfish scheduling for real-time applica-
tions in the network.

On the contrary, the average end-to-end packet delivery
delay within the application delay-deadline is decreased with
the progressive rate of data generation, as illustrated in
Fig. 5(c). It occurs because the sink’s mobility significantly
reduces the vicinity-length from source nodes to the mobile
sink. Moreover, the proposed Starfish scheduling performs
better than VPS [36] and LAS [37] strategies, because sink’s
mobility is governed by data arrival rates at rendezvous
nodes, and there is no query requirement for sink’s fresh
location, and finally, forwarding data over pre-constructed
routing backbone in the network.

In the experiments, we also computed the standard devia-
tion of residual energy when network lifetime was exhausted.
The simulation results show a gradual increase of standard
deviation for the higher data generation rates, as illustrated
in Fig. 5(d), because of fluctuating energy expenditure from
the different corners of the network. The proposed Starfish
data scheduling exhibits the lowest standard deviation of
residual energy due to balanced energy consumption over the
Starfish backbone nodes while forwarding data to the mobile
sink. Here, Starfish scheduling finds the optimal path over

the least energy-expensive sojourn locations for each cycle.
Since energy expenditure and standard deviation of residual
energy are increased for higher rates of data generation,
as described earlier, the lifetime of the network is inher-
ently decreased for the increasing rate of data generation,
as depicted in Fig. 5(e). Finally, with the increasing rate of
data generation, it requires more control packets to deliver
sensed data to the mobile sink, thus operational overhead
increases, as shown in Fig. 5(f). In the case of the proposed
data collection scheduling, operational overhead is the lowest
among the studied works because of forwarding data packets
over preformed Starfish routing backbone in the network.

2) Impacts of varying number of obstacles
Obstacles are an integrated part in a practical network sce-
nario, and thus the efficiency of real-time data collection
scheduling in the presence of obstacles should be determined.
This section presents the experimental results, as shown in
Fig. 6, for the increasing number of obstacles from 10-70,
given that obstacles collectively occupied 15 % of a network
600 × 450 m2. In the experiments, the sink speed was fixed
at 6meter/second, and the packet generation rate was fixed
at 3 packets/second.

The experimental results show that average data through-
put within delay-deadline decreases sharply with the in-
creasing number of obstacles, as shown in Fig. 6(a). This
happens because sink mobility for visiting sojourn location
is hampered due to obstacles, increases path length of the
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FIGURE 6: Impacts of varying number of obstacles

mobile sink, requires more hop distance and increases packet
retransmission, etc. These reasons also exhibit decreasing or-
der of packet delivery ratio (PDR) within the delay-deadline,
as depicted in Fig. 6(b). However, in the case of Starfish data
collection schedule, the performances of average throughput
and PDR outperform over VPS [36] and LAS [37] strate-
gies because of faster and continuous data forwarding over
obstacle-aware starfish routing backbone in the network.

On the contrary, Fig. 6(c) illustrates that the average end-
to-end packet delivery delay sharply increases with a growing
number of obstacles. This is mostly due to the increase in the
proximity of the mobile sink with the obstacles, consequently
increasing the path length and end-to-end packet delivery
delay. However, the proposed Starfish scheduling performs
better compared to VPS [36] and LAS [37] strategies because
mobile sink visits sojourn locations based on the correspond-
ing data arrival rate at rendezvous nodes. Moreover, the
mobile sink collects data around the ring-canal and all source
nodes forward their data over pre-determined obstacle-aware
Starfish routing backbone nodes.

Later, we also evaluated the standard deviation of residual
energy among backbone nodes for an increasing number of
obstacles, when the network lifetime was exhausted. The
graphs, as presented in Fig. 6(d), illustrate that the devi-
ation of energy sharply expands, as the number of obsta-
cles increases. Since obstacles are sporadically distributed
in the network and source nodes exhibit fluctuating energy
expenditure due to those obstacles, it expands the standard

deviation of residual energy. For similar reasons, some of the
backbone nodes exhaust earlier, and thus network lifetime
decreases with an increasing number of obstacles, as depicted
in Fig. 6(e).

Finally, with the growing number of obstacles, more con-
trol packets are required to forward data avoiding sporadi-
cally situated obstacles in the network, and thus it results in
increasing operational overhead, as shown in Fig. 6(f).

3) Impacts of varying size of networks
In a practical WSN application, the network performances
and lifetime maximization are not only affected by data
generation rate and a number of obstacles but also on the
area of a network. Therefore, we evaluated the scalability
and efficiency of the proposed Starfish scheduling, varying
the network sizes from 400 × 225 m2 to 900 × 675 m2,
while data generation rate, sink speed, and the number of
obstacles are fixed at 3 packets/second, 6 meter/second,
and 40, respectively. In the case of different sizes of network,
we considered sporadic size of 40 obstacles that collectively
occupied 15 % area of the corresponding size of the network
with specific node density as stated in Subsection V-A.

The graphs, as shown in Fig. 7(a), depict that data through-
put within delay-deadline steadily decreases with the larger
networks for all studied data collection scheduling. This
happens because sink mobility for visiting sojourn locations
is hampered due to obstacles, increasing path-length of the
mobile sink, requiring more hop distance, and increasing
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FIGURE 7: Impacts of varying size of networks

retransmission of packets, etc. These reasons also reduce
event notification as well as the reception probability of data
packets by the mobile sink. In the case of Starfish scheduling,
average data throughput is higher compared to VPS [36]
and LAS [37] strategies because of collecting data over the
optimal ring-canal, single hop reachability from any source
node and continuous data forwarding over obstacle-aware
backbone nodes. For similar reasons, packet delivery ratio
(PDR) decreases, as shown in Fig. 7(b). The performances of
data throughput and PDR prove the suitability and reliability
of the Starfish data collection schedule for larger networks
even though there exist obstacles.

On the contrary, the graphs, as presented in Fig. 7(c),
depict that end-to-end packet delivery delay within the ap-
plication delay-deadline is steadily increased for all studied
data collection scheduling with increasing network sizes. It
is obvious due to the linear increase of hop distance, the
larger size of ring-canal with the presence of obstacles. More-
over, experimental results show that the proposed Starfish
scheduling outperforms VPS [36] and LAS [37] because
of guaranteed single-hop access to at least one backbone
nodes by a source node while forwarding data to the so-
journ locations, collecting data over the ring-canal nodes,
avoiding (re)tracing the mobile sink, etc. End-to-end delay
performance of the proposed scheduling proves its suitability
for real-time applications maintaining delay-deadline.

In the experiments, we computed the standard deviation of
residual energy, when the network lifetime was exhausted.

Fig. 7(d) shows that it increases monotonically because of
fluctuating energy expenditure for increasing size of net-
works. Fluctuating energy expenditure occurs for the exis-
tence of obstacles at random locations throughout different
areas of the network, larger size of the ring-canal, etc. The
proposed Starfish data collection scheduling exhibits the
lowest deviation of energy among other strategies due to
balanced energy consumption of the Starfish backbone nodes
during forwarding data to the mobile sink. Since energy ex-
penditure and standard deviation of residual energy increase,
inherently the network lifetime is decreased for an increasing
rate of data generation, as depicted in Fig. 7(e). Finally,
with the increasing size of networks, it requires more control
packets due to longer hop distance to collect data that results
in increasing operational overhead, as shown in Fig. 7(f).

In a separate experiment, we compared the complexities
of the studied scheduling schemes in NEOS optimization
[48] server (2 Intel Xeon E5-2698 @ 2.3GHZ CPU and
192GB RAM) for selecting optimal set of rendezvous nodes
for each cycle. We find those for both viable path scheduling
(VPS) [36] and landmark-assisted scheduling (LAS) [37] are
O(N3), where N is the number of nodes. In the case of
Starfish data collection schedule, the mobile sink visits ren-
dezvous nodes that are optimally selected over the ring-canal
nodes (Z). According to the MILP formulation, it determines
a set of sojourn locations Mc

n ∈ Rc over the ring-canal nodes,
instead of overall sensor nodes or all backbone nodes. The
constraint in Eq. (7) computes over the power set of the ring
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canal nodes Z, and finds out the most energy-efficient set of
sojourn locations achieving maximum duration. Therefore,
the computational complexity of the Starfish scheduling is
estimated as O(c × |Z| × 2|Z|) which is significantly less
compared to those of VPS [36] and LAS [37].

The graphs in Fig. 8 show the computation time required
for execution of the studied data collection schedule algo-
rithms for increasing size of networks from 300 × 225 to
900 × 675. As VPS and LAS strategies explore all nodes
in the network to find out data collection schedules, their
computation time increase exponentially compared to a linear
graph observed for the Starfish schedule. It is obvious since
the Starfish schedule explores candidate power sets on the
ring canal nodes only. The problem can be grouped as an
NP-complete one [49]. However, the constraints in Eq. (6) -
Eq. (13) of the MILP formulation facilitate us to significantly
reduce the input sets for selecting the optimal number of so-
journ locations, and thus the solution is found in polynomial
time.

The above results and discussions conclude that Starfish
data collection schedule shows its scalability and efficiency
in terms of computational complexity, data throughput, end-
to-end data delivery delay, network lifetime, etc. for real-time
applications (within certain delay-deadline) in an obstructed
network significantly. Moreover, the proposed Starfish sched-
ule is also applicable for an obstacle-free network as well, as
was primarily studied in [29]. However, from the simulation
trace file data, it is observed that when the data generation
rate at a particular node on the ring-canal is superabundant
compared to other nodes, the sojourn location is discrimina-
torily selected for consecutive cycles. This exhibits a quicker
partition of the routing backbone than the average network
lifetime.

VI. CONCLUSION
This work explored the challenges of data collection and
lifetime maximization strategies for real-time applications in
an obstructed sensor network with a mobile sink. For real-
time data collection, we considered Starfish routing backbone

with obstacles, and thereafter, formulated mixed-integer lin-
ear programming to find an optimal set of sojourn locations
on its ring-canal nodes for a round, corresponding sojourn
duration with data collection scheduling so as to maximize
network lifetime. The simulation results, performed in net-
work simulator version-2, clearly indicated that Starfish data
collection scheduling improved network lifetime as high as
11% while reducing end-to-end data delivery delay by at least
40% compared to state-of-the-art-works.

As a planned study in the future, we envision designing
distributed and machine-learning-based algorithms for data
collection schedule by multiple sinks in a large-scale net-
work.
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