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ABSTRACT This paper introduces a novel fast model predictive control (MPC) methodology based on
linear parameter-varying (LPV) systems. The proposed approach can deal with large-scale problems better
than conventional fast MPC methods. First, the equality constraints given by the model equations are not
eliminated to get a condensed quadratic programming (QP) problem, as the model of the LPV system
changes and it will be time-consuming to reformulate the QP problem at each sampling time. Instead,
the proposed approach constructs a sparse QP problem by keeping the equality constraints. Although the
resulting QP problem has a larger dimension than the condensed one, it can be reformulated and solved as
a system of piecewise affine equations given by the Karush–Kuhn–Tucker conditions of optimality. Finally,
the problemwill be solved through a Newton-method and an exact line search in a fast way. The performance
is tested and compared with off-the-shelf QP solvers on the conventional buck dc–dc converter control
problem both in simulations and the experiments on FPGA. The proposed methodology works well for the
controller and is especially faster in comparison with some other conventional algorithms for large prediction
horizons.

INDEX TERMS Buck dc-dc converter, linear parameter varying, model predictive control, non-condensed
quadratic programming problem.

I. INTRODUCTION
Model predictive control (MPC) owes its advantages to
the characteristic that can stabilize linear or nonlinear sys-
tems subject to hard input and state constraints [1]. For the
simpler use of linear systems subject to linear constraints,
the resulting optimal control problem can be reformulated
as a ‘‘condensed’’ quadratic programming (QP) problem by
eliminating the equality constraints reformed by the dynamic
model of the system, and off-the-shelf QP solvers support
the application of MPC for small-scale to medium-scale
processes [2]. Meanwhile, when implementing such MPC
methods to linear parameter varying (LPV) systems, such as
to control nonlinear systems with real-time linearization it is
necessary to reformulate the QP problem at each sampling
time because the model is changing. However, the repeated
multiplication of the coefficient matrices to get the condensed

QP problem [3] may require substantial computation effort
and meet the bottleneck of the methodology. Especially for
high sampling rates and large-scale systems, the computation
time for constructing the QP problem may become a limiting
factor. The present work constructs a sparse non-condensed
QP problem by keeping the equality constraints in the formu-
lation [4] and apply a piecewise smooth Newton algorithm
developed in [5] combined with Cholesky factorization and
exact line search to maintain small computation time [6]
regardless of the increasing dimension of the problem.

Our goal is to adopt MPC and its intrinsic capacity of
handling constraints beyond slow dynamic systems, in par-
ticular to systems with high sampling rates such as power
electronic converters. Experiments on controlling DC-DC
converters by MPC are repeated in [7] showing that online
MPC is possible for fast systems. During the last years many
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good algorithms have been developed for high speed MPC
such as active-set methods [8], interior-point methods [9] and
fast-gradient methods [10] and packages for QP are increas-
ingly becoming the core of solving MPC problems fast
enough to fulfill the real-time requirements. Recently online
optimization provides several novel concepts of solving QP
in a fast way. Reference [11] proposes a sparseMPC structure
and uses the Cholesky factorization so that the Newton-
method can be solved in low flops. And [12] provides the idea
of fast solvers based on the KKT condition. The algorithm of
this paper utilizes these ideas synthetically.

A switching converter system can be stable around the
operating point, however, it may be unstable when the sys-
tem meets parameters varying [13], [14]. In order to take
parameter uncertainty into consideration, the study of how
to set up the converter models is still a significant field
of investigation [15]. This paper presents a linear design
method based on a developed LPV representation of the buck
DC-DC converter [16] in order to achieve robust stability and
performance when model inaccuracies happen.

In recent works, [17]–[19] present a conventional MPC
controller which contains the transition from MPC to con-
densed QP and an off-the-shelf QP solver. Meanwhile [20]
summarizes that the recent literatures on MPC of power con-
vertersmainly concern the predictionmodel, the cost function
and optimization algorithm. These works propose approaches
for better prediction model of the converter, for more appro-
priate cost function selection that can match closely to the
type of the power converter, for better design of the weighting
factor that is rather important in MPC construction. Finally,
about the optimization algorithm issues, computational cost
reduction and long prediction horizon are concerned. To solve
the problem online efficiently in such fast way limits the
algorithms that the MPC strategy should be motivated for
particular applications [21]. In our paper, the focus is cast on
the MPC strategy, which converges fast and can be used for
long prediction horizon so that more kinds of fast systems can
benefit from the algorithm.

The main contribution of this paper includes, (i) A novel
reformulation of MPC as a sparse non-condensed QP prob-
lem. By keeping the equality constraints, the sparse
MPC-structure algorithmworks well especially on LPVmod-
els. (ii) A piecewise Newton-method with exact line-search
approach for solving the sparse non-condensed QP problem.
A brief proof on the convergence of the algorithm is also
provided.

To demonstrate the feasibility and effectiveness of the
proposed design, an LPV-MPC controller is tested in the
PLECS [22] simulation to get to know the characteristics of
the buck DC-DC converter and in close-loop tests which are
based on a FPGA platform with a wind turbine generator.
It achieves good control performance and computes faster
than some other algorithms mentioned before. It shows that
the proposed methodology can be applied to a wide range of
control applications with various constraints of large-scale by
which robustness and fast-tracking are sought.

This paper is organized as follows. In Section II the details
of MPC for constrained linear systems and the reformula-
tion of the MPC problem in non-condensed QP form are
discussed. Also in this section, a regularized piecewise New-
ton method with exact line search is presented to solve the
QP problem. Section III introduces the LPV model of a buck
DC-DC converter. The comparisons are then made between
several state-of-the-art QP solvers and also with the con-
densed formulation of the MPC problem in Section IV.
In addition, the experiments are made on FPGA for testing
the proposed approach. Finally, Section V summarizes the
key results of the paper.

II. MPC ALGORITHM WITH EQUALITY CONSTRAINTS
FOR LPV MODELS
Let the LPV model be obtained by the difference equations
of the time-invariant system under the assumption:

xk+1 = A(k)xk + B(k)uk , (1)

(A(k),B(k)) are the model matrices at the current sampling
time k , A(k) ∈ Rnx×nx and B(k) ∈ Rnx×nu . As it is continuous
when dealing with MPC of the LPV system, it is assumed
that A(k),B(k) remain constant over the prediction horizon
and in the following derivations constant matrices A,B will
replace the symbolsA(k),B(k). k is the prediction step, where
xk ∈ Rnx is the state and uk ∈ Rnu is the control input with a
box-constraints umin ≤ uk ≤ umax, while umin ≤ umax ∈ Rnu .
The target of the optimization is to track the reference set-
point (xref , uref ) while minimizing the cost from the current
state vector x0,

min
N∑
k=1

∥∥xk − xref ∥∥2Q+ N−1∑
k=0

∥∥uk − uref ∥∥2R, (2)

where N is the length of the prediction horizon, Q ∈ Rnx×nx

as well as R ∈ Rnu×nu is the weighting positive diagonal
matrix in the cost function.

In order to keep matrices of the problem sparse and easy to
build up, the sequence

u0, . . . , uN−1, x1, . . . , xN

of predicted states and inputs is introduced, and let u =[
u′0 · · · u

′

N−1

]′ (Here ‘‘′′′ means the transposition of a matrix
instead of the symbol ‘‘T ′′), x =

[
x ′1 · · · x

′
N

]′ and z =[
u′, x ′

]′
∈ Rm,m = Nnu + Nnx . The goal is to find optimal

value for z such that the finite-horizon cost is minimized over
the prediction horizon while satisfying the bound constraints
on uk and to apply u (t) = u0 to control the system. Con-
trarily to most conventional examples [23], a non-condensed
optimal problem formulation is proposed:

min
1
2
z′Hz+ c′z

s.t. zmin ≤ Gz ≤ zmax
Aeqz = beq, (3)
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where H ∈ Rm×m is the block diagonal and the positive-
definite Hessian matrix, G =

[
INnu 0Nnu×Nnx

]
∈ RNnu×m

(Here INnu means the identity matrix of which the number of
the diagonal elements is Nnu), and Aeq ∈ RNnx×m. H and Aeq
are sparse matrices described as follows:

H = 2



R · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · R 0 · · · 0
0 · · · 0 Q · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · Q



Aeq =


−B 0 · · · 0 Inx 0 · · · 0
0 −B · · · 0 −A Inx · · · 0
...

...
. . .

...
...

. . .
. . .

...

0 0 · · · −B 0 · · · −A Inx

.
c ∈ Rm is a vector made up of the reference and the weights
that presents

c = −2
[
(Ruref )′ · · · (Ruref )′ (Qxref )′ · · · (Qxref )′

]′
. (4)

Constraint vectors (zmin, zmax) ∈ RNnu are described by
[umin · · · umin]′ and [umax · · · umax]′ respectively. To make the
variable looking simple, lb and ub are denoted to replace zmin
and zmax respectively. Vector

beq =

A′, 0nx×nx · · · 0nx×nx︸ ︷︷ ︸
N−1


′

· x0 ∈ RNnx .

The KKT condition of optimality, which is also called as
stationary function for the convex QP progress (3) is:

Hz+ c+ G′γ + A′eqλ = 0, (5)

where λ ∈ RNnx deals with the complementarity conditions
but will be eliminated in the same way as z. And γ ∈ RNnu is
denoted as the Lagrange parameter for box-constraints, that
is, the two-side constraint share the same variable through
constructing the piecewise primal-dual condition in the fol-
lowing equations:

lbi = Giz⇒ γi ≤ 0

lbi < Giz < ubi ⇒ γi = 0

Giz = ubi ⇒ γi ≥ 0. (6)

Notice that it is possible to transform the complementarity
conditions (6) into a piecewise affine (PWA) system by using
the mid function in [24] as follows:

Gz− mid(lb, ub;Gz+ γ ) = 0. (7)

Here mid function means the middle value of the three vari-
ables. As lbi ≤ ubi,

mid (lb, ub;Gz+ γ )=


ubi, ubi ≤ Giz+ γi
lbi, Giz+ γi ≤ lbi
Giz+ γi, lbi ≤ Giz+ γi ≤ ubi.

(8)

Next (5) and the equality constraint in (3) will be used
to eliminate z from (7) and get a new mid function as
follows:

8mid (γ )
1
= Dγ + d + mid(lb, ub; γ − Dγ − d) = 0, (9)

where
D = GH−1G′ − GH−1A′eq(AeqH

−1A′eq)
−1AeqH−1G′ and

d = GH−1c−GH−1A′eq(AeqH
−1A′eq)

−1(beq+AeqH−1c).

Here 1
= is a definition symbol to define the mid func-

tion. To implement this algorithm, D and d will be built
in real time at each sampling. And it will take less time
than the reformulation of the dense QP from MPC because
all the matrices to be multiplied are diagonal leading to
a vector-matrix multiplication rather than matrix-matrix
one.

To solve the the piecewise function (9) by using the
Newton-method and line-search, it is necessary to find a
smooth and convex merit function. First to normalize the
piecewise function, []+, meaning the bigger one between the
function in [] and 0, is used as follows:

γi − (Dγ + d)i
< lbi ⇒

[
(Dγ + d + lb)i − γi

]
+

= (Dγ + d + lb)i − γi,
[
γi − (Dγ + d + ub)i

]
+
= 0;

γi − (Dγ + d)i
> ubi ⇒

[
(Dγ + d + lb)i − γi

]
+
= 0,[

γi − (Dγ + d + ub)i
]
+

= γi − (Dγ + d + ub)i;

lbi ≤ γi − (Dγ + d)i ≤ ubi
⇒
[
(Dγ + d + lb)i − γi

]
+
= 0,[

γi − (Dγ + d + ub)i
]
+
= 0; (10)

Substitute (10) into (9) to get a new function:

8mid (γ )
1
= γ + [(Dγ + d + lb)− γ ]+

− [γ − (Dγ + d + ub)]+ = 0. (11)

A merit function 9 is denoted here for the function (11)
and the minimizer of it equals to the solutions of func-
tion (11). As ∇( 12

∥∥[8]+∥∥2) = [8]+, an obvious selection
of the merit function is:

9(γ ) 1=
1
2
γ ′(I − D)γ −

1
2

∥∥[(Dγ + d + lb)− γ ]+∥∥2
−

1
2

∥∥[γ − (Dγ + d + ub)]+
∥∥2 (12)

Thus the gradient for finding the minimizer of (12) is
(I−D)8mid (γ ). However, in this function it is not guaranteed
that the I −D is positive-definite, which means that the merit
function will not always be convex, continuously and differ-
ential and cannot be solved by means of the Newton-method.
However, for any τ ∈ (0, 1

‖D‖ ] the solution is not changed
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if one pre-multiplies8mid (γ ) by the positive definite matrix
I − τD: (I − τD)8τ,mid (γ ) = 0, where

8τ,mid (γ )
1
= γ + [τ (Dγ + d + lb)− γ ]+

− [γ − τ (Dγ + d + ub)]+ = 0. (13)

Obviously, it can be easily inferred that (I − τD)8τ,mid (γ ) is
the gradient of the following quadratic function

9τ (γ )
1
=

1
2
γ ′(I − τD)γ −

1
2

∥∥[τ (Dγ + d + lb)− γ ]+∥∥2
−

1
2

∥∥[γ − τ (Dγ + d + ub)]+∥∥2 (14)

which is continuous, differentiable and convex.
Therefore, the KKT system can be solved by finding the

dual Lagrange parameter γ that minimizes 9τ (γ ), where

8τ,mid (γ )
1
= τ (Dγ + d)

+mid(τ lb, τub; γ − τ (Dγ + d)) = 0 (15)

and then retrieves the primal solution

z = −H−1(c+ G′γ − A′eq(AeqH
−1A′eq)

−1
(AeqH−1c+

beq + AeqH−1G′γ
)
. (16)

In order to determine the Newton direction, the
PWA function (15) is rewritten as,

8τ,mid (γ )

=



τ (Dγ + d)i + τ lbi, γi − τ (Dγ + d)i < τ lbi,
i ∈ (1,m),

τ (Dγ + d)i + τubi, γi − τ (Dγ + d)i > τubi,
i ∈ (1,m),

γi, otherwise

(17)

and equivalently as

8τ,mid (γ )

=



1 · τ (Dγ + d)i + 1 · τ lbi + 0 · τubi + 0 · γi,
γi − τ (Dγ + d)i < τ lbi, i ∈ (1,m),
1 · τ (Dγ + d)i + 0 · τ lbi + 1 · τubi + 0 · γi,
γi − τ (Dγ + d)i > τubi, i ∈ (1,m),
0 · τ (Dγ + d)i + 0 · τ lbi + 0 · τubi + 1 · γi
otherwise.

(18)

Obviously, the three results can be described as one form
by using 0 and 1 to reform the mid-function. Thus the three
functions in (18) can be replaced by m×m diagonal matrices
Eδ1 ,Eδ2 ,Eδ3 ,Eδ4 with the ith diagonal element being equal
to 1 or 0 and (18) will finally be described as

8τ,mid (γ ) = (Eδ1τD+ Eδ4 )γ + τ (Eδ1d + Eδ2 lb+ Eδ3ub).

(19)

The following Algorithm 1 explains the above reformulation
to solve the QP (3).

Algorithm 1 Piecewise Smooth Newton Method With Exact
Line-Search
1: Choose the initial guess γ 0.
2: Set k = 0.
3: If

∥∥8τ,mid (γ k )∥∥ ≤ ε stop.
4: Solve the Newton direction rk through
∇8τ,mid (γ k ) · r = −8τ,mid (γ k ).
5: Compute the step-size tk using exact line-search
tk = argmin

t>0
9(γ k + trk ).

6: Set γ k+1 = γ k + tkrk and k ← k + 1. Go to step 3.

In Step 4, several tricks can be used to reduce the computa-
tion due to the special structure and the simplicity of the ele-
ments coming from the multiplication by diagonal matrices.
First q is denoted to substitute Eδ1d + Eδ2 lb + Eδ3ub. Then
it is obvious to find the diagonal elements among Eδ1 and
Eδ4 are complementary, that is the 1-position in Eδ1 matches
with 0-position in Eδ4 and vice versa. Meanwhile in q it can
also be found that the 0-position is same as Eδ1 . Thus I and
N are chosen as the new mark for the diagonal matrices Eδi
to decompose the Newton function by judging the diagonal
position 1 and 0 respectively. Consequently, (EI τD+EN )r =
−(EI τD + EN )γ − τq is obtained and the dimension of
the Newton direction function is reduced effectively by the
order I and N

rN = −γN (20a)

DII rI = −DIIγI − qI . (20b)

Computing (20b) is the only time-consuming computation
to get

rI = −γI − DII−1qI . (21)

Since D is positive semidefinite, DII is also positive semidef-
inite as a principle submatrix of D. One can use the Cholesky
factorization to gain reduced-order functions for linear func-
tion. Thus (21) will be easily solved corresponding to lower
and upper triangular linear function through the Cholesky
factor [24].
Remark 1: Consider the linear function (21), DII is

decomposed into LL ′ (L is the Cholesky factor) through the
Cholesky factorization. Then solve L ′y = qI for y by forward
substitution and finally solve−γI−L−1y by back substitution
to gain rI in (21). It is easy to compute and can avoid the
singularity problem.

In Step 5, the following line search Algorithm 2 is pro-
posed.
Remark 2: Assume that γ ∈ RNnu is a solution of

8τ,mid (γ ) = 0 and suppose that any ∇8τ,mid (γ ) is
nonsingular

1) For any γ 0 sufficiently close to γ ∗, the sequence
{
γ k
}

generated from Algorithm 1 has a quadratic conver-
gence to γ ∗.

2) As rk is a descent direction, any minimizer of9τ solved
in Algorithm 2 converges to γ ∗.
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Algorithm 2 Exact Line-Search
1: Choose the initial guess of step-size t (mostly start from
t = 1), set i = 1.
2: Given γ0 = γ k , the descent direction rk , 0 < α < 1 and
0 < ζ < 1.
3: Compute γi = γi−1 + trk and
ϕ=∇9τ (t) = 8′τ,mid (γi) r

k .
4: If ‖ϕ‖ ≤ ζ stop.
5: Set t = t − αϕ and i← i+ 1. Go to step 3.

FIGURE 1. Schematic of the buck converter.

As the piecewise function reformed by (13)-(15) is con-
tinuous, differential and smooth, it is sufficient to use the
Newton method to find the optimal solution. Thus the proof
of the convergence in this algorithm follows the tradi-
tion line-search and Newton-method convergence theorems
in [25] and [26].

III. LINEAR PARAMETER VARYING MODEL OF
UNCERTAIN BUCK CONVERTER
The algorithm proposed in Section 2 is applied to the LPV
system of buck converter. Figure 1 shows the schematic of
a buck DC-DC converter in which Vo is the output voltage
that must be kept at a certain reference value and Vg is the
input voltage. Rr presents the converter load, meanwhile C
and L represent capacitance of the capacitor and inductance
of the inductor respectively with equivalent series resistance
Rc and RL . The measurable states are the capacitor volt-
age VC and the inductor current iL . The binary signal ub
shows that the switch turns on and off controlled by a fixed-
frequency PWM (PWM stands for Pulse Width Modulation).
The ratio of the switch-on time in a switching period T is
defined as duty-cycle dc. To develop a state-space model of
the converter, the circuit will be divided into two modes of
operation which are obtained in relation to the switch position
and conduction of the diode. It is assumed that the converter
works in continuous conduction mode (CCM) and that the
inductor current is not saturated.
Mode 1: when ub = 1 which equals to the time zone

(0, dcT ) of each switching period, it is easy to get the
equations

L
diL
dt
= Vg − VC − RL · iL − RC · C ·

dVC
dt

VC + RC · C ·
dVC
dt
= Rr ·

(
iL − C ·

dVC
dt

)
.

(22)

Leading to state-space formulation:[
i̇L(t)
V̇C (t)

]
= Ass

[
iL(t)
VC (t)

]
+

[ 1
L
0

]
Vg. (23)

Here

Ass=

−
1
L
·
Rr · RC + Rr · RL + RL · RC

Rr + RC
−
1
L
·

Rr
Rr + RC

1
C
·

Rr
Rr + RC

1
C
·

1
Rr + RC

,
i̇L(t) =

diL
dt and V̇C (t) =

dVC
dt , similarly hereinafter.

Mode 2: when ub = 0 which equals to the time zone
(dcT ,T ) of each switching period, the equations can also be
set up as follows:

0 = L
diL
dt
+ RL · iL + VC + C · RC ·

dVC
dt

VC + C · RC ·
dVC
dt
= Rr · (iL −

1
C
·
dVC
dt

).
(24)

Leading to the state-space formulation:[
i̇L(t)
V̇C (t)

]
= Ass

[
iL(t)
VC (t)

]
. (25)

In fact, the equivalent series resistances of the capacitor
and inductance are small enough to be neglected. Under
this assumption, the matrices of the state-space functions in
mode 1 (23) and mode 2 (25) can be simplified as follows:

A1 =

 0 −
1
L

1
C

−
1

RrC

, B1 =

[ Vg
L
0

]
(26)

A2 =

 0 −
1
L

1
C
−

1
RrC

, B2 =
[
0
0

]
. (27)

The following expression shows the state-space averaged
model of a PWM converter [27]:

ẋ(t) = Ax(t)+ Buu(t), (28)

where

A =

 0 −
1
L

1
C

−
1

RrC

, Bu =

[ Vg
L
0

]
. (29)

and x (t) =
[
iL (t)
Vc (t)

]
, u(t) means the current duty-cycle dc

as the PWM signal.
The matrices A, Bu in (29) may be uncertain and time

varying. Especially Bu depends on input voltage Vg, which
leads to the LPV model [28] and is described as follows:

ẋ(t) = A(t)x(t)+ Bu(t)u(t), (30)
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where

A(t) =

 0 −
1
L

1
C

−
1

Rr (t)C

, Bu(t) =

[ Vg(t)
L
0

]
. (31)

This LPV model will be used in Section II to design an MPC
controller for the buck DC-DC converter.

IV. NUMERICAL SIMULATIONS AND EXPERIMENTS
CERTIFICATE
Now the performance of the algorithm proposed in Section II
will be tested for the problem described in Section III. As the
tracking target is the output voltage but not the state, the first
thing is to get the working point (xref , uref ) mentioned in (2)
by solving the linear system coming from the model (28){

xref = Axref + Buuref (32a)

yref = Cmxref (32b)

at each sampling time, leading to the linear function[
xref
uref

]
=

[
Inx −B
Cm 0

]−1 [ 0
yref

]
. (33)

The output voltage Vo (see Figure 1)

Vo = Cm

[
iL (t)
VC (t)

]
,Cm =

[
Rr · RC
Rr + RC

Rr
Rr + RC

]
(34)

equals to the output reference yref .
The numerical simulation study is carried out on a per-

sonal computer with the following configuration: Intel Core
i7-2600 3.40GHz CPU, 4.00GB RAM, 64-bit Windows
10 Operating System. The model is implemented in PLECS
and the experiments are based on NI CompactRIO platform
using Xilinx FPGA.

A. NUMERICAL SIMULATIONS
The values of the converter parameters set are shown
in Table 1. The nominal value of the supply voltage is 5 V.
Sampling time Ts = 0.01ms is set to form the discrete

model (1): xk ∈ R2, uk ∈ R, A =
[
0.9672 −0.2992
0.0224 0.9983

]
,Cm =[

0.0269 0.9980
]
. As the experiments are made on a fixed

resistive load, A(t) in (31) is a fixed one while Bu changes
with the sawtooth input voltage at each sampling time. For

MPC, the weights Q =
[
1 0
0 1

]
,R = 800 is a trial in the

cost function. The constraints come from the real limit of the
duty-cycle ranging from 0 to 1. The predictive horizonN is set
to 10.

The professional software PLECS is used to model and
simulate the circuit in Figure 2. Typical power electronics
components such as semiconductors, inductors and capaci-
tors are placed on the circuit diagram and simply connected
by drawing wires [22]. The parameters come from the real
converters shown in Table 1 and the simulations are done
to test whether the closed loop using the MPC controller
proposed in this paper is fit for wind turbine generator.

TABLE 1. Buck DC-DC converter parameters.

FIGURE 2. Control design of buck converter in PLECS.

From [29] and [30], it is known that in CCMmode, when the
MOSFET works in high level which depends on the PWM
signal, the diode will switch-off and when the MOSFET
works in low level, the diode will be on. To model the
converter easier, the two modes will be replaced by a switch
just like the one in Figure 1. However, in Figure 2, there
are some more parameters such as resistances rds and rd
which can be neglected when modelling because their values
are far more smaller than the resistances RL , RC and Rr .
Meanwhile, Rup and Rdown are divider resistances used for
protecting the circuit from high voltage and current. And
these two resistances will not influence the modelling of the
converter as in the digital control Vfb will be transferred to Vo
by Vfb =

Rdown
Rup+Rdown

Vo to compare with Vref .
First before implementing the MPC controller to the real-

time platform, a comparison is made between the PID con-
troller and the MPC controller as DC-DC converter is an
SISO LPV system with variable gain. Figure 3 shows a sim-
ulation between the PID controller and the MPC controller
based on PLECS-Simulink. The output set-point of the Buck
DC-DC is set as 5V and the load is 10�. Figure 4 depicts
that MPC can provide a smaller overshoot and a faster con-
verging time than the PID controller. What is more in the
figure, if the inductor current is imited to [0, 15A], in contrast
toMPC, the PID controller cannot satisfy the state constraints
since the PID controller only works on the input-output
constraints [31].
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FIGURE 3. Simulation comparison between PID and MPC controllers through PLECS Simulation.

FIGURE 4. Simulation curves between PID and MPC controllers. (a) Inductor current of the process using MPC and PID controller. (b) Output voltage of
the process using MPC and PID controller.

Figure 5 shows the simulation of the buck converter work-
ing in closed loop with sawtooth input voltages which is
similar to the real process. The buck DC-DC converter acts
as a second-order asymptotically stable system, although a
ripple wave resists in steady-state which will be demonstrated
in the next experiments. Considering the modelling of the
converter from Section III, regardless the noise from the envi-
ronment, the main disturbance comes from the input voltage
and the load. Figure 5 shows that no matter how the input
voltages change, the closed loop system using the proposed
MPC algorithm can reach a desired output voltage and this
controller will be implemented in real-time platform in the
next section.

B. COMPARISON WITH EXISTING APPROACHES
The numerical simulation comparisons between the algo-
rithm proposed in this paper and the other state-of-art QP
solvers are running on PC: Intel Core i7-2600 3.40GHz CPU,
4.00GB RAM, 64-bit Windows 10 Operating System and
MATLAB R2016a. All the solvers share the same model and
its coefficient parameters containing discrete model param-
eter A, Cm, the weights Q, R, set-point and the constrains in
the last section. Meanwhile the discrete matrix Bu changes
with the sawtooth input voltage at each sampling time and
all the simulations follow the same rhythm when the model
updatesmentioned in Section IV-A. To compare the optimiza-
tion performances of these algorithms, different prediction
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FIGURE 5. Closed loop with a sawtooth input voltage. (a) The whole process executed similar to the real process. (b) The starting curve in the first second
of the process.

horizons have been used to form QP problems with different
scales. Note that t he computational time of both formulating
and solving QP problem is recorded. More precisely, in each
control step, the MPC problem is converted to QP and solved
50 times, and the minimum is recorded. Finally the whole
process is set in 100-control-step and the minimum time at
each step is accumulated.

1) RUNTIME COMPARISON
The solver proposed in Section II is compared with other
state-of-art QP solvers in a LPV-MPC problem of which
the prediction horizons are between 10 and 100 with incre-
ment 10. To avoid the interrupts coming from other systems
the solution will be executed at each sample step 50 times
and the minimum time will be accepted for the particular
simulation time. In Algorithm 1, as in [6] it shows that τ is
chosen based on the examples and after some trials τ= 1

1.01‖D‖
leads to a faster convergence. In addition, α = 0.01 and
ε = ζ = 1e − 9 are the settings of the proposed algorithm.
The QP solvers considered in the comparison are interior-
point, that also involves both primal and dual variables
but has favorable sparsity pattern for MPC problems [11],
ADMM [32] and its OSQP variant [33], the online active-set
solver qpOASES [34], GPAD [35] andGurobi [36]. About the

settings of these algorithm, max-iteration is set to 1000 and
the terminal tolerance is set to 1e− 9.
Figure 6 depicts the non-condensed piecewise smooth

Newton method with exact line search (non-condensed PWA
fast MPC) proposed in this paper keeps in a low runtime
especially in long prediction horizon. The time order here
is mainly based on the CPU scale, thus the time-scale
‘‘seconds’’ does not mean the real time consuming in the
embedded platform but can show the trend of each algo-
rithm’s cost. Several observations based on the results demon-
strate the superiority of the proposed algorithm. Although it
does not perform much better than qpOASES, OSQP, GPAD
and interior, when the prediction horizon increases, the com-
putation time of the other algorithms increases a lot while
the proposed algorithm keeps in a low degree. What is more
all through the figure, the algorithms using sparse structure
performs well when computation dimension increases. Thus
the special dealing with the equality function in the proposed
MPC algorithms makes it much more scalable to the LPV
problem size.

2) ITERATIONS COMPARISON
The prediction horizon will be set from 10 to 30 increased
by 5 and the maximum as well as the minimum itera-
tions of the benchmark solvers are recorded during each
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TABLE 2. The maximum and minimum iterations of the algorithms at different predictive horizons.

FIGURE 6. Runtime with respect to prediction horizon comparison with
existing approaches.

sampling step. Table 2 depicts that the algorithm of this paper
always keeps in a low number as the computation dimension
augments while the others increase in some degree.

C. EXPERIMENTS
Buck DC-DC converter is a typical switch-mode system and
has an LPV model. Although existing control approaches
have been proved effective, such as PID, sliding mode control
and so on, several challenges have not been fully addressed
yet, such as ease of controller design and tuning as well
as robustness to load parameter variants [37]. Moreover,
PID control has its weakness in tuning and satisfying the
state constraints compared with modern advanced control.

FIGURE 7. Software application architecture for NI CompactRIO platform.

Thus, the FPGA-experiments on Buck DC-DC converter are
done on the platform National Instruments (NI) CompactRIO
for verifying the algorithm whether efficient or not. The
unique computational feature of this system is that it con-
tains a real-time processor and an FPGA. Furthermore using
the LABVIEW graphical development environment both
devices are programmable. The CompactRIO platform uses
cRIO-9082 with Xilinx FPGA (1.33 GHz, Dual Intel Core i7
CPU) as controller of which the time base is 40MHz and
the precision reaches 100ppm (‘‘ppm’’ stands for ‘‘parts per
million’’. It is like percent which is really parts per hun-
dred but based on million instead of hundred. Therefore,
100ppm=100/1000000=0.01%), cRIO-9223 as the 16-bit
analog input ranging from −10V to 10V and maximum s
ampling time 1M Samples/s and cRIO-9401 as the digital
output (PWM) that has the feature of 8 channels, update
rate 100ns and signal level 5V TTL (high level is 5V, low
level is 0V). Figure 7 is a software application architecture
of the platform including a windows PC (host, monitoring
and data storage), a real-time program (analog input
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FIGURE 8. Implementing MPC using LABVIEW.

FIGURE 9. Experiment platform system setup.

FIGURE 10. Oscilloscope image of input-output in the circuit. (a) Open loop. (b) Closed loop.

sampling and digital output) running on the processor and an
FPGA program (MPC implementation in IP builder), which
contains several high-level blocks for control and signal
processing that approximate floating-point implementation
using the integer math available [38]. The IP builder (shown
in Figure 8) mentioned before is to implement the MPC
algorithm because it automatically optimizes the high level
algorithm especially the matrix-vector multiplication, arrays
and loops.

Although cRIO can run fast with high sampling frequency,
it is still needed to prepare some divider resistances to satisfy
the limitation of the I/O port. The Agilent DSO-X 3024A
is chosen as the oscilloscope which has 4 channels with
200MHzwidth and themaximum sampling rate 4GSample/s.
To drive the converter, a 600W DC supply Agilent N6705B
and a 500V/30A/750W DC load ITECH IT8813B are used
as the resistance load. Finally a 100W wind generator
NE-100S (which starts at a wind velocity 2m/s and stays
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FIGURE 11. Labview images of input-output voltage. (a) Open loop. (b) Close loop.

stable at 10m/s) with a AC-DC converter is selected as the
input of the system.When it works around 3m/s inside the lab,
the output DC voltage ranging from 7V to 12V. The whole
structure of the platform is depicted in Figure 9.

Both figures in Figure 10 show that the wind turbine
running in low-velocity generates a kind of sawtooth wave
raging from 7V to 12V because the speed of the wind cannot
reach the stable working point. In Figure 10(a) it is shown that
the system changesmuch around a certain output voltagewith
a large overshoot±2.3V taking no account of the ripple wave
both in the input and the output generated by the converter
itself. The upper curve in the figure is the input voltage as
well as the lower one is output voltage. Both amplitudes of
the voltage can be read in the picture (number 1 and 2 means
two channels, the first is the input voltage and the second
is output voltage) and the time scale is 2 seconds per grid.
In Figure 10(b) the overshoot is about ±0.7V and neglecting
the effect of the ripple wave, the output voltage has an average
value of 4.95V within 5% tolerable error. Thus the buck
converter with the MPC controller can reach a desired output
voltage and the overshoot in the process is less than that in the
open loop system. Moreover, the MPC controller generates
little overshoot when the input voltage changes in a sudden
and it gets into the stable state faster than open loop.

As the scope cannot save all the images to describe the
whole process, the LABVIEW host provided by the cRIO
will be used to observe a period of the process instead of
a transient one. Figure 11 presents the sawtooth wave input
and the output with fixed duty-cycle in open loop and MPC
controller in closed loop system respectively. The LABVIEW
host figure 11 records a history data after the system runs
in 15 minutes (we choose only the first minute of the two
states to show and compare) and x-axis of each picture depicts
a period of time with the unit ‘‘minute’’. The system first
works in an open-loop state and the output voltage violates
with some oscillations shown in Figure 11(a). Figure 11(b)
shows after several seconds in the 11th minute of the pro-
cess, the system changes into close-loop state (the switch
between open-loop and close-loop is operated online in the
FPGA-host) and the output voltage converges and stays at a
certain value 5V.

V. CONCLUSION
An effective computational method for linear parameter vary-
ing MPC and its application to buck converters is pro-
posed and successfully tested in numerical simulations and
FPGAplatform experiments in this paper. Themethodmainly
bases on a piecewise smooth Newton method with an exact
line search used to solve a non-condensed QP formulation.
As shown in this paper, this non-condensed MPC problem
can be reformed to a non-condensed QP problem easily with
no matrix-multiplication and most coefficient matrices are
sparse as well as block triangular or diagonal which make
the inverse during the optimization cost cheap. Meanwhile,
the PWA equations for solving the QP problem require a
low number of iterations, resulting in low CPU runtime
when implementing the Newton method with exact line
search because of the convergence properties [39]. More-
over the performance of the methodology shows well not
only in comparison with several other algorithms though
numerical test but also in a professional software simula-
tion. Finally it is worth pointing out that this algorithm is
implemented in the FPGA device to control the low veloc-
ity wind generator in the lab and shows its good response
for the voltage’s sudden break. In future research this algo-
rithm will be tried in some other large-scale systems such
as fluid transmission process [40], [41] which needs to
track the multi-variables, UAV (unmanned aerial vehicle) to
solve the problem composed by pitch angle, altitude, ele-
vator angle with constraints [42] and some other systems
benefitting from the long horizon of MPC such as drivers
with LC filters [43], grid-connected converters [44] and
some other high power converters [45], because of its fast
runtime property in long prediction horizons and the good
performance.
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