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Criteria for nonclassicality in the prepare-and-measure scenario
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Quantum communication networks involving the preparation, sharing, and measurement of quantum states
are ubiquitous in quantum information. Of particular relevance within this context is to understand under which
conditions a given quantum resource can give rise to correlations incompatible with a classical explanation.
Here we consider the so-called prepare-and-measure scenario, in which a quantum or classical message with
bounded dimension is transmitted between two parties. In this scenario we derive criteria witnessing whether a
set of quantum states can lead or not to nonclassical correlations. Based on that, we show that quantum resources
that can only give rise to classical correlations in the simplest prepare-and-measure scenario can have their
nonclassicality witnessed if we increase the number of preparations or measurements.
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I. INTRODUCTION

The incompatibility of quantum predictions with the clas-
sical theory of causality [1,2] is at the core of the foundations
of quantum theory. A paradigmatic example is Bell’s the-
orem [3], showing that measurements on distant entangled
systems cannot be explained by classical models built on
the causal assumptions of locality and measurement indepen-
dence [4,5], generally known as local hidden variable models.
From the causal perspective, Bell’s theorem refers to a simple
causal structure where a source distributes correlations be-
tween two distant parties. Generalizations to causal networks
of growing size and complexity are attracting much attention
lately [6–13]. Despite steady advances both theoretically and
experimentally, most recent results about quantum networks
refer to Bell-like causal structures, that is, sources distributing
correlations between distant noncommunicating parties.

Notwithstanding, communication quantum networks are
ubiquitous in quantum information. In a teleportation pro-
tocol [14], for instance, shared entanglement plus classical
communication allows for the transmission of quantum infor-
mation. In turn, in a dense-coding protocol [15], entanglement
plus quantum communication allows for a more efficient
transmission of classical data. A particularly relevant frame-
work in quantum communication is the so-called prepare-
and-measure (PAM) scenario [16]. In its simplest form there
is a preparation device that produces and sends physical
systems to a measurement device able to perform different
measurements on such systems. The prepare-and-measure
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scenario is at the core of random access codes [17–19], infor-
mational principles to quantum theory [20,21], in modeling
the delayed choice experiment [22–25], and in many differ-
ent types of semi-device-independent quantum information
protocols [31–35]. The PAM scenario is also fundamental
in the device-independent estimation of entropy [26] and
dimension [16,27–30]. Device independence refers here to
the fact that properties of the system can be inferred (for
example, its dimension) just from the observational data
and without the precise knowledge of the preparation and
measurement devices. This is possible because in this sce-
nario one imposes assumptions on the dimension of the
prepared system, introducing further constraints for the pos-
sible correlations.

Within this context a central question is to decide, given
that a certain causal structure is imposed, whether a given
quantum resource can give rise to correlations without a
classical explanation. In the Bell scenario, a paradigmatic
example is the Horodecki criterion [36], testing whether a
given two-qubit quantum state can violate the Clauser-Horne-
Shimony-Holt (CHSH) inequality [37]. Extensions of it to
more general scenarios [38,39] and other Bell-like causal
structures are also known [40,41]. In scenarios involving
communication, for instance in quantum teleportation, it is
known that all entangled states can lead to nonclassical corre-
lations [42]. This result, however, depends on the tomography
of the teleported state, that is, is not device-independent. In
fact, to our knowledge, there is no analog of the Horodecki
criterion [36] to causal structures involving communication,
in particular the prepare-and-measure scenario.

Here, our aim is precisely that: to derive criteria testing
whether a given quantum resource can lead to nonclassical
correlations in the prepare-and-measure scenario. To that aim
we derive a set of necessary and sufficient criteria for the
violation of the inequality describing classical correlations in
the simplest PAM scenario (with three preparations and two

2643-1564/2020/2(4)/043106(13) 043106-1 Published by the American Physical Society

https://orcid.org/0000-0002-4254-5733
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043106&domain=pdf&date_stamp=2020-10-20
https://doi.org/10.1103/PhysRevResearch.2.043106
https://creativecommons.org/licenses/by/4.0/


DAVIDE PODERINI et al. PHYSICAL REVIEW RESEARCH 2, 043106 (2020)

FIG. 1. (a) Black-box representation of the prepare-and-measure
scenario. (b) DAG representation of the classical causal structure
assuming that the devices might be correlated via � variable (or
via a shared quantum state in a quantum description). The variable
M stands for the prepared state and in the quantum case would be
represented by a quantum state ρx .

possible measurements) when the dimension of the prepara-
tion is bounded [16]. This inequality belongs to a broader class
of inequalities bounding the classically attainable correlations
in the case of fixed dimension of the prepared system, which
were presented in [16] as classical dimension witnesses.

It is the analog in the PAM scenario of what the Horodecki
criterion [36] is for the Bell case. Further, we employ these cri-
teria to show a few activation-like results. Namely, resources
that can only lead to classical behavior in the simplest PAM
scenario can have their nonclassicality revealed by increasing
the number of preparations or measurements of the devices.
We also analyze the possibility of activation in communica-
tion networks having the PAM causal structure as a building
block.

The paper is organized as follows. In Sec. II we describe
in detail the PAM scenario, its underlying causal structure,
and classical as well as quantum representations. In Sec. III
we derive the main result of the paper, a set of criteria testing
whether a given quantum resource can lead to nonclassicality.
It applies to two situations: first, the case where qubit states
are prepared but only classical correlations are allowed be-
tween the preparation and measurement devices; second, the
case where the prepared states are classical but the devices
can share quantum correlations. In Sec. IV we present the
activation-like results described above. In Sec. V we analyze
simple communication networks built from the standard PAM
scenario. In Sec. VI we discuss our results and point out fu-
ture directions. Finally, in the Appendix we provide technical
details underlying our results.

II. THE PREPARE-AND-MEASURE SCENARIO

The PAM scenario is composed of a preparation and a
measurement device (see Fig. 1). The preparation device takes
inputs described by a random variable X and depending on
these inputs prepares different physical systems. Upon receiv-
ing the prepared physical systems, the measurement device
also takes inputs described by a random variable Y and de-
pending on these inputs measure different observables and
obtain a measurement outcome described by a random vari-
able B.

In a classical description, the physical systems being pre-
pared can be described by a random variable M, though

this variable is not empirically observable, just the mea-
surement results B = b obtained by measurements over it.
Generally, the observable data in a PAM experiment are then
described by the probability distribution p(X = x,Y = y, B =
b) = p(x, y, b). Since X and Y are external to the devices
and in control of the experimenter, typically the conditional
probability p(b|xy) is considered. It is implicit in this descrip-
tion that the input X is not fed directly into the measurement
device; that is, all the information the measurement device has
about X is mediated by M. Furthermore, since the choice of
which observable to measure is done after the system has been
prepared, M cannot depend on the variable Y . Such causal as-
sumption can be graphically represented by a directed acyclic
graph (DAG) as shown in Fig. 1(b). Thus, the observable
distribution can be decomposed as

p(b|x, y) =
∑

m

p(b|m, y)p(m|x). (1)

Notice that unless we bound the dimension of M (the number
of possible values it can assume) to be strictly smaller than
the cardinality of X , the problem becomes trivial since any
distribution p(b|x, y) can be generated by such causal model.
Thus, the dimension of the physical system being prepared is
typically bounded (see [34,35,43] for alternative constraints
not bounding the dimension of the prepared states).

In a classical description, without loss of generality, any
randomness present in the probabilities can be absorbed into
latent/hidden variables [1]. Assuming that the preparation
and measurement devices are independent (that is, share no
correlations), this implies that

p(b|x, y) =
∑
μ,ν,m

p(b|m, y, ν)p(m|x, μ)p(μ)p(ν). (2)

Even though in most situations it is reasonable to assume
the independence of the devices, this independence leads a
nonlinear constraint p(μ, ν) = p(μ)p(ν) implying that the
set of distributions p(b|x, y) compatible with such model is
nonconvex and difficult to be characterized apart from some
particular instances [27]. Because of that, in most cases it is
assumed that the preparation and measurement devices might
be correlated [16], implying that

p(b|x, y) =
∑
λ,m

p(b|m, y, λ)p(m|x, λ)p(λ). (3)

We now turn our attention to a quantum description of
the PAM scenario. Assuming uncorrelated preparation and
measurement devices, upon taking input X = x the prepara-
tion device prepares quantum systems described by density
matrix ρx. In turn, the measurement device is described by
a collection of measurement operators My

b . Applying Born’s
rule, the quantum probability in the PAM scenario is then
given by

p(b|x, y) = Tr
(
ρxMy

b

)
. (4)

In the case where the devices might be correlated, other
quantum descriptions become possible [18]. For instance, the
correlations between the devices can be quantum (a shared
quantum state) but the states being prepared are classical. In
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this case, the observed probability distribution is given by

p(b|x, y) =
∑

a

Tr
[(

Mx
a ⊗ My,m(a)

b

)
ρAB

]
. (5)

That is, the preparation and measurement devices share a
joint quantum state; the preparation device measures its share
obtaining an outcome a and prepares a random variable m(a)
that depends on such outcome. Then, the measurement device
measures its part of the shared state in a basis that depends not
only on its own input y but also on the prepared random vari-
able m(a). Finally, one can also consider the case where both
the shared correlations and the prepared states are quantum,
as for instance in the dense-coding protocol [15], but we will
not consider this case here.

Let us now consider the simplest nontrivial PAM scenario
(see Fig. 1), where we have 3 preparations (x = 1, 2, 3), two
possible dichotomic measurements measurements (y = 1, 2
and b = 0, 1), and where the prepared states are assumed to be
two-dimensional (m = 0, 1, that is, it can be considered a bit).
Any correlation compatible with the classical descriptions (2)
or (3) respects the inequality [16]

S = E11 + E12 + E21 − E22 − E31 � 3, (6)

where Exy = p(0|xy) − p(1|xy) is the expectation value, and
p(b|xy) represent the probability of having an outcome b with
settings x and y. Because of the restriction in the dimension of
the prepared states, this inequality is refereed as a dimension
witness (DW) inequality.

Under the same dimension constraints, quantum correla-
tions violate the S inequality, thus showing the incompatibility
of the classical and quantum descriptions. In the quantum case
described by (4), considering that the prepared systems are
qubits, the maximum quantum violation is given by S = 1 +
2
√

2 ≈ 3.82. This is the same maximum violation considering
that the prepared states are classical but that the devices share
joint entangled states [see (5)].

Next, we will derive a necessary and sufficient criterion
for the violation of the inequality (6) by quantum resources
and later use this criterion to show the activation-like results
by increasing the number of preparations or measurements
in the devices. Our criterion can be seen as the analog for
the PAM scenario of the Horodecki criterion [36] showing
the requirements on the entangled state for the violation of
the CHSH inequality in a standard bipartite Bell scenario.

III. CRITERIA FOR THE QUANTUM VIOLATION
OF THE DW INEQUALITY

Our aim here is to derive a necessary and sufficient crite-
rion for nonclassicality in the simplest possible PAM scenario,
that is, with three possible preparations and two measure-
ments. This scenario is fully described by the inequality (6)
and its 24 symmetries, corresponding to relabeling of prepa-
ration and measurement inputs as well the relabeling of
measurement outputs.

As mentioned above, we will consider here two possible
quantum realizations of the prepare-and-measure scenario: the
first in which the prepared systems are quantum states and the
second where such systems are classical random variables but

quantum correlations are allowed between the preparation and
measurement devices.

A. Preparation device produces quantum states

Since ρx is assumed to be 2-dimensional, we can
parametrize the quantum states using the Bloch sphere rep-
resentation for a single qubit,

ρx = 1
2 (1 + rx · σ ), (7)

where σ = (σx, σy, σz ) is the vector with components given by
the Pauli matrices.

General two-outcome positive-operator-valued measures
(POVMs) are described by operators given by

Bb
y = λb

(
1 + qb

y · σ
)
, (8)

where b ∈ {0, 1}, with λ0 + λ1 = 1 and λ0q0 + λ1q1 = 0.
However, without loss of generality, since we are interested
in the maximum violation of the dimension witness (6) which
is linear, we can restrict ourselves to extremal POVMs, which
in the case of qubits and two outcomes are simply given by
projective measurements

Bb
y = 1

2 (1 ± qy · σ), (9)

with ‖qy‖ = 1. In terms of the Bloch vectors rx and qy, the
probability (4) becomes

p(b|x, y) = Tr
(
ρxBb

y

)
= 1

4 Tr[1(1 + rx · qy) + rx · σ + qy · σ ± irx × qy]

= 1
2 (1 ± rx · qy). (10)

Substituting this expression in the correlators Exy we obtain

Exy = Tr
(
ρxB0

y

) − Tr
(
ρxB1

y

) = rx · qy. (11)

Then, inequality (6) becomes

S = q1 · (r1 + r2 − r3) + q2 · (r1 − r2) � 3. (12)

Clearly, the maximum for this expression is obtained if we
choose q1 and q2 as representing projective measurements
with the corresponding vectors on the Bloch sphere parallel
to the directions of r1 + r2 − r3 and r1 − r2, respectively.

Notice that so far we have considered only one of the 24
symmetries of inequality (6). Relabeling of the measurement
inputs or outputs does not change the reasoning presented
above, so only the relabeling of the preparation inputs has
to be considered. So a given set of states {ρ1, ρ2, ρ3} cannot
violate any of the symmetries of inequality (6) if and only if
all the following constraints are fulfilled:

‖r1 + r2 − r3‖ + ‖r1 − r2‖ � 3,

‖r1 + r3 − r2‖ + ‖r1 − r3‖ � 3,

‖r3 + r2 − r1‖ + ‖r3 − r2‖ � 3,

(13)

where we have considered all permutations of r1, r2, r3.
If we limit ourselves to pure states, then we can express the

sum and difference of r1, r2, and r3 as

r1 + r2 = 2u1 cos θ1, r1 − r2 = 2u2 sin θ1,

r2 + r3 = 2v1 cos θ2, r2 − r3 = 2v2 sin θ2, (14)
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FIG. 2. Plot showing the condition (15). The plot shows the
values of θ1 and θ2 for which the corresponding states cannot violate
the inequality (6). In particular, states belonging to the area outside
the dotted, dashed, dash-dotted, and solid lines cannot violate (6) for
θ3 equal to π/2, 3π/8, π/4, and π/8, respectively.

r1 + r3 = 2w1 cos θ3, r1 − r3 = 2w2 sin θ3,

where (u1, u2), (v1, v2), and (w1,w2) are couples of or-
thonormal vectors. Notice that the angles 2θ1, 2θ2, and
2θ3 represent the angles between the couple vectors
(r1, r2), (r2, r3), and (r1, r3), respectively [this can be easily
shown by squaring the first equation for each row in (14)
obtaining r1 · r2 = cos 2θ1, r2 · r3 = cos 2θ2, and r1 · r3 =
cos 2θ3]. Squaring inequalities (13) and using equations (14),
the above conditions can be rewritten as

2 cos2 θ1 − (cos 2θ2 + cos 2θ3)/2 + 3 sin θ1 � 3,

2 cos2 θ2 − (cos 2θ1 + cos 2θ3)/2 + 3 sin θ2 � 3,

2 cos2 θ3 − (cos 2θ1 + cos 2θ2)/2 + 3 sin θ3 � 3.

(15)

To illustrate, the region of violating states for different values
of θ1, θ2, and θ3 is shown in Fig. 2.

B. Prepared states are classical and shared correlations
are quantum

In this case, the preparation and measurement devices
share a quantum state ρAB giving rise to correlations according
to (5). As in the Horodecki criterion [36], we limit ourselves to
2-qubit bipartite quantum states that can be can parametrized
as

ρAB = 1

4

3∑
i, j=0

wi jσi ⊗ σ j, (16)

where σ0 = 1 is the identity operator and σi for i = 1, 2, 3
the Pauli matrices. In order to represent a density matrix,
wi j has to satisfy some additional properties. Imposing the
unitary trace condition gives us w00 = 1 and from Hermiticity

we have that the elements wi j have to be real. The condition
for satisfying positivity is more involved, and it is described
in [44].

We consider measurement operators Ax and Bym, for the
preparation and measurement devices, respectively, given by

Aa
x = 1

2

(
1 ± qA

x · σ
)
, (17)

Bb
ym = 1

2

(
1 ± qB

ym · σ
)
. (18)

Defining the label m as m = (−1)a, the expectation values
Exy appearing in the inequality (6) can be written as

Exy = 1

2

1∑
m=−1

3∑
j=1

[
w0 j + m

3∑
i=1

wi j
(
qA

x

)i

](
qB

ym

) j
. (19)

Substituting this in (6) we obtain

S = 1
2

[(
qA

1 + qA
2 − qA

3

)
T

(
qB

1+ − qB
1−

)
+ (

qA
1 − qA

2

)
T

(
qB

2+ − qB
2−

) + (
qB

1+ + qB
1−

) · s
]
, (20)

where T represents the 3 × 3 matrix with elements wi j

for i, j ∈ {1, 2, 3}, and the vector s is defined as s =
(w01,w02,w03).

1. The s = 0 case

To simplify the problem we first focus on the case where
s = (0, 0, 0). This corresponds to the case where our 2-qubit
state appears as completely mixed if we trace out one the
parties, as for instance, in a maximally entangled state. In
this case the last term in S [as described by (20)] is zero,
and it is clear that the maximum in qB

ym is reached when the
combinations qB

y+ − qB
y− are parallel to (qA

1 + qA
2 − qA

3 )T and
(qA

1 − qA
2 )T for y = 1 and y = 2, respectively. Moreover we

can maximize on qA
3 choosing it to be parallel to qA

1 + qA
2 .

Inequality (6) can then be expressed as

S = α
∥∥T

(
qA

1 + qA
2

)∥∥ + ∥∥T
(
qA

1 − qA
2

)∥∥ � 3, (21)

where α = 1 + 1/‖qA
1 + qA

2 ‖. Again, without loss of gen-
erality, we can restrict ourselves to the case of projective
measurements, that is, ‖qA

1‖ = ‖qA
2 ‖ = 1. As in the previous

section we express the sum and difference of the vectors qA
1

and qA
2 as (qA

1 + qA
2 ) = 2u1 cos θ and (qA

1 − qA
2 ) = 2u2 sin θ ,

where u1, u2 are two arbitrary orthonormal vectors. In partic-
ular, to maximize S, we choose them to be in the direction of
the eigenvectors, corresponding to the two largest eigenval-
ues λ1, λ2 of the symmetric matrix U = T �T , with λ1 � λ2.
Maximizing the resulting expression on θ gives rise to (see
Appendix for an alternative derivation)

S = 2
√

λ1 + λ2 +
√

λ1 � 3. (22)

If the matrix Ti j describing the 2-qubit state satisfies this
inequality, then such state cannot violate the dimensional wit-
ness (6).

It is worth noting that this criterion is similar to the
Horodecki criterion [36]

M(ρλ) = λ1 + λ2 � 1, (23)

for the CHSH inequality [37], however, less restrictive. In-
deed, if we plot the region of violation of the CHSH and the
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FIG. 3. Plot of the region described by the criteria (22) and (31)
in the space of the eigenvalues λ1, λ2 of U = T †T where T is the
matrix describing a 2-qubit state. The green area represents the
region fulfilling the Horodecki criterion [see Eq. (23)] for the Bell
scenario [36].

PAM inequalities as a function of λ1 and λ2, we see that the
former is always included in the latter (see Fig. 3).

2. The s �= 0 case

We start rewriting (20) as

S = 1
2

[
(cT + s)qB

1+ − (cT − s)qB
1− + dT

(
qB

2+ − qB
2−

)]
,

(24)
where c = qA

1 + qA
2 − qA

3 and d = qA
1 − qA

2 . As before, we
maximize on the vectors qB

1±, qB
2± obtaining

S = 1
2 (‖cT + s‖ + ‖cT − s‖) + ‖dT ‖. (25)

Instead of maximizing on c and d directly, we can find
an upper and lower bound for this expression by maximizing
or minimizing on the vector s. Equivalently, we maximize or
minimize the quantity

‖r + s‖ + ‖r − s‖
=

√
r2 + s2 + 2rs cos θ +

√
r2 + s2 − 2rs cos θ, (26)

for two vectors in R3 (with r = cT ). We have θ = 0 for the
minimum and θ = π/2 for the maximum, corresponding to
the values 2r and 2

√
r2 + s2, respectively. Hence the min-

imum corresponds to the case s = 0, already solved in the
previous section, while for the maximum, we get

S = 2 sin θ‖u2T ‖ +
√

(2 cos θ + 1)2‖u1T ‖2 + s2, (27)

where (r1 + r2) = 2u1 cos θ and (r1 − r2) = 2u2 cos θ , with
u1, u2 being two arbitrary orthonormal vectors. Calling λ1, λ2

the absolute value of the two largest eigenvalues of the sym-
metric matrix U = T �T , with λ1 � λ2, and maximizing also

on the norm of s, we obtain

S � 2 sin θ
√

λ2 +
√

(2 cos θ + 1)2λ1 + 1. (28)

Deriving this expression in θ we obtain the condition

tan2 θ = λ2

λ1

(2 cos θ + 1)2λ1 + 1

(2 cos θ + 1)2λ1
, (29)

which leads to the following quartic equation in x = cos θ ,

x4 + x3 − x2(b − 1/4) − ax − a/4 = 0, (30)

where a = λ1/(λ1 + λ2) and b = λ2/4λ1(λ1 + λ2) − a. This
can be solved (either numerically or analytically) for given
values of λ1, λ2. Calling x̄ the solution that maximizes S, we
obtain the condition

S � Smax(λ1, λ2) = 2
√

(1 − x̄2)λ2 +
√

(2x̄ + 1)2λ1 + 1.

(31)
Using this condition we can exclude that a state can vi-

olate the inequality for the PAM scenario for any s if we
have Smax(λ1, λ2) � 3. In Fig. 3 the region of violation for
this criterion is illustrated and compared to the Horodecki
criterion [36].

IV. NONCLASSICALITY ACTIVATION IN THE
PREPARE-AND-MEASURE SCENARIO

We will consider here two kinds of activation results in
the PAM scenario: first, considering that the preparation and
measurement devices share no quantum correlations but that
the prepared states are quantum (see Sec. III A); second, con-
sidering shared quantum states between the preparation and
measurement devices but assuming that the prepared states
are classical (see Sec. III B). Considering the first scenario,
we have derived a necessary and sufficient condition for a set
of three prepared states to be able to display nonclassicality
in the simplest scenario where two possible measurements are
performed. Similarly, in the second scenario we also have a
necessary and sufficient criterion showing whether a given
shared quantum state can lead to nonclassical correlations in
the simplest PAM scenario.

Using these criteria we will show that states that can only
display classical correlations in the simplest scenario can have
their nonclassicality activated when (a) we increase the num-
ber of possible measurements or (b) we increase the number
of prepared states.

A. Activation by increasing the number of measurements

We will focus here on the PAM scenario with three prepa-
rations and three measurements [see Fig. 4(a)]. To that aim,
as explained in the Appendix, we have obtained the full de-
scription of this scenario in terms of linear inequalities. To
our aim, we consider the inequality valid for the classical case
(considering that the message is a bit and classical correlations
between the devices) given by

S1 = E11 + E12 − E22 + E23 − E31 − E33 � 4. (32)

The activation results we observe in this scenario and
described below are conceptually similar to what has been
obtained in the context of a Bell scenario. In [45] it has
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FIG. 4. Black-box representation of the prepare-and-measure
scenario with (a) three preparations and three measurements and
(b) four preparations and two measurements. See Fig. 1(b) for the
corresponding causal structure.

been shown that quantum states that are local in the simplest
Bell scenario (two parties with two inputs and outputs), and
therefore do not violate the Horodecki criterion [36] for the
CHSH inequality [37], can violate a new inequality when one
extra measurement input is considered.

1. Activating the nonclassicality of a set of qubit states

The goal is to consider a set of three prepared qubit
states that cannot violate the necessary and sufficient criteria
Eq. (13) when only two measurements are performed but do
so when three measurements are performed. By brute-force
optimization we have searched for a set of three states that
violate inequality (32) while not violating the criteria Eq. (13).
The measurement bases are given by

|ψy〉 = cos θy|0〉 + eiφy sin(θy)|1〉, (33)

such that My
+ = |ψy〉〈ψy| and My

− = 1 − |ψy〉〈ψy|. The quan-
tum states are parametrized as ρx = 1

2 (1 + rx · σ ). We opti-
mized over all θy, φy, and rx and we found a set of parameters
that satisfies the criterion Eq. (13) and violates the inequal-
ity Eq. (32) with S1 = 4.17691. The states and measurement
basis achieving that are given by

|ψ1〉 = cos
π

6
|0〉 + sin

π

6
|1〉,

|ψ2〉 = |0〉,
|ψ3〉 = cos

π

3
|0〉 + sin

π

3
|1〉, (34)

ρ1 = 1

2
[1 + 0.40194σx + 0.696151σz],

ρ2 = 1

2
[1 + 0.40194σx − 0.696151σz],

ρ3 = 1

2
[1 + 0.80388σx]. (35)

That is, θ1 = π/6, θ2 = 0, θ3 = π/3, φ1 = φ2 = φ3 = 0, r1 =
ax̂ + bẑ, r2 = ax̂ − bẑ, r3 = 2ax̂, with a = 0.401824 and b =
0.696151. Notice that the prepared states are mixed. When

restricting to preparations that are pure quantum states, we
could not find the same sort of activation results.

2. Activating the nonclassicality of an entangled quantum state

A similar result holds if we consider the cases of classical
message and a quantum shared state between the preparation
and measurement (called Alice and Bob) devices. In this case,
we want to find a violation of (32) while enforcing that the
criterion (31) is respected. Bob’s measurement will depend
on Alice’s output (a classical message). The shared state
ρAB has the general form given by ρAB = 1

4

∑3
i j=0 wi jσi ⊗ σ j

with measurements given by Aa
x = 1

2 [1 + (−1)aqA
x · σ] and by

Bb
x,a = 1

2 [1 + (−1)bqB
x,a · σ]. By numerical optimization we

could violate inequality (32) up to S1 = 4.1755, using the state

ρAB = 1
2 [1 ⊗ 1 − w11σx ⊗ σx − w22σy ⊗ σy

+w33σz ⊗ σz], (36)

where w11 = 0.801085, w22 = −0.749342, and w33 =
0.829312, and measurements given by

Aa
0 = 1

2 [1 − (−1)a(δ1σx + δ2σz )], (37)

Aa
1 = 1

2 [1 + (−1)a(δ3σx − δ4σz )], (38)

Aa
2 = 1

2 [1 + (−1)a(δ5σx + δ6σz )], (39)

Bb
0,0 = 1

2 [1 − (−1)b(γ1σx + γ2σz )], (40)

Bb
0,1 = 1

2 [1 + (−1)b(γ1σx − γ2σz )], (41)

Bb
1,0 = 1

2 [1 − (−1)b(γ3σx − γ4σz )], (42)

Bb
1,1 = 1

2 [1 + (−1)b(γ3σx − γ4σz )], (43)

Bb
2,0 = 1

2 [1 + (−1)b(γ5σx − γ6σz )], (44)

Bb
2,1 = 1

2 [1 − (−1)b(γ5σx − γ6σz )], (45)

where δ1 = 0.896959, δ2 = 0.433825, δ3 = 0.837424,
δ4 = 0.533438, δ5 = 0.0595357, δ6 = 0.967263, γ1 =
0.550518, γ2 = 0.834823, γ3 = 0.998237, γ4 = 0.0593534,
γ5 = 0.447719, and γ6 = 0.894174.

B. Activation by increasing the number of preparations

Here we consider a different kind of activation. We keep
the number of measurements fixed but increase the number of
preparations to four [see Fig. 4(b)]. To that aim, as described
in detail in the Appendix, we have fully characterized the
inequalities for this scenario. To find activation it is sufficient
to consider the inequality

S2 = E11 − E12 − E21 + E22

− E31 − E32 + E41 + E42 � 4. (46)

1. Activating the nonclassicality of a set of qubit states

Activation in this scenario means that any three of the
four states are classical [that is, do not violate the criterion
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Eq. (13)] but can have the nonclassicality activated if all four
states are considered altogether.

As before we consider measurements parametrized by (33)
and generic prepared qubit state of the form ρx = 1

2 (1 + rx ·
σ ). By performing a brute-force optimization over θy, φy, and
rx we found a set of four states such that any three of them
satisfy the criteria (13) but violate inequality (46) up to S2 =
4.64756. The states and measurement basis are given by

|ψ1〉 = |1〉,
|ψ2〉 = cos

π

4
|0〉 + sin

π

4
|1〉, (47)

ρ1 = 1

2
[1 − 0.580945(σx + σz )],

ρ2 = 1

2
[1 + 0.580945(σx + σz )],

ρ3 = 1

2
[1 − 0.580945(σx − σz )], (48)

ρ4 = 1

2
[1 + 0.580945(σx − σz )].

These correspond to θ1 = π/2, θ2 = π/4, φ1 = 0, φ2 = 2π ,
r1 = −a(x̂ + ẑ), r2 = a(x̂ + ẑ), r3 = a(−x̂ + ẑ), r4 = a(x̂ −
ẑ), with a = 0.580945. Notice that the prepared states are not
pure. Imposing that the prepared states are pure we obtain a
smaller violation of S = 4.49, with measurement and states
given by

|ψ1〉 = |1〉,
|ψ2〉 = cos

π

4
|0〉 + sin

π

4
|1〉, (49)

ρ1 = 1

2
[1 − 0.561325(σx + σz ) − 0.608135σy],

ρ2 = 1

2
[1 + 0.561325(σx + σz ) − 0.608135σy],

ρ3 = 1

2
[1 − 0.561325(σx − σz ) − 0.608135σy], (50)

ρ4 = 1

2
[1 + 0.561325(σx − σz ) − 0.608135σy].

Differently from the scenario with an increased number of
measurements discussed before, there is no analog of this kind
of activation in a Bell scenario, since in the Bell case there is
a single preparation. The closest analog we can identify in
this case regards the concept of joint measurability and the
fact that it is not transitive, that is, subsets of a given set of
operators that are jointly measurable, but this does not imply
full joint measurability (see [46], for instance). In our case,
any subset of three prepared states is classical but the four
altogether are not.

2. Activating the nonclassicality of an entangled quantum state

We also could find activation in the scenario given by
Fig. 1(b) with a classical message and a quantum shared
state between preparation and measurement (called Alice and
Bob) devices. Here, we want to find a violation of (46) while
enforcing that the criterion (31) is respected. By numerical
optimization we found a violation of inequality (46) up to

FIG. 5. (a) Causal structure for the paradigmatic bipartite Bell
scenario. It can be understood as a preparation device that always
prepares the same state that is then sent to two measurement devices
(one for Alice, another for Bob). (b) The causal structure underlying
the entanglement swapping experiment. Notice that if either Alice or
Charlie is traced out, we recover the usual bipartite Bell scenario.

S2 = 4.64756. In our optimization the shared state ρAB be-
tween Alice and Bob has the general form given by ρAB =
1
4

∑3
i j=0 wi jσi ⊗ σ j and is given by

ρAB = 1
2 [1 ⊗ 1 − w1(σx ⊗ σx + σz ⊗ σz ) − w2σy ⊗ σy],

(51)

with w11 = w33 = 0.929299 and w22 = 0.866692. The mea-
surements are written as Aa

x = 1
2 [1 + (−1)aqA

x · σ] and Bb
x,a =

1
2 [1 + (−1)bqB

x,a · σ] and are given by

Aa
0 = 1

2 [1 + (−1)a(δ1σx + δ2σz )], (52)

Aa
1 = 1

2 [1 − (−1)a(δ1σx + δ2σz )], (53)

Aa
2 = 1

2 [1 + (−1)a(δ2σx − δ1σz )], (54)

Aa
3 = 1

2 [1 − (−1)a(δ2σx − δ1σz )], (55)

Bb
0,0 = 1

2 [1 − (−1)b(γ1σx + γ2σz )], (56)

Bb
0,1 = 1

2 [1 + (−1)b(γ1σx + γ2σz )], (57)

Bb
1,0 = 1

2 [1 + (−1)b(γ2σx − γ1σz )], (58)

Bb
1,1 = 1

2 [1 − (−1)b(γ2σx − γ1σz )], (59)

where δ1 = 0.881693, δ2 = 0.0650085, γ1 = 0.653198, and
γ2 = 0.757187.

V. BUILDING BLOCKS FOR NETWORKS OF GROWING
SIZE AND COMPLEXITY

In the context of Bell nonlocality it is known that entan-
gled states that are local in the standard Bell causal structure
[see Fig. 5(a)] can have their nonlocality activated when dis-
tributed into a network. For instance, a state that does not
violate the CHSH inequality can do so when copies of it
are distributed in an entanglement swapping network [47–49]
[see Fig. 5(b)]. Considering an increasing number of copies
and networks of growing size, even stronger activation results
become possible. For instance, in [50] it has been shown that a
local entangled state [that is, not violating any Bell inequality
in the bipartite network of Fig. 5(a)] becomes nonlocal when
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FIG. 6. (a) A black-box representation of a communication net-
work with two preparation devices and a central measurement device
(possibly measuring the incoming physical systems in a joint basis).
(b) The DAG representation of the associated (classical) causal struc-
ture. Variables Mx and Mz stand for the prepared states that in the
quantum case would be represented by preparing states ρx and ρz.
The variable � represents the possible shared correlations between
the devices and in a quantum description would be represented by a
shared (possibly) entangled quantum state. (c) The DAG representa-
tion of the associated (classical) causal structure where there are two
independent sources of correlations between the measurement and
preparation devices.

many copies of it are distributed in a star-shaped network. As
can be seen in Fig. 5(b), the entanglement swapping network
can be seen as the combination of two standard bipartite Bell
networks. In other terms, the Bell network can be seen as
a building block to construct networks of growing size and
complexity, on which the nonclassical nature of the states can
be activated. In the following we will point out that the PAM
causal structure can also be seen as a fundamental building
block and investigate whether it can lead to activation results
similar to the ones described above for Bell nonlocality.

A. Two preparation devices and one measurement device

We start by considering a communication quantum net-
work, depicted in Fig. 6 and composed of two preparation
devices and one measurement device. Assuming the devices
might share correlations [see Fig. 6(b)], a classical description
of it implies that the observed distribution p(b|x, y, z) of such
experiment can be decomposed as

p(b|x, y, z) =
∑

λ,m1,m2

p(m1|x, λ)p(m2|z, λ)

× p(b|m1, m2, y, λ)p(λ). (60)

Clearly, if one of the preparation devices is traced out, we
recover the standard prepare-and-measure scenario (Fig. 1),
thus described by marginal distributions p(b|x, y) or p(b|y, z).
Ideally, we would like to show that such scenario allows for
activation of quantum resources, that is, resources that indi-
vidually can only generate classical correlations [as described
by the criterion (13) or (31)] but when distributed into a

network become incompatible with the classical descrip-
tion (60). From the probability distribution perspective, this
means that p(b|x, y) and p(b|y, z) have a classical decomposi-
tion but not p(b|x, y, z).

To find activation, we have to employ quantum resources
not violating the criterion (13) or (31) for the standard
prepare-and-measure scenario but that do violate inequalities
implied by the classical decomposition (60).

In the case where the messages are quantum, Born’s pre-
scription implies that

p(b|x, y, z) = Tr
[
(ρx ⊗ ρz )My

b

]
, (61)

where My
b is now a measurement operator, potentially in an

entangled basis, acting on both incoming qubits. In this case,
we are interested in a situation where the prepared states ρx

and ρz are classical [that is, do not violate (13)] but can have
their nonclassical behavior witnessed when distributed in this
network.

Considering the case where the exchanged messages are
classical but the preparation and measurement devices share
quantum correlations, we would like to have two independent
states ρAB and ρBC that are classical in the standard PAM
scenario [that is, do not violate (31)] but become nonclassical
when distributed in the PAM network. The quantum descrip-
tion is then given by

p(b|x, y, z) =
∑
a,c

Tr
[(

Mx
a ⊗ My,m(a),m(c)

b ⊗ Mz
c

)
(ρAB ⊗ ρBC )

]
.

(62)

To that aim, we first have to derive new inequalities char-
acterizing the classical correlations in such a network as
described by Eq. (60). In the simplest case where there are
only two preparations (|x| = |z| = 2) and one single measure-
ment (|x| = 1), a complete characterization of the classical
inequalities have been obtained in [28]. We have also consid-
ered scenarios with a higher number of preparations (|x| =
|z| = 3) and measurements (|y| = 2). We have resorted to
standard convex optimization algorithms to characterize such
inequalities (see Appendix). However, in spite of its apparent
simplicity, we were not able to achieve a full characterization
of the classical correlations (60). Notwithstanding, we ob-
tained a partial list of facets of the polytope described by (60);
one of such inequalities being given by∑

x,y,z

γxyz Exyz � 27, (63)

where Exyz := P(0|x, y, z) − P(1|x, y, z), and the coefficients
γxyz are

γx1z z = 1 z = 2 z = 3
x = 1 −6 −3 0
x = 2 −2 2 −3
x = 3 0 −3 6

γx2z z = 1 z = 2 z = 3
x = 1 3 −3 1
x = 2 −3 0 −1
x = 3 3 −3 −3

. (64)

Unfortunately, by considering both the scenarios (61)
and (62) and all the inequalities described above, we were
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unable to find any activation results (see Appendix for details
on one numerical method). A possible origin of this negative
result might be the fact that while in the quantum realiza-
tion (61) and (62), the correlations between the preparation
and measurement devices are limited, the classical descrip-
tion (60) allows for more general correlations. In this sense we
are giving the classical description more explanation power.

For instance, in (61) the preparation and measurement
devices are completely uncorrelated. For a fair comparison
one should forbid such correlations in the classical model that
would be then described by

p(b|x, y, z) =
∑

μ1,μ2,ν,m1,m2

p(m1|x, μ1)p(m2|z, μ2)

p(b|m1, m2, y, ν)p(μ1)p(μ2)p(ν). (65)

Notice that the independence of the sources implies a non-
linear constraint p(μ1, μ2, ν) = p(μ1)p(μ2)p(ν) and thus the
set of classically allowed correlations is not a polytope any-
more, making it difficult to attack the problem [8,27].

In turn, in (62) we are using two independent sources of
quantum states. However, the classical description (60) allows
for a single source of correlations. As discussed before, a
more fair comparison would be to consider the classical model
given by [see Fig. 6(c)]

p(b|x, y, z) =
∑

λ1,λ2,m1,m2

p(m1|x, λ1)p(m2|z, λ2)

p(b|m1, m2, y, λ1, λ2)p(λ1)p(λ2). (66)

Notice that this model is similar to the bilocality scenario
within the context of Bell’s nonlocality [6]. As in the bilocality
case, the nonlinear constraint p(λ1, λ2) = p(λ1)p(λ2) implies
that the set of classicality-allowed correlations is nonconvex,
once again making it very difficult to be characterized.

B. Combining different building blocks

One can also combine different kinds of building blocks.
With a building block we mean a causal structure/network
that by itself can lead to a gap in the classical versus quantum
description of correlations. To our knowledge there are so far
three of these: the Bell [3], the PAM [16], and the instrumen-
tal [51] causal structures.

For instance, as shown in Fig. 7, one can combine the
Bell and PAM causal structures. Assuming that all the devices
share correlations the classical description is given by

p(a, b|x, y, z) =
∑
λ,m

p(a|x, λ)p(b|y, m, λ)p(m|z, λ)p(λ).

(67)

Focusing on full correlators 〈AxByz〉 = p(a = b|x, y, z) −
p(a 
= b|x, y, z) (with a, b ∈ {0, 1}) we have obtained a full
characterization of the associated polytope for |x| = |y| = 2
and |z| = 3. As described in the Appendix, there are a total
of 17 nontrivial Bell inequalities. Looking for activation of
quantum resources we have focused on the following sce-
nario: two quantum states ρAB and ρBC , such that ρAB does
not violate the Horodecki criterion [36] and ρBC does not
violate the criterion (31), but that potentially can violate one

FIG. 7. (a) Causal structure using as building blocks a Bell and a
PAM scenario. In this case, it is assumed that all devices might share
correlations described by the variable �. (b) The Bell-PAM scenario,
but in this case assuming that the correlations are mediated by two
independent sources.

of these 17 nonequivalent classes of inequalities for the com-
bined scenario. Unfortunately, by optimizing over states and
measurements we could not find any examples.

VI. DISCUSSION

Arguably, one of nearest-term offsprings of quantum tech-
nologies is quantum communication [52], the relevance of
which stems from the fact that quantum resources improve
our capabilities to communicate more efficiently and more
securely. Recent milestones, such as the first loophole-free
violation of Bell inequalities [53–55] and the launch of a
satellite establishing quantum channels across intercontinen-
tal distances [56], are now paving the way to the establishment
of the networks of growing size and complexity. Understand-
ing the advantages provided by quantum resources is thus an
important and necessary step.

In this work we have considered the paradigmatic prepare-
and-measure scenario [16] and possible extensions of it into a
network. By considering the simplest nontrivial PAM scenario
we have derived a set of criteria testing whether a given quan-
tum resource is compatible or not with a classical description.
More precisely, we derived conditions for the quantum vio-
lation of the dimension witness inequality introduced in [16],
considering that both the prepared states and the shared cor-
relations between the devices are quantum. These criteria are
the analog for the prepare-and-measure scenario of what the
Hororecki criterion [36] is for the Bell scenario.

Based on that, we have proven a number of activation-like
results showing how quantum resources having a classical
description in the simplest PAM scenario become nonclassi-
cal if the number of either preparations or measurements is
increased. Further, we have discussed how the PAM scenario
can be considered as a building block for more complex
communication networks. In the case of a network, we were
unable to find any activation results. However, as mentioned,
this is possibly due to the fact that in order to be able to
derive inequalities to be violated, we are allowing the clas-
sical models to have shared correlations between all devices.
Understanding how to derive nonlinear inequalities [27] for
communication scenarios is certainly interesting by its own
and could lead to activation in communication networks.
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Finally, it is worth mentioning that here we have fo-
cused on the simplest possible PAM scenario. As in the Bell
case [38,39], it would be relevant to come up with general
methods witnessing that a given set of quantum states can only
give rise to classical correlations, irrespective of the number of
measurement being performed. We hope that our result might
trigger future research in this direction.
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APPENDIX

1. Derivation of dimension witness inequalities [PAM scenario
(|x|, |y|) for (3,3) and (4,2)]

To derive the witness inequalities for the prepare-and-
measure scenario shown in Fig. 1(b) (see also Fig. 4), first
we listed all the extremal points (V representation) of the
polytope associated with the causal structure in Fig. 1(b).
We allow the preparation and measurement devices to share
correlations, so any distribution compatible with that causal
structure has a decomposition given by

p(b|x, y) =
∑
m,λ

p(b|m, y, λ)p(m|x, λ)p(λ). (A1)

The terms in the summation are deterministic func-
tions that can be written as p(b|m, y, λ) = δb, f (m,y,λ) and
p(m|x, λ) = δm,g(x,λ), where f (.) and g(.) are Boolean func-
tions with |m| = 2 (that is, the prepared states are binary),
|x| = 3(4), and |y| = 3(2). We found 512 extremal points for
the (3,3) scenario and 256 for (4,2), where (.,.) stands for
(|x|, |y|).

To derive the inequalities we used the “lrs.c” [57] pro-
gram which provides us the facets of the polytope and has
as input the V representation of it. The inequalities were
determined using the set of the variables given by the cor-
relators {Bx,y} which give us a total of |x| × |y| variables. We
could completely characterize these two scenarios finding 186
inequalities for (3,3) and 136 for the (4,2) polytopes. Consid-
ering the symmetries of each inequality, given by permutation
of inputs or outputs, we found 2 nontrivial inequality classes
for the (4,2) scenario and 3 classes for the (3,3) scenario.
These classes are shown in Tables I and II.

2. Derivation of dimension witness inequalities (PAM-PAM
scenario)

To derive the witness inequalities for the combined
prepare-and-measure scenario shown in Fig. 6(a), we need to
find all the extremal points (V representation) of the poly-

TABLE I. Inequality classes obtained for PAM (3,3).

Class Inequality PAM Scenario (3,3)

1 E11 + E12 + E21 − E22 − E31 � 3
2 E11 + E12 − E22 + E23 − E31 − E33 � 4
3 E11 + E12 + E13 + E21 − E22 − E23 − E31 + E32 − E33 � 5

tope associated with the causal structure in Fig. 6(b). The
preparation and measurement devices are allowed to share
correlations; then any distribution compatible with that causal
structure has a decomposition given by

p(b|x, y, z) =
∑

m1,m2,λ

p(b|m1, m2, y, λ)

p(m1|x, λ)p(m2|z, λ)p(λ). (A2)

The terms in the summation are deterministic func-
tions that can be written as p(b|m1, m2, y, λ) = δb, f (m1,m2,y,λ),
p(m1|x, λ) = δm1,g1(x,λ), and p(m2|z, λ) = δm2,g2(z,λ), where
f (.), g1(.), and g2(.) are Boolean functions. The polytope is
characterized by 2128 extremal points.

To derive the inequalities we used the “lrs.c” [57] program
which provides us the facets of the polytope and has as in-
put the V representation of it. We are considering the case
of three preparations (|x| = |z| = 3) and two measurements
(|y| = 2) We could not fully characterize the polytope, but we
could find 8619 facets for this scenario. One example of these
inequalities is provided in the main text. Notice that in [28]
a complete characterization has been found; however, in that
paper there is a single possible measurement (|y| = 1).

3. Derivation of dimension witness inequalities (Bell-PAM
scenario)

The classical description of the combined Bell and PAM
scenario (see Fig. 7) is given by

p(a, b|x, y, z) =
∑
mλ

p(a|x, λ)p(b|m, y, λ)

p(m|z, λ)p(λ). (A3)

To derive the corresponding inequalities bounding this sce-
nario we need to find all the extremal points (V representation)
of the polytope associated with this causal structure.

The terms in the summation are deterministic functions
that can be written as p(a|x, λ) = δa, f1(a,x,λ), p(b|m, y, λ) =
δb, f2(m,y,λ), and p(m|z, λ) = δm,g(z,λ), where f1(.), f2(.), and
g(.) are Boolean functions. We are considering the case |x| =
|y| = |a| = |b| = |m| = 2 and |z| = 3 only for full correlators.
We have a set of 12 variables given by {Exyz} and this polytope
is characterized by 80 extremal points.

TABLE II. Inequality classes obtained for PAM (4,2).

Class Inequality PAM Scenario (4,2)

1 E11 + E12 + E21 − E22 − E41 � 3
2 E11 + E12 + E21 − E22 − E31 + E32 − E41 − E42 � 4

043106-10



CRITERIA FOR NONCLASSICALITY IN THE … PHYSICAL REVIEW RESEARCH 2, 043106 (2020)

TABLE III. Inequality classes obtained for Bell-PAM (2,2,3) for
full correlators.

Class Inequality Bell-PAM Scenario (2,2,3)

1 E111 + E112 + E211 − E212 � 2
2 E111 + E112 − E113 + E121 − E122 � 3
3 4E111 + E112 − E113 + E121 − E122 + 2E211

−E212 + E213 − E221 + E222 � 6
4 3E111 + E112 − E113 + E121 − E122 − E123 + 3E211

−E212 + E213 − E221 + E222 + E223 � 6
5 2E111 + E112 − 2E113 + 2E121

−2E122 + E123 + E212 − E223 � 6

To derive the inequalities we used the “lrs.c” [57] program
which provides us the facets of the polytope and has as input
the V representation of it. We could fully characterize the
polytope; we find 1296 facets for this scenario divided into
5 nontrivial classes shown in Table III.

4. Alternative derivation of criterion (22)

Take inequality (20) as our starting point, restated here for
convenience as

S = 1
2

[(
qA

1 + qA
2 − qA

3

)
T

(
qB

10 − qB
11

)
+ (

qA
1 − qA

2

)
T

(
qB

20 − qB
21

) + (
qB

11 + qB
10

) · s
]
, (A4)

using directly b = 0, 1 instead of m = (−1)b. Assume now
s = 0 and that all measurements are projective. We should
optimize S with the restrictions that every vector in the ex-
pression has unit norm. The Lagrangian for this problem is
given by

� := S +
3∑

i=1

λA
i

(
qA

i · qA
i − 1

) +
2∑

i=1

1∑
m=0

λB
im

(
qB

im · qB
im − 1

)
.

(A5)
Our goal is then to find a solution for ∇� = 0. Solving for

qA
3 first, we get the condition

−T
(
qB

10 − qB
11

) + 2 λA
3 qA

3 = 0, (A6)

which implies qA
3 parallel to T (qB

10 − qB
11) and, thus, that the

original inequality should become

S = 1
2

[(
qA

1 + qA
2

)
T

(
qB

10 − qB
11

) + ∥∥T
(
qB

10 − qB
11

)∥∥
+ (

qA
1 − qA

2

)
T

(
qB

20 − qB
21

)]
, (A7)

where we have also considered the assumption of s = 0. We
may now make 2u1 cos(θ ) = qA

1 + qA
2 and 2u2 sin(θ ) = qA

1 −
qA

2 , with ‖ui‖ = 1, (i = 1, 2), and uT
1 · u2 = 0. We may also

make 2v cos(α) = qB
10 − qB

11 and 2w cos(β ) = qB
20 − qB

21, with
‖v‖ = ‖w‖ = 1. We then get

S = 2
[
u1T v cos(θ ) cos(α) + 1

2‖T v‖| cos(α)|
+ u2T w sin(θ ) cos(β )

]
; (A8)

we may choose α = β = 0 and make each term positive with
the other variables. By optimizing over θ , we get

S = 2
[√

(u1T v)2 + (u2T w)2 + 1
2‖T v‖]. (A9)

We may consider T diagonal, by embedding into v, w, and
ui the necessary rotations to realize its singular value de-
composition. In particular, let T = ∑3

i=1 μi εi ⊗ εT
i , where

|μ1| � |μ2| � |μ3|, and εi the eigenvector associated to the
eigenvalue μi. The maximal value for S is then obtained
by setting v = u1 = ε1 and w = u2 = ε2, in which case, we
obtain

S = 2
√

μ2
1 + μ2

2 + |μ1|, (A10)

which coincides with the criterion established in (22), not-
ing that μ2

i = λi. In particular, note that T v = μ1ε1, which
implies qA

3 = − μ1

|μi|ε1. Also, since qA
1 + qA

2 = 2 cos(θ )ε1, we

retrieve our original assumption that qA
3 should be parallel to

qA
1 + qA

2 .

5. Optimization details to find nonclassicality activation

In this section, we describe the method used to look for
nonclassicality activation in the combined scenario of two
preparation devices and one measurement device [illustrated
in Fig. 6(b)]. Restating the problem here, we are interested
in finding sets of density matrices {ρA

x }x and {ρC
z }z that,

in the simple prepare-and-measure scenario, cannot produce
nonclassical probabilities regardless of the measurements per-
formed in the receiving apparatus, but that, when combined,
present a nonclassical correlation in the bigger setup.

Recall that each set of density matrices must satisfy the
following criteria to produce only classical distributions:∥∥qP

1 + qP
2 − qP

3

∥∥ + ∥∥qP
1 − qP

2

∥∥ � 3,∥∥qP
1 + qP

3 − qP
2

∥∥ + ∥∥qP
1 − qP

3

∥∥ � 3,∥∥qP
2 + qP

3 − qP
1

∥∥ + ∥∥qP
2 − qP

3

∥∥ � 3,

(A11)

where qP
j = Tr[ρP

j σ]; P = A,C; j = 1, 2, 3. Since each in-
equality is symmetric under a rigid rotation of all vectors qP

i
of a given party, we may fixate qP

1 = z and take qP
2 on the

xz plane. Assuming pure states only, this leaves us with three
parameters per party to determine a set of states and viable
candidates for the activation task (note that the simplified
form of the criteria [Eq. (15)] requires also three parameters,
however with a different interpretation than the ones used
here).

We establish a region of viable candidates for activation.
Using qP

2 = cos(ϕ)x + sin(ϕ)z and qP
3 = sin(θ ) cos(φ)x +

sin(θ ) sin(φ)y + cos(θ )z, we filter the candidates by generat-
ing a grid of triplets (ϕ, φ, θ ) that correspond to vectors that
satisfy all criteria of Eq. (A11). We then sample candidates
within the grid, and optimize Bob’s measurement over each
candidate via a semidefinite program:

Given βbxyz, ρA
x , ρC

z , (A12a)

maximize
My

b

∑
b,x,y,z

βbxyz Tr
[
My

b ρA
x ⊗ ρC

z

]
, (A12b)

subject to My
b � 0, (A12c)

1∑
b=0

My
b = 1, (A12d)
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where βbxyz are the coefficients of a Bell-like inequality for the
combined scenario of two preparing devices and one measur-

ing device. ρA
x and ρC

z are obtained from the sampled Bloch
vectors.
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