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As revealed by novel technologies, chromosomes in the nucleus of the mammalian cells have
a complex spatial organisation that serves vital functional purposes. Here we use models from
polymer physics to identify the mechanisms that control their 3D spatial organisation. In particular,
we investigate a model of the HoxB locus, an important genomic region involved in the embryo
development, to expose the principles regulating chromatin folding and its complex behaviours in
mouse embryonic stem cells. We reconstruct with high accuracy the pair-wise contact matrix of the
HoxB locus as derived by Hi-C experiments, and investigate its hierarchical folding dynamics. We
trace back the observed behaviours to general scaling properties of polymer physics.

I. INTRODUCTION

In the nucleus of mammalian cells chromosomes have a
complex, nonrandom spatial organization [1–5]. Their ar-
chitecture is intimately linked to genome biological func-
tion and its disruption is often related to a variety of
diseases, including congenital diseases and cancer [6–8].
New technologies, such as Hi-C methods [2, 3, 5, 9],
have opened the way to explore chromatin folding at ge-
nomic scale. It is emerging that chromosomes tend to
form megabase-long domains, called topological asso-
ciating domains (TADs), enriched for internal contacts.
Studies using mouse and human cells have discovered
that TADs are universal building blocks of chromosomes
and are partially conserved between different cell types
[10, 11]. Chromosomes are also divided in 10Mb long re-
gions belonging to the so called A and B compartments,
associated respectively with active and repressed gene
states [9]. In fact, TADs and A/B compartment regions
are thought to be only two levels of an entire hierarchy
of higher-order-domains, named metaTADs [12], span-
ning the genome from the sub-Mb to chromosomal scales
(100Mb) [12–14].
To explain the complex patterns revealed by experi-

mental data, approaches from polymer physics have been
introduced (see, e.g., reviews [15–21]). Models have been
proposed, in particular, to focus on the effects of chro-
matin looping produced by its interactions with molecu-
lar factors, such as the Dynamic Loop model [22] and the
more recent Extrusion Loop model, where CTCF binding
sites interactions mediated by cohesin are specifically dis-
cussed [23]. Here, we consider a simple polymer physics
model, the String & Binders Switch (SBS) model [24]. In
this model non-random chromatin conformations are es-
tablished through specific interaction of chromatin with
diffusible DNA-binding molecules, driving folding by for-
mation of loops. This model can describe the mechanisms
underlying the self-assembling of chromatin 3D architec-
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tural domains, such as TADs, and the metaTADs hierar-
chy, as emerging by Hi-C and FISH data [12, 25].
Here, we focus on a specific genomic locus, a 2Mb long

region around the HoxB gene, a genomic region impor-
tant during embryonic development. Based on classical
scaling concepts of polymer physics, we show that the
SBS model is capable at explaining with 95% accuracy
the locus pairwise contact map in m embryonic stem cells
(mESCs), as derived by Hi-C experiments. We also show
that its folding dynamics has an intrinsic hierarchical
structure, where domains of different scales are progres-
sively aggregated.

II. MODEL AND SIMULATIONS DETAILS

A. The Model

In the String & Binders Switch (SBS) model [24, 25] a
chromatin fiber is represented as a self-avoiding (SAW)
polymer chain, composed by N beads (fig. 1). Each bead
can interact with diffusing particles (binders) with an
interaction energy Eint. The total number of binders is
P . Chain and binders undergo Brownian motion, and
each particle of the system (bead or binder) obeys the
Langevin equation [26]:

m
d2

dt2
x(t) = −ζ

d

dt
x(t)−∇V (x(t)) + ξ(t) (1)

where m is the mass of the particle, ζ is the friction
coefficient of the particle in the solvent, ∇V is the force
term generated by the potential V (x), ξ(t) is the random
fluctuating force having a correlation function:

〈ξi(t)ξj(t)〉 = 2ζkBTδijδ(t− t′) (2)

where kB is the Boltzmann constant and T is the tem-
perature of the system. The friction coefficient of the
particle, ζ, is related to the viscosity of the solvent, η,
according to Stokes equation ζ = 3πησ, where σ is the
diameter of the particle, and to the diffusion coefficient
through the relation D = kBT/ζ.
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To describe the system interaction potentials we em-
ploy a classical model of polymer physics [27]. Between
any two particles (binders or beads), there is always a
purely repulsive interaction described by a shifted, trun-
cated Lennard-Jones (LJ) potential V (r) that takes into
account excluded volume effects:

V (r) =
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r < 21/6σ
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(3)

where ǫ = 1kBT is the energy unit, r is the distance
between the particle centers and σ is the particle diam-
eter. Between two consecutive beads along the polymer
chain there is an additional potential modeling a finitely
extensible nonlinear elastic spring (FENE potential) [27]:
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In our simulation we set R0 equal to 1.6σ and KFENE,

the strength of the FENE spring, equal to 30kBT [17].
This choice leads to an average bond length approxi-
mately equal to 0.97σ. Each polymer bead can inter-
act with the binders through an attractive, truncated
Lennard-Jones potential Vint(r) [27, 28]:

Vint(r) =
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where ǫb−b is the control parameter for the intensity of
the polymer-binder interaction (it is a dimensionless pa-
rameter), rint is the cut-off distance regulating the inter-
action range and σb−b is the sum of the radii of the inter-
acting particles. Here, we set σb−b = 1σ and rint = 1.3σ.
The minimum, Eint of the interaction potential, Vint, is
taken as the scale of the interaction. Eint is related to
ǫb−b through the relationship:

Eint =
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B. Simulation Details and Physical Units

In our Molecular Dynamics (MD) simulations, we first
consider a homo-polymer made of N = 1000 beads,
where each bead can interact with all the binders in so-
lution. We chose a 1000 monomers long polymer as a

large, yet computationally feasible case study to investi-
gate general aspect of chromatin folding at the scale of a
few mega-bases.
We impose periodic conditions in the simulation box,

which is chosen to have an edge size Dbox approximately
equal to the gyration radius of the corresponding SAW
polymer (Dbox ∝ N0.588). This is a standard choice in
MD Simulation, in order to reduce boundary effects with-
out increasing too much the required computational ef-
fort. Our MD simulations are performed by use of the
LAMMPS code [29], and the equations of motion are in-
tegrated with the Verlet algorithm.
To map the MD dimensionless parameters into physi-

cal units, we proceed in the standard way [26]. To give a
sense of scale of our simulations, in our first approach
we aim to model chromatin folding at the TAD level
[10, 11]. We consider as a reference the mean genomic
length L of a TAD, which is approximately 1Mb. Then,
each bead contains s0 = L/N = 1kb. The physical diam-
eter of the bead is estimated by imposing that the local
genomic density is equal to the average nucleus density:

σ ≃ (s0/G)1/3 D0 [25], where D0 is the nucleus diameter
and G is the genome length. We consider a typical value
of the nucleus diameter and genomic content in eukari-
otes, D0 = 3.5µ m and G = 6.5Gb, to obtain a length
unit σ = 0.0187µm.
The MD time scale τ is fixed by considering the diffu-

sion coefficient D = τ/σ2. Using a viscosity of 10cP and
a temperature T = 300K, our time unit is τ = 0.0003s
[28]. We employ an integration time step ∆t = 0.012 [17]
and we let the system evolve up to 5 · 108 steps, when
stationarity is reached. Interestingly, we found that the
typical time required to approach the equilibrium states
from our simulations is of the same order of magnitude
as those expected biologically [17, 25, 28, 30]
We perform also ensemble averages, up to 102 for each

particular choice of the interaction energy, Eint, and
binders number, P , considered in this study.

C. Initial Configurations

In our simulations, the polymer chains are initially pre-
pared in a random SAW configuration, while the binders
are randomly located in the simulation box. To produce
the starting random SAW polymer, we use the following
standard approach [27]: we generate a random walk chain
with a bond length equal to 0.97σ. Then, to remove any
overlap between beads and binders, we make the system
equilibrate, for some millions of time steps up to reach
stationarity, with a soft potential rather than the above
hard-core LJ repulsion:

Vsoft(r) =

{

A
[

1 + cos
(

πr
21/6σ

)]

r < 21/6σ

0 otherwise
(7)

where the factor A increases linearly in time. We check
that the SAW state is approached by measuring the
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plateauing of the gyration radius, Rg, and its classical
SAW scaling exponent.

FIG. 1. (a) The Strings&Binders (SBS) model is a Self-
Avoiding (SAW) chain of beads interacting with molecular
binders that can loop the polymer. In the model, P is the
number of binders, which have a binding affinity, Eint, to the
chain beads. (b) The system phase diagram in the (P,Eint)
plane has three main regions: the polymer can be open and
randomly folded in its coil state, or closed in a compact, glob-
ular conformation above the Θ-line; in the closed state, its
binders can form a disordered lump or, at higher Eint or P ,
an ordered structure.

III. RESULTS

A. Phase Diagram

To characterise the thermodynamics phases of the
model, we first focus on the simplest case where all poly-
mer beads are identical (homopolymer) and can inter-
act with only one type of binder. For the system de-
scribed in the previous section, we construct the phase
diagram as a function of its main parameters: the bead-
binder interaction energy, Eint, and the binders num-
ber, P (fig. 1). The first phase transition occurring in
the system is a classical coil-globule transition, where
the open polymer folds into a compact configuration
[25]. The level of compaction of the polymer is cap-
tured by measuring, at equilibrium, its gyration radius:

Rg =

√

∑N
i=1

mi (~ri − ~rCM )
2
/M , where mi and ~ri are

the mass and the position of the i-th polymer bead, M
and ~rCM are respectively the total mass and the position
of the center of mass of the polymer. Rg is high when the
polymer is open in a SAW conformation, while it drops
to lower values in the compact state (fig. 2).

A second transition occurs when the polymer is in
the globule state, and corresponds to an ordering of the
bound binders, albeit they have no direct interactions
with each other [30]. At low interaction energy Eint

or P , the binders attached to the already folded poly-
mer form a disordered lump. However, they self-organise
in ordered configurations if the interaction energy grows
above a transition threshold (fig. 2). To locate such a
transition, we consider two structural quantities associ-
ated to the binders. The first one is the pair distribution

function g(r), defined by [26]:

g(r) =
V

N2

b

〈

∑
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i6=j

δ(r − rij)

〉

(8)

where Nb is the number of binders attached to the poly-
mer, V is the volume, δ is a Dirac delta function. The 〈...〉
brackets indicate ensemble average. The second quantity
we consider is the structure factor S(k), that is related
to g(r) [26] by definition:

S(k) = 1 +
4πNb

V

∫ ∞

0

r2
sin(kr)

kr
g(r) dr (9)

The structure factor S(k), when the beads system is in a
disordered configuration, i.e., at low interaction energies
with the polymer, is practically flat. Conversely, it has
sharp peaks as a function of k when the polymer is in the
globular state and Eint is high. The order parameter of
the ordering transition is the ratio S(k∗)/SMAX , which
has a jump at the transition point [26]. Here, k∗ is the
wave-vector corresponding to the second peak in S(k)
and SMAX a normalization equal to the maximum of
S(k∗) (fig. 2).
To investigate the shape of the equilibrated folded

polymer in the different phases, we also calculated its
inertia tensor, T :

Tjk =

N
∑

i

mi

(

r2i δjk − xijxik

)

(10)

where j and k are the indices of the space axes, j, k ∈
{x, y, z}, i is a bead index, mi is the mass of the i-th bead
and xij its j-th coordinate. By diagonalising T , we derive
its three eigenvalues, which are the system principal mo-
menta of inertia, I1, I2, I3. The ratio eI = 2I1/(I2 + I3),
where I3 ≥ I2 ≥ I1, returns a measure of the degree of
ellipticity of the polymer shape: in a perfectly spherical
conformation eI = 1, while the higher the level of ellip-
ticity the lower is eI . We find that in the coil SAW state
eI ≃ 0.5, in the ordered globular state eI ≃ 0.7 and in
the disordered globular state eI ≃ 0.9 (fig. 2). Hence,
even in the SAW state, the polymer is more elongated
along one axis, which in this case we found to be statis-
tically aligned with with the end-to-end direction of the
polymer. Our results on asphericity of SAWs are in full
agreement with previous findings from polymer physics
[31]. Interestingly, experimental measures suggest that
many chromosomal territories have regular ellipsoid-like
shapes with an ellipticity falling within the range 0.7−0.9
[32].

B. Folding dynamics

The polymer folding process from a SAW configura-
tion to a compact state is driven by the formation of
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FIG. 2. (a) The equilibrium gyration radius of the SBS polymer, Rg, is shown here as a function of the interaction energy Eint

(P = 524). It has a drop at the coil-globule transition point. The snapshots of the system configurations at equilibrium are
taken in the coil and globule states (Eint = 1.0kBT and Eint = 4.12kBT ) and around the Θ-point (Eint = 2.57kBT ). (b) The
jump in the structure factor peak S(k∗) signals that the binders undergo an ordering transition, albeit they do not interact
with each other. The snapshots of the system at equilibrium show the entire system (polymer and binders) in left panel, whilst
only the binders in right panel, to highlight their ordering state. (c) The polymer ellipticity ratio eI = 2I1/(I2 + I3) (where
I1 < I2 < I3 are the polymer principal momenta of inertia) should be equal to 1 in a spherical conformation. However, we find
that it is smaller than 1 in all the different phases, here identified by the different values of Eint. (d) Snapshots of different
steady-state configurations for our homopolymers model in the ordered state clearly show that its conformation is generally
non-spherical. (e) Schematic representation of the principal axes of inertia of the polymer and their reference system.

loops produced by the binders. The details of the pro-
cess depend on the specific choice of the system parame-
ters, i.e., its interaction energy Eint and binders number
P (fig. 3). The gyration radius Rg(t) has initially its
SAW equilibrium value. Above the polymer Θ-point, it
gradually decreases in time, t, until a plateau is reached
at the corresponding new equilibrium level (fig. 2). At
small values of P , the dynamics of Rg(t) is well fitted by
a single exponential function Rg(t) ∼ exp(−γt). Around
the theta-point the folding process becomes more com-
plex and a combination of two stretched exponentials,
r1 exp

(

−γ1t
δ1
)

+ r2 exp
(

−γ2t
δ2
)

, is required to have an
accurate fit of the data, as those shown in fig. 3. The cor-
responding characteristic times τi =

∫∞

0
exp

(

−γit
δi
)

dt
and exponents δi are plotted in fig. 3, which also includes
3D snapshots of the polymer during the folding dynam-
ics. A similar dynamical behaviour is found for the to-
tal potential energy, Epot, i.e., the bead-binders LJ and
bead-bead FENE interactions (fig. 3). In particular, in
the ordered globular phase, a third regime appears in the
relaxation of Epot, corresponding to the ordering process
of the binders’ lump.

C. Block-copolymer Models

To investigate the formation of more complex architec-
tures, including different ‘topological domains’ (TADs),
we considered a block-copolymer model with two differ-
ent bead types, each interacting with its specific cognate
binders, visually represented in red and green (fig. 4).
In our MD simulations, each sub-polymer is 500 beads
long, so the whole polymer is still made of 1000 beads
in total. We fixed the number of binders P = 460
high enough to drive the polymer in compact folded
states, and considered three values of interaction en-
ergy (Eint = 0, 3.12, 4.12kBT corresponding to the three
phases described above.

To compute the average contact probability Pc(s), as a
function of the contour distance, s (i.e., the genomic sep-
aration) between two loci, and the entire pairwise con-
tact matrix, we proceeded in the following way: for each
independent replica of the system we consider an equili-
brated configuration at a given time step. Then, we fixed
a contact threshold distance λσ, where σ is the length
unit, and considered the distance rij between each pair
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FIG. 3. (a) The polymer folding process from a SAW initial state is captured by the relaxation dynamics of its gyration radius,
Rg(t). It is shown here for different values of the interaction energy (Rg is normalised with its SAW value, Rg(0)). The dotted
lines are MD simulation data, the continuous ones our stretched exponential fit. The bottom panel shows 3D snapshots of the
polymer in time (Eint = 3.09kBT and P = 524). (b) The time scale and exponent, τ (left) and δ (right), of the stretched
exponential fit of Rg(t) are shown as a function of the binder number, P , around the Θ-point. (c) The total potential energy,
Epot, is plotted as function of time for different values of Eint (P = 524). For high values of Eint (e.g., Eint = 4.1kBT ) there are
different relaxation regimes: in the first stage of the dynamics the binders randomly aggregate onto the polymer; in the second
stage, they rearrange to form an ordered structure. The 3D snapshots (bottom only binders, top also polymer) at different
time points help visualising the ordering transition at Eint = 4.1.

i and j, (i 6= j, where i, j are bead indices along the
chain). If rij < λσ, then we counted a contact between
the monomers i and j. In this way, we obtained a con-
tact matrix for a particular time step. Here, we show the
results for λ = 3.5, but we checked that small changes in
λ do not alter our results. To derive the polymer pair-
wise contact matrix, to be compared with Hi-C data, we
considered the average of these matrices over many inde-
pendent conformations.

The equilibrium pairwise contact frequency matrix of
our block-copolymer in the coil state has a uniform pat-
tern. Conversely, in the globular state two distinct do-
mains spontaneously form, one composed by the red
beads and one composed by the green beads (fig. 4). It is
also interesting to consider the average pairwise contact
probability Pc(s) as a function of s, which has apparent
crossovers around the domain boundaries, at a genomic
distance s = N/2 (fig. 4). The mean square distance,
R2(s), has a similar mark (fig. 4).

Finally, we considered, in the same conditions, a block-
copolymer having four distinct blocks, each block formed
by 250 beads (two red and two green, 1000 beads in to-
tal), so to simulate the formation of four different TADs.
Now, four different domains are formed along the poly-
mer (fig. 4), as visible in the contact probability and the
mean square distance. Additionally, binders of the same
type can bring in close physical proximity the different
blocks of the same type, giving rise to a more complex
hierarchical organisation: there are therefore lower- and
higher-order structures deriving from intra- and inter-
domain interactions respectively. Interestingly, a hier-
archical pattern is experimentally found in Hi-C maps
[12, 30].
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FIG. 4. The pattern of the equilibrium pairwise contact frequency matrix of our block-copolymer model with two types of sites
(red/green) depends on the thermodynamic state of the system. While in the initial coil state the contact matrix is uniform, in
the globular phase two distinct domains are formed, having different strength in (a) the ordered binder state (Eint = 4.1kBT )
and in (b) the disordered binder state (Eint = 3.1kBT ). That is also seen by the 3D snapshots above. (c) The plots show
the system pairwise average contact probability, Pc(s), v.s. the contour separation, s, of polymer bead pairs. Two cases are
considered: (left) a model with only one red and one green domain (as in panel a)); (right) a model with two red and two
green alternated domains. The different colours correspond to the three different thermodynamics states. In the globular states
(ordered and disordered), Pc(s) has apparent crossovers around the domain boundaries. They are visible at a genomic distance
equal to s = N/2 in the two blocks model, and also at s = N/4, 3N/4 in the four blocks model. (d) The plots show the pair
mean square distance, R2(s), v.s. s, in the two cases describe before, with its crossovers around domain boundaries.

D. A Model of the HoxB locus in mESC

Next, we aimed at understanding whether our model
can explain the folding of specific, real genomic loci,
rather than the average features of chromosomal confor-
mations. We considered, in particular, the case of the
HoxB locus in mouse stem cell (mESC), where Hi-C ex-
perimental data are available. Our considered locus is
1.92Mb long (chr11:95280000-97200000), binned at 40Kb
resolution, and centered around the HoxB gene cluster
(fig. 5). We generalized our block-copolymer model in
order to allow for different types of binding sites (colors);
each type of beads along the chain can interact only with
its corresponding type of binders. The bead types and
their positions along the model polymer were obtained by
a Simulated Annealing Monte Carlo optimisation proce-
dure that minimizes the differences between the experi-
mental Hi-C contact matrix and the theoretical contact
matrix predicted by polymer physics. The method we
employed uses a standard Simulated Annealing proce-
dure with a cost function that also includes a Bayesian
term (a chemical potential) to avoid overfitting [30]. We
used published Hi-C data from Dixon et al., 2012 [10]. 12
different bead types (each visually represented by a dif-
ferent color) are identified by the optimisation procedure
to describe the locus (fig. 5).

The polymer we consider is a chain made of N = 576

beads. So, the elementary bead contains about 3.3Kb.
Each bead interacts with its specific binder. In our sim-
ulations we sampled values of the total binder number,
P , ranging from zero to 195, to explore the system con-
formations in the previously described thermodynamics
phases. The interaction between binder and bead is mod-
eled by an attractive LJ potential as described before,
using the following parameters: ǫb−b = 12kBT , σ = 1,
rint = 1.5. We consider an ensemble of 102 independent
equilibrated polymers, each starting from a SAW con-
figuration as described above. To reach equilibrium, we
run the simulations up to 2.5 · 108 time steps. The fold-
ing dynamics, as seen before, has a hierarchical nature as
visualised in fig. 5, where also 3D snapshots of the locus
are given at different time points during folding.

In the case of our HoxB polymer model, the procedure
to compute the pairwise contact matrix is applied to a
mixture of the contact matrices of the different states
in order to maximize the Pearson correlation coefficient
between the model predicted and Hi-C pairwise contact
frequency matrices. To check the robustness of our ap-
proach we also considered a higher threshold value λ = 8
and a variant of the procedure where only contacts be-
tween monomers of the same color are retained in the
calculation of the contact matrix, finding a best combi-
nation made of 72% open SAW state and 28% compact
state. In this way we get a Pearson correlation coeffi-
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FIG. 5. (a) A scheme of the HoxB genomic locus considered in our model. The histograms show the location and abundance
of the different types (colors) of binding sites of the SBS polymer model that best explain the Hi-C contact map of the locus
in mESC. (b) The folding dynamics of the locus, as represented by R− g, from an open SAW initial configuration (left) to the
final compact state (right). Here P = 39 and Eint = 4.12kBT . The bottom panel shows 3D snapshots of the locus in time. The
position of the HoxB genes are highlighted in the equilibrium configuration. (c) The Hi-C experimental contact matrix of the
locus in mESC (top) and the one inferred by the model described in panel (a) (bottom). They have a 95% Pearson correlation,
highlighting that our model describes a relevant part of the folding mechanisms.

cient is r = 0.95 (fig. 5) between model predicted and
Hi-C data.

Overall, our results support a picture whereby the SBS
polymer model can describing the folding of the HoxB
locus, and can provide a systematic access to all infor-
mation on the system conformations, well beyond the
pairwise contact matrix available from the experiments.

IV. CONCLUSIONS

In brief, we have discussed the SBS model, a sim-
ple polymer model of chromatin where 3D conformation
are established through attachment of diffusible factor
(binders) to the polymer. The model explain how differ-
ent genomic conformation can arise spontaneously with
switch-like nature and the mechanisms underlying chro-
matin self-organization: the modification of chromatin
architecture can be regulated by simple parameters, such
as protein number (i.e., their concentration) and binding
affinity. The polymer model can fold in different sta-
ble architectural classes corresponding to its thermody-
namics emergent phases: the coil state and the globular,
compact polymer state, where in turn the binders can un-

dergo an ordering transition. While a given locus can be
folded differently across a population of cells, its stable
folding conformations fall in classes corresponding to the
system thermodynamics phases, as dictated by polymer
physics. Hence, basic scaling concepts could be helpful
to understand chromosome conformations.

The SBS model is a very schematic representation of
chromatin and many complications arise in real situa-
tions. Polymer confinement, crowding, entanglement and
many additional effects, such as an interplay between
equilibrium and off-equilibrium phenomena, are likely to
have important implications as found in the investiga-
tion of other complex fluids (see, e.g., [33–39] and ref.s
therein). The SBS model has been previously used to try
to model symmetry-breaking events in the architecture of
theXist locus upon X-Chromosome Inactivation [40, 41],
and to model chromosomes recognition at mitosis and
meiosis [42]. Here, in particular, we showed within the
SBS model framework that the formation of chromatin
domains and looping is a hierarchical process, consistent
with recent discoveries on chromosome metaTADs [12].
And we found that Hi-C data from the HoxB locus, a
region associated to key events during embryonic devel-
opment, can be reproduced with a 95% accuracy, sup-
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porting the view that our model captures some of its key
folding mechanism.
Models similar to the SBS have been proposed, such

as the Dynamic Loop (DL) model [22], where diffusing
binders are replaced by an effective interaction between
the chain beads. Importantly, they were shown to have
similar thermodynamics features, supporting the robust-
ness of these approaches to describe the large-scale fea-
tures of chromosome folding, beyond the specific details
of the interaction potentials considered. More recently,
Extrusion Loop (EL) models have been considered, fo-
cused on the role of cohesin mediated interactions be-
tween CTFC binding sites [23, 43, 44]. They fall in the
same class including the SBS [24] and DL [22], as they are
made of a chain of interacting beads where, additionally,
CTFC sites can be bridged by a specific type of binders
(viewed as cohesin). Considering the simplicity of the

ingredients, EL models can describe very well genomic
regions where folding is mainly driven by CTCF. A dif-
ference with the approach discussed here is that here we
make no a-priori hypotheses on the nature of the folding
factors and derive their different types and positions as
an output of our method. Polymer models can help un-
derstanding chromosome folding beyond Hi-C pairwise
contact frequencies, as they return the entire 3D con-
formations and the relative positions of different regions
(e.g., gene promoters and regulators), which could be
tested for example by FISH experiments.
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