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An approach recently developed to solve the Bethe-Salpetgation within density matrix perturbation the-
ory is extended to the calculation of optical spectra ofguid systems. This generalization requires numerical
integrations within the first Brillouin Zone, that are eféaily performed by exploiting point group symmetries.
The technique is applied to the calculation of the opticats of bulk Si, diamond C and cubic SiC. Numerical
convergence and the accuracy of the Tamm-Dancoff apprdéiximare discussed in detail.

PACS numbers:

I. INTRODUCTION

The ability to compute optical absorption spectra from fistciples is of fundamental importance both to complenagt
help interpret experiments and to predict the propertiewof materials?. For example calculations of absorption spectra may
be instrumental in the search of photoelectrodes with agitimnlight absorption for solar cell applicatidrisit is thus desirable
to develop theoretical methods and computational tectesitip obtain absorption spectra that are both accurate afabgeto
systems with a large number of atoms.

Two widely used approaches to compakeinitio optical absorption spectra are time-dependent functidwealry (TDDFTY
and many-body perturbation theory (MBPT)When local or semi-local exchange-correlation functisrare used, time-
dependent density functional theory may be applied toivelgtlarge systems (up to thousands of electrons) and itleas
proven to be accurate for several molecules. However, thet oonmonly used local approximations for the TDDFT kernel
poorly describe the optical properties of extended pecisdiids and nanostructufesWithin MBPT, the GW approxima-
tion (where G indicates the single-particle Green’s fumrctnd W the screened Coulomb potential) has been used toutemp
quasi-particle energies and the Bethe-Salpeter equaBiSk) solved to compute optical spectra. The GW/BSE appr@ach
computationally more expensive than TDDFT but it overcosmse of the limitations of local TDDFT, e.g., in the desdapt
of excitons in periodic systerh&®and of charge transfer excitations in molectleédtandard techniques to solve the BSE make
use of an electron-hole basis sehat requires the explicit calculation of a large numbarmdccupied electronic states, and the
evaluation of a large number of exchange integrals betwakemee and conduction states.

Recently we have proposed a method to solve the BSE that aoesquire the explicit calculation of empty stated his
approach combines ideas proposed in the context of TBBE BN techniques to represent the dielectric m&triXbased on
density functional perturbation thedfy The evaluation of the BSE kernel involves a number of okbigual to the number of
occupied states (N and numerically it scales as ground-state Hartree-Fdckiledions (see Sec. I). The approach developed in
Ref. ® makes efficient use of iterative solvers and matrix by vewtoltiplications are performed by using fast Fourier transf
techniques, without building and storing explicitly n&ththe BSE Hamiltonian nor dielectric matrices.

In this work we generalize the formalism of Refo periodic systems, and thus we include proper integrativmer the first
Brillouin zone. The method is then applied to the study of dipéical properties of bulk silicon, carbon diamond and cubi
silicon carbide. The convergence with respect to sevenalemical parameters and the comparison with previous s8stitre
extensively discussed.

The rest of the paper is organized as follow. In Sec. Il the B8Balism for periodic systems is presented within a dgnsit
matrix framework and the techniques used to avoid the expliclusion of empty states are illustrated. In Sec. Il viw
how the symmetry of the system can be used to accelerateltit®amf the BSE. In Sec. IV we present the application of the
method to the calculation of the optical absorption speatraulk silicon, carbon diamond and cubic silicon carbidegl ave
compare our results with previous calculations. Sec. Vaiostour conclusions, and in Appendix A we give some detéilse
implementation of time-reversal symmetry operations.

1. THEORY

The density matrix perturbation theory formulation of th8Bhas been introduced in RefHere we present in detail its
extension to periodic systems. Because of several fornsbgies, the derivation given below can be easily extenddte
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TDDFT formulation presented in Ref$11:15 including not only (semi-)local exchange-correlationdtionals but also hybrid
functionals.

The starting point of our derivation is the quantum-Liolevéquation for density matrices written in the Coulombeholus
screened-exchange (COHSEX) approximaifon

; dpx(t)
dt

where the square brackets indicate commutators and a hatisdauantum-mechanical operators; within a real spacesep-
tation, pi (r,r’,t) = Y, duk(r, )¢k, (r', ) and the density matrix is given by:

I‘ I‘ t Z wkpk r, I‘ t Z Z wk¢vk(r7t)¢2k(rl’t)7 (2)

keBZ v keBZ

= [H consex(t), ﬁk(t)} ; 1)

k denotes a point in the Brillouin zone (BZ) aridy (r, t) are single particle occupied Bloch orbitals. In the follogiwe will
adopt the notatiop(r, ¢) to indicatep(r,r,t). In Eq. 2 we have substituted the integral over the BZ withrarsation over a
discrete set of k-points:

1
/ssz dk — Z Wi ()

Qpz keBZ
wherewy weighs the contribution of each k-poktand()z 7 is the BZ volume.

The time-dependent quasi-particle Hamiltonian operappliad to a valence state, in Hartree atomic units and withé
COHSEX approximation is:

. 1
/HCOHSEX(I‘, r' ) ok (v, t) dr’ = (—§V2 +vp(r,t) + Vea (r, t)) bok(r, 1)

+/ECOHSEX(r,r',t)¢vk(r',t)dr', 4)
wherev,,; is an external time-dependent periodic potential,
vy (r) = /p(r’,t)v(r,r’)dr’ (5)
is the Hartree potential, addcopysex = Ycon + Lsex is the self-energy in the COHSEX approximation
[ Sconter)oudt dx’ = 5 [ 8~ W0 r )Gl ©)
/ESEX(r,r’,t)qSUk(r',t)dr’ = —Z Z /¢v/k/ (v, )W (r',r;k — K)ok (v), ) o (x/, t)dr @)
v k'eBZ

In Egs. 5-7v(r,r’) is the Coulomb potentialy (r',r;k — k') = [e '(r/,r"”;k — K/ )v(r”,r)dr” is the statically screened
Coulomb interaction, ant¥,, = W — v. We note that, since the Hamiltonian (Eq. 4) depends on thsigematrix s, the set
of equations 1 for differeri points are coupled; this would be so also for DFT Hamiltosiarthe (semi-)local approximation,
that depend only on the charge density.

Linearization of Eq. (1) with respect tQ,; leads to

L N AR O} ©
Lpi(t) = [Beomsexs ilt)] + ulp10), 21 + [S1910). 57 (©)

where variables with superscript™represent unperturbed quantities, and those with prinmdtelinear variations. Within a
real space representation, the charge resp@nses — p° is given by

pl(rarlat) = Z wkpk r, I‘ t Z Z ’LUk uk uk(rlvt) + (b;k(rat)d)zik((r/)] . (10)
keBZ v keBZ

Eq. 10 denotes the linear variation of the density matrix gne= px — g5, is the contribution tqgy’ of the k pointk. We note
that o, andy’ depend on the perturbed density maifix In Eq. 9 a non-Hermitian operatdracting onp 1 has been defined,
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which is known as Liouvillian super-operafoY,, as its action is defined on a space of operators. By Fouaestorming Eq. 8
into the frequency domain, one obtains

(w = L) - pre(w) = [0 (w), pi] - (11)

This equation, derived here in the context of the BSE, is &lyrthe same within the density functional perturbatioadty
(DFPT) formulation of TDDFT (see e.g. Eq. (14) in Ref. 11)f bulifferent definition of the LiouvilliarC is used in the two
cases.

The solution of Eq. 11 yields the perturbed density matrithim frequency domain:

Per,w) = 3w w) = 3 3 w63 (1)¢ 51, —w) + G (r,0) 6% ()] (12)

keBZ v keBZ

Eq. 12 shows thap’(w) is fully determined by the set of the,Nunperturbed occupied state¢g;. and by the two sets of N
perturbed orbital®’?, (r', —w) and¢/, (r,w), orthogonal to the occupied state subspace. We notethat, unlike p’(t) in
Eq. 10, is a non-Hermitian operator. In order to simplify thuenerical implementation, we assume time-reversal symyrhetds
by imposingv,,,(r,t) = v, (r,—t) in Eq. 9. As a consequeneg,,(r,w) is a real function an@!_, (r,t) = ¢’ (r, —1),
implying ¢!, (r,w) = ¢} (r,w) and¢! _, (r,—w) = ¢'%, (r, —w). Therefore, assuming.,,(r,t) = v.,,(r, —t) yields a
realp’(w). This assumption does not limit the generality of our apphoaince we are interested in computing the macroscopic
dielectric function of bulk systems (see Eqgs. 13-16 beladkg;latter is an intrinsic property of the system and doesiepend
on the specific time av dependence of the applied electric field. Furthermore sircean perform th& < —k transformation
by a complex conjugate operation, the total number of k4sancluded in Egs. 11-12 can be significantly reduced. Dxeta
the time-reversal symmetry operations are given in AppeAdi

The absorption spectrum of a solid is related to the imagipart of themacroscopic dielectric function ¢, defined by the

equation (see ald®):
Epi(w) = Ei(w) + 47 P,(w) = 5S¢ (w) Bj (w) (13)

where the indexesand; indicate Cartesian componenk is the applied external electric fiell, is the screened field arid
is the electronic polarization induced By In order to compute,,, it is convenient to start by setting the value of the scrdene
electric fieldE*. By introducing the potential

Vewt = —E(w) 1 (14)
in Eq. 11, and expressing the polarization in terms of thesitignperator,
1 . 1 .
Pi(w) = 7 Z wiTr(fipy) = —VTr(rip’), (15)
keBZ
from Eq. 13 one has
@j dm ~ SN — A A0
enr(w) =0y — 37 > wie (Pil(w — L+ in) " [75, 48] (16)
keBZ

whereV is the crystal volumey is a positive infinitesimal, and we have written the scaladpict of two operatorsl and B as
</1|B> = Tr(ATB). As already discussed in the Appendix of Refhe definition ofe,; in Eq. 16 is equivalent to the definition
of the BSE macroscopic dielectric function given in R¢Eqgs. 2.23 and B26). However the formulation of Refas so far
applicable only to molecules. In addition, the position @per in Eq. 14 is ill defined in periodic boundary conditiptisis
problem can be overcome within perturbation theory, folfmpRefs*1”.

The numerical solution of Eq. 11 and Eq. 16 requires a basi®sg’. From Eq. 12 it follows that only the elements @f
between unperturbed occupied and empty orbitals are éiftérom zero. The use of those orbitals as a basis set ledls s
called electron-hole (e-h) representation, widely usetthénliterature to solve the BSEE. This approach requires the explicit
calculation of empty electronic states and convergencle mispect to their number has to be carefully checked. Bygusin
the projector operator§;, onto the unperturbed empty state subspace, explicit ionk of empty states may be avoifted
Qu=1-PB=1-3,6%)(#%|, wherePy is the projector onto the occupied state subspace for a Fviedhe first BZ
and! is the identity operator. The evaluation@f, does not require the explicit calculation of empty statésc&Bloch states
corresponding to different k-points are orthogonal, thggmtion can be preformed independently for each k-pointhiwthis
formalism a generic operatet can be represented by a set ofl2, x Ny orbitals that are defined in the following way:

lau) = QuAld3), (17)
(k| = (S5s A Quc, (18)
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where the index runs from 1 to the number of occupied bandg While k is a point of the discrete mesh used to perform the
integral in the first BZ. IfA = 5’ we haveu, (r) = ¢/, (r,w) andb, (r) = ¢., (r, —w). Within this representation the operator
L takes the form:

B D + 2]C1m _ Icld 2]C2m _ K:Qd
£= < —oK2r 4 K24 D — 2fCte 4 Kl (19)
whereD, the exchange termi§'* andk?* and the direct term&'? andK?¢ are defined as:

Z Z ka,v’k’ |av’k’> = Z Z (I;IEVOHSEX - 6'U’k’) (Sv'u’ §kk’|av’k’>a (20)
v k'eBZ v k'eBZ
Z Z K:vlji,v’k’ |a’U’k'> = Z Z wk’Qk (/ |I' /| u’k’ )a’U’k'( )d ) |¢ >a (21)
v k'eBZ v k'eBZ
Z Z Icuk vk’ |b71'k’> = Z Z wk'Qk </ | /| v’k’ )d’f}’k’ (r')dr’) |¢2k>a (22)
v k'eBZ v k'eBZ
Yo Y Kk lave) = > > wieQx < / W, r'sk = K)¢oh ()67 <r’>dr’) ), (23)
v k'eBZ v k'eBZ
S K bow) = > D wel </W r, ' k — k)b ()¢ (r’)dr’) |6%er). (24)
v k'eBZ v k'eBZ

The operatoD describes bare single particle ground-state excitatitbeg; ' and/C?* terms include so-called local field effects
and thexC'? and K?¢ terms describe electron-hole interactions. The integratering the definition ok'¢ and K2¢ include
divergent terms in reciprocal space; in our implementaticase divergences are integrated by using the method prdpos
Refs!®19

The formalism described here to solve the BSE is equivater time-dependent COHSEX within linear response; the
COHSEX self-energy enters both in the definition of the badependent quasi-particle (QP) ground-state excitatiofsand
in the X' and K2 components of the kernel. In the linearization procedueglis Eqs. 8-9, the dependencel®f (which
enterscopsex) on the density matrix is neglect&dthis implies that only the linearizeds zx contributes toC'? and 2.
The COHSEX approximation is known to overestimate quasiiqa gap$?, and single particle states and eigenvalues obtained
within the GW approximation are usually preferred as stgrpoints for BSE calculations. Within our current implertegion
H(‘j?P (ﬁgOHSEX) is approximated either by the Kohn-Sham (KS) Hamiltonidrose gap is corrected by the use of a scissor

shift A (H&P = fIZDA + AQy) or by including several GW corrected eigenvalues using Bds- 25 in Ref?; the scissor

approximation is accurate for the s-p bonded solids consitli this work?. The introduction of a more general scheme to
include quasi-particle corrections within our formulatiof the BSE will be the subject of future work. For example, tise in
Eq. 20 of the enhanced COHSEX approximation presented if*Reéy yield quasi-particle corrections of accuracy simitar t
that of the GW approximation, in a way fully consistent witlr dormulation.

The evaluation of the integrals defined by Eqgs. 23-24 is thet expensive part in a BSE calculation. We note that the numbe
of orbitals involved in the definition ok'¢ and K?¢ is equal to the number of occupied states. Hence the sdgfatfilour
approach is the same as that of a ground state Hartree-FtmKataon (assumindg? = v for simplicity; the scalability of
the calculation of the dielectric matrix is discussed iradléh Refl?). Specifically, in a plane-wave (PW) implementation the
evaluation ofC!? andkC2? scales a&[N2 x N2 x Npw x log Npw |, whereNpyy is the size of the plane-wave basis set arisl
constant with respect to system size; this is exactly theessraling as that of calculations of the Hartree-Fock egachange;
as shown in the next section the computational complexityoesfurther decreased tdN?2 x Ny x Ny, x Npw x log Npw|,
where Ny, is the number of k-points in the irreducible Brillouin zori®; exploiting the symmetry operations of the system
point group. In general the constant (or pre-facteQf a BSE calculation is much larger than that of a ground diziree-
Fock calculation. For example for the systems studied mwrk, a number of Lanczos iterations between 1000 and 2000 i
necessary to achieve convergence and for each iteratiorofmrations are performed, with the same complexity of tdart
Fock exact-exchange calculations (only one of such operais required within the Tamm-Dancoff approximation) tii a
electron-hole approach, the evaluationkdf' andx?? scales asly, x N, x Nﬁ X Npw x log Npw|]. Since in generaN., is
much larger thanV,,, the approach presented in this work is more efficient thaelectron-hole approach and increasingly so
for large systems. Within a matrix representation, the disien ofZ (Eq. 19) is2 x N, x N, x Ny in an e-h approach. Only in
cases wheré/,. and Ny, can be chosen small enough, the mattigan be built explicitly and kept in memory for subsequent use
(such as, i.e., the calculation of the dielectric tensongiihhe Lanczos algorithm). Storingclearly allows for a large decrease
in the pre-factory of e-h BSE calculations, with respect to those presenteel. hdowever explicit calculation and storage of
L are possible only for relatively small systems, as the megunemory becomes rapidly unaffordable for large value¥ of
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and N. Within the density matrix perturbation theory approachhi$ work, the dimension of is 2 x N, x Npyw X N;

if one choosesV, to be the total number of conduction states, singe>> N, and Npyw = N. + N, =~ N, the matrices
representing’ in the density matrix perturbation theory approach and @ekh approach have similar dimensithsN pyy

is usually a large number, and thus within our method theimdtis never built explicitly. Our approach is instead based on
iterative calculations, where the applicationfo a generic vector is performed by taking advantage of ghoies analogous
to those used in applying the Hamiltonian to wavefunctionground state calculations.

In the evaluation okC!¢ andkC2¢, one needs to evaluate the inverse dielectric matrixentering the definition of the screened
Coulomb interactiodV (r',r;q) = [ ¢ '(r',r”; q)v(r”, r)dr” (Whereq is a generic wave vector). Also in this case the explicit
calculation of empty electromc states can be avoided yguBFPT. In particular, following Refs. [12,13], we use agegivalue
decomposition of the symmetrized dielectric mattix in the random-phase approximation (RPA), and an iterafiyershm
to obtain eigenvalues and eigenvectors: such algorithwleg the evaluation of the action @bn trial potentials. Finally no
inversion of the dielectric matrix is necessary as a sped¢eomposition of ! is easily obtained from the eigenvalugs)(and
eigenvectorsy;) of ¢

—I+Z|vz (@) — D(Vi(a)l, (25)

As shown in Ref and in Sec. IV below, convergence of computed spectra cantievaed with a small numbeéy of eigenpairs
included in Eq. 25. Indeed it has been shown that the eigeesa] are always greater than or equal f§ and that for a variety
of systems()\;1 — 1) decays rapidly to zero, as the eigenvalue index incréases

I11. USE OF SYMMETRIESIN THE SOLUTION OF THE BETHE-SALPETER EQUATION

As shown in the previous section, the solution of the BSE fgstalline materials (and in general for periodic systems)
involves the evaluation of integrals over a grid in the firgtlBuin zone. Our implementation exploits the symmetrytad system
to reduce the computational time and the memory requiresnanthe calculations. In a crystal the most general symmetry
operation is given by a combination of a rotati@and a fractional translatiof (denoted by{ R|f}). The set of symmetry
operations{ R|f} constitute the space group of the crystal. By using rotati®nwe can express a generic point in the BZ as
k = Rk;, wherek; belongs to the irreducible BZ (IBZ). The unperturbed Bloavefunctions satisfy the following equatin

Pok(t) = O3 pie, (1) = i, (R™'r — £). (26)
The perturbed orbitals implicitly depend on the directiéthe electric field (Eqg. 14). For this reason they satisfyriiationship:
¢ (r,w) = ¢4 pg, (1, 0) ZRM r—f,w) 27)

wherei andj indicate Cartesian coordinates; the same reIa‘uonshdsHot they'*, (r, —w) perturbed orbitals. These properties
can be used to improve the efficiency of the numerical salutibthe equations described in the previous section. We first
consider the calculation d@?; in Eq. 15. From the definition of (w) in Eq. 12 we have

Pij(w) = —% Z wkTT(f’i[)/{() = —% /rip/j(r,w)dr, (28)

keBZ

where we have emphasized the dependené ahd ;. on the direction of the electric field, corresponding to Hie Cartesian
coordinate. By defining

Z Wiy p/{q (I‘, w) (29)

kicIBZ

from Egs. 26-27 and Eq. 12, we have
P (r,w) NSZZRJZQ “Ir—f,w) (30)

whereNg indicates the number of symmetry operations of the spaagpgrbthe system; finally one has:
Py = —VN—SZZRﬂ/nQ “lr—f,w)dr

_ l
- _VN_S ZZleRﬂ/TmQ/ (r,w)dr. (31)

R Im
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The set of Egs. 29-31 shows that the perturbed density mytfand consequently the macroscopic dielectric function)tma
computed by solving Eq. 11 only for the k-points in the irreitile Brillouin zone instead of the full Brillouin zone. Synetry
operations can be further exploited in the calculation efih” andX?* components of the kernel defined in Egs. 21-22. To
this end in Eq. 21 we define:

W)=Y S wedie ()l () = Y wen'l (), (32)

v k'eBZ k'eBZ

where the orbitalajv'k(r) satisfy Eq. 27 (where for simplicity we have omitted the ifopldependence on thgth Cartesian
coordinate). Likewise in Eq. 29, we define

) = Y wien/i, () (33)
kicIBZ
and finally we have
- 1
1!y — =1 -1/
n'7(r") NS;;RJW (R~ —f). (34)

Eq. 33 implies that, in order to evaluate the term in paresghén Eq. 21 (and in Eq. 22), it is necessary to consider dwly t
orbitals corresponding tk’ points inside the irreducible BZ. Such simplification carl@exploited in a straightforward manner
for the calculation ofC'? andk?¢ as defined in Egs. 23-24, where one needs to ktiaver the full BZ.

In order to calculate)'’ (r,w), the linear system of Eq. 11 is iteratively solved using tba-kermitian Lanczos algorithm
introduced in Retl. To apply the required symmetrization operations (i.e. ¥, three simultaneous iterative chains are
performed at the same time, corresponding to the threetiinsoof the perturbing electric field.

IV. APPLICATIONSTO BULK SILICON, CARBON DIAMOND AND SILICON CARBIDE

The formalism presented in the previous sections has bepleinented in the framework of the Quantum Espresso (QE)
package, that uses plane-waves as a basis set and pseudapste The quasi-particle HamiltoniaR° in Eq. 20 is approxi-
mated byH x s + AQx, whereH g s is the Kohn-Sham (KS) Hamiltonian amylis the difference between the quasi-particle gap
and the KS gap (scissor approximation). From quasi-par(i@P) calculations at the GW level of thedtit is known that the
scissor approximation is accurate for the description eftand structure of several sp-bonded bulk systéms

We computed the absorption spectra of solids as the imagpaat of the macroscopic dielectric functien; ( Eq. 16). In
generak ), is a tensor but in the specific cases studied here this temsiimgonal and the diagonal elements all have the same
value.

We first discuss the absorption spectrum of bulk silicon. @rmund state calculation has been performed using the local
density approximation (LDA) in the Perdew-Zungeparametrization and the pseudopotential was taken fronQtrentum
Espresso libra’?. We used a lattice constant optimized at the LDA level of tii€d0.20 a), as given in Ref?. The value of
the scissor shiffA is determined as the difference of the experimental value@minimum direct QP gap at thepoint (3.4
eV)®® and the LDA gap at the same point (2.57 eV). The use of a cordpB$@/, quasi-particle gap would not significantly
affect our results, since the,®/, approximation reproduces the experimental value withined/2. A cutoff of 18 Ry was
used to expand the ground-state wavefunctions as well ali¢tetric matrix (in Eq. 25); all the empty bands describgdhis
cut-off are implicitly included in our calculation, corsnding to at least 328 empty bands per k-point. In Réfss few as
4 conduction states were considered sufficient to reaspicabliverge the spectrum of bulk silicon. However, even is tase,
our approach has a few advantages over the traditional @rfoagh: the convergence with respect to the number of entgiyss
does not need to be tested; the number of perturbed orhitglsdied in our calculations is equal tg,(#4); due to the large
amount of e-h pairs included implicitly in our approach tpectrum can be computed up to high energy and the validithief t
f-sum rule can be easily verified (see below).

As shown in Ref! the convergence of the static macroscopic dielectric emghead of the dielectric matrix) is rather slow
with respect to the k-points included in the first BZ. In ortieintegrate the BSE we use Monkhorst-Pack (M-P) grids ofisppe
k-points as implemented in G&3. As shown in the early work of Benediet al.8, in order to improve the convergence of
computed spectra it is useful to shift the grid from the ari@i point). In the QE implementation, automatically generated
k-point grids centered dt may be shifted b)(%bl + %bQ + %bg), wheren is the grid dimension anb,, b, andbg are
reciprocal lattice primitive vectors. Since in the faceveged cubic lattice after such shift the k-point grid doesmave the
full symmetry of the crystal, additional points are genetdateading to a mesh with four times the number of k-poinis &lse
original grid. This fact can be understood in the simple adsesingle k-point x 1 x 1 mesh shifted ir(%bl + %bg + %bg,).
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By applying all the symmetry operations (48 for the systemss@ered in this work) we can generate additional k—po}ﬂli;s,
%bQ, %bg equivalent by symmetry. This leads to a mesh with four tinhesktpoints as the origindl x 1 x 1 mesh. Of course

only the k-point(%bl + %bz + %bg) is included in the IBZ and this property is exploited to aecate the calculations, as
discussed in Sec. Ill. If the single k-point is shifted by adam vector in the BZ, the application of the symmetry operet
may lead up to 48 different k-points in the full BZ (this is thember of symmetry operations of the point group of the diadno
lattice). Similar arguments can be applied to the case opaikt mesh of larger dimensions. The convergence with etgpe
the dimension of the grid is discussed below.

In order to test the computational parameters and apprdxingentering the solution of the BSE, we have first perfarme
calculations for Si with d x 4 x 4 mesh with the origin shifted bt b, + b, + £bs). This grid is then symmetrized, leading to
256 k-points in the full BZ and0 in the IBZ. This mesh is sufficient to obtain accurate grouatesproperties but does not yield
converged results for absorption spectra; nevertheléssitfficiently accurate for the purpose of testing addalarumerical
parameters and approximations involved in the solutioh®BSE. In Fig. 1 we show the convergence of the absorptiarirspe
of bulk silicon as a function of the number of eigenvalues aiggnvectors used in Eq. 25. The convergence is rapid and no
difference is present between the spectra obtained usiagd @8 eigenvalues. We note that the dimension of the fultirniat
2733, that is much bigger than the small number of eigenpotentiséd here for its representation. In Fig. 2 we comparetgesul
obtained with and without the Tamm-Dancoff approximati®®A). Minor differences are observed only in the high energy
part of the spectrum. We have also computed the f-sum ruléhézse spectra and found that the full BSE fulf@ig’% of the
f-sum rule while the TDA spectrum yield$)7%. The TDA appears to be reliable for the optical propertiebuk systems, as
widely accepted since the early use of the BSHowever the TDA may break down for the optical spectra ofenoles and
nanostructurés’* and for the electron energy loss spectra of bulk systemis the following, calculations on larger k-point
grids are carried out within the TDA approximation.

We now consider the convergence of the spectrum of bulkosilas a function of the dimension of the k-point grid used in
the calculations. In Fig. 3 we show the results for threeegéfit Monkhorst-Pack (M-P) grigfsof dimensionn x n x n with
n = 8,10, and12, respectively, and we compare them with the experimentadtspny®. In order to improve the convergence,
the origin of those grids is shifted hS/QLnbl + %bg + %bg). After symmetrization the total number of k-points in thédgr
is4 x n x n x n. Our calculations give accurate results for the positiod iensity of the two main peaks, compared to
experiment, with an error of at mogt12 eV for the first () transition. However in the computed spectra we obtain skwea
additional peak between the two main transitions which hsisang dependence on the k-point mesh used in the calaulatio
This extra peak was already present in some of the earlier &&&ilations of the optical spectrum of bulk siliédnand in
recent publication¥, as shown in Fig. 4. When the same k-point mesh is used, ouoagip reproduces the same result of a
well converged electron-hole calculation (see panel b of ).

Since the early applications of the BSE to the calculatiospefctra of bulk systems, it was suggested that the use of Ni® g
was likely responsible for the appearance of spurious pieatke spectrd. It was also suggested that the use of grids shifted
off the high symmetry directiofisor randomly distributed k-points may help avoid the appeegaf spurious spectral features.
For example in Ref® the example of an independent particle spectrum comput#cA9D000 k-points was presented, showing
improved accuracy. However such a large mesh is not afftedalihe solution of the BSE for realistic solids. For theesak
of completeness, in this work we have also considered thefua&k-point grid off symmetry, obtained by shifting the arig
of a regular grid at6i4b1 + 31—2b2 + %b3, as suggested in REE; in this case the grid is not symmetrized and the formalism
described in Sec. Il to accelerate the calculations cahaatpplied (only the time-reversal symmetry is used, asagx@d in
Appendix A). The results are shown in Fig. 5 for some of the ponents of the dielectric tensor. Since the grid does nat hav
the full symmetry of the crystal, the diagonal componentsyefare different from each other, and the off-diagonal comptse
of the tensor are different from zero. In Rethe perturbation was applied along tfie 1, 1) direction, amounting to an average
of all the components of the tensor. This average eliminh&spurious peaks, which, however, are still present osttend
yy diagonal components of the tensor (see Fig. 5). In thikywse have not considered random k-points in the integratiahe
BSE. In the literature, the BSE spectrum of silicon has alydaeen computed using 1000 k-points randomly distributest o
the BZ, finding a shoulder instead of a peak between the twa masitions (see Fig.2 of R&Y). Since a random distribution
of k-points does not have the lattice symmetry, an effectogmaus to the one shown in Fig. 5 might occur also in this case,
especially for a small set of k-points. We note that a systentest of the convergence of random distributions of k pin
or grids shifted off-symmetry can not take advantage of tmersetry to simplify the calculations and would become rapid
impractical when increasing the size of the sampling.

As a further application of our technique we have computedathsorption spectrum of carbon diamond. Also in this case
the ground state calculation was performed using the logasity approximation (LDA) and the pseudopotentials wakem
from the Quantum Espresso librdfy The lattice parameter was set to the experimental value7df §4°. A cutoff of 40 Ry
was used to expand the wavefunctions and more than 300 eraptydre implicitly included in our calculation. The value of
the scissor shiff\ is obtained as the difference between the value of the exgeatal minimum direct gap (7.3 e¥)and the
LDA minimum direct gap (5.66 eV). As shown in R&the GW, quasi-particle and the experimental gap differ by 0.2 eV. As
suggested in Réf.a 6.4% stretch of the valence band was applied, to correct for tiirastimate of the valence band width
given by the LDA.



— 16 eigenvalues
- —— 48 eigenvalues

4
o [eV]

Figure 1. Absorption spectrum of bulk silicon computed asiracfion of the number of eigenvalues and eigenvectors uséuki spectral
decomposition of the dielectric matrix (Eq. 25). A mesh 06 Z5points in the BZ corresponding i1® k-points in the IBZ has been used. A
Lorentzian broadening df.24 eV was added to the curves.
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Figure 2: Absorption spectrum of bulk silicon computed vatid without the Tamm-Dancoff approximation (TDA). A mest26b k-points
in the BZ corresponding td0 k-points in the IBZ has been used. A Lorentzian broadening f eV was added to the curves. We used 16
eigenvalues in Eq. 25 (see Fig. 1).

We tested the convergence of our results with respect todhar of eigenpairs included in Eq. 25 and the accuracy of the
Tamm-Dancoff approximation. The conclusions are simitathie case of bulk silicon. In Fig. 6 we show the results for the
calculated absorption spectrum of carbon diamond for tferdint k-point grids and we compare them with the experitalen
curve (from Ref*?). In this case the convergence with respect to the dimemditive k-point grid is faster than for bulk silicon;
however, following Ref a larger Lorentzian broadening than in bulk Si was used fctmputed spectrum (0.57 eV), which
overall has less features than that of Si. The comparisdntivit experimental data is satisfactory, with a shift in tr@mpeak
of about 0.1 eV.

As a final example we consider the absorption spectrum absilcarbide in the zincblende structure. The calculatioa wa
performed in the local density approximation with the tatparameter set to the experimental value of 8 24. aA cutoff
of 40 Ry was used to expand the wavefunctions, corresponditige implicit inclusion of more than 580 empty states. The
value of the scissor shift is obtained as the difference betwthe experimental gap of 2.394€\and the LDA gap of 1.30
eV. In Fig. 7 we show the BSE spectrum computed far a 8 x 8 shifted k-point mesh and the experimental curve from
Ref#4. Overall the agreement between theory and experiment id god the main peak position is reproduced with an error of
about 0.15 eV. If a Lorentzian broadening of 0.57 is usedndke case of diamond, a good agreement between the computed
and experimental intensity is found, but the first shouldehe experimental spectrum is not visible. This shoulderonees
detectable in the spectrum computed using a 0.27 eV broaglehi this case the intensity of the main peak is overesgdiat
overall our computed spectra are similar to previous resulthe literaturg®*°.
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Figure 3: Absorption spectrum of bulk silicon computed vdifierent Monkhorst-Pack k-point grids, compared to thpezimental resulf§.
A Lorentzian broadening df.11 eV has been added to the computed curves.
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Figure 4: () Comparison of the bulk silicon spectrum (cotegwvith al2 x 12 x 12 shifted k-grid) with some of the early BSE calculations
(Ref® and Ref). In Ref® a grid containing 2048 k-points in the BZ was used while in.Raf32 k-point grid was extrapolated up to 500
k-points. (b) Comparison of the bulk silicon spectrum cotepuwsing ar8 x 8 x 8 shifted k-grid using our method and the electron-hole
implementation of the Yambo cotle in this case an energy dependent broadening was used intordempare with Ref’ (in the energy
range shown in the figure the broadening increases lineanhy ©.02 eV to 0.15 eV as a function ©j.

V. CONCLUSIONS

In this work we have presented the extension to periodiesystof the density matrix perturbation theory formafisior
the calculation of optical absorption spectra. Within thpproach the explicit calculation of empty electronicestaind the
storage and inversion of the dielectric matrix for the ckdtian of the screened Coulomb interaction are avoided. udgeof
both spatial and time-reversal symmetries leads to a signifreduction of the computational workload. As a proofriigple,
we have applied our approach to the calculation of the opaissorption spectra of bulk silicon, carbon diamond anidail
carbide. The convergence of numerical parameters, sutleakrhension of the k-point grid and the number of eigenpaes
to expand the dielectric screening, have been carefuludised. The accuracy of the Tamm-Dancoff approximatioiditk
systems has been confirmed by the explicit calculation crgibi®n spectra and sum rules. Our results exhibit goodesgeat
with previously published date® and with experimental spectfe2.

This work was supported by NSF CHE-0802907 grant and DOE B&82-06ER46262 grant and computer time was pro-
vided by NERSC and Teragrid under grant numbers TG-ASC09a0d TG-MCAO06N063. We gratefully acknowledge many
useful discussions with Deyu Lu, Andrea Dal Corso and Stefzeroni.

Appendix A: Time-reversal symmetry

In order to simplify the implementation described in Secitlis useful to exploit the time-reversal symmetry in théusion
of the Bethe-Salpeter equation, which consists in assumingr, t) = ve,+(r, —t) in Eq. 4. The use of this symmetry yields
a real perturbed density matrix in the frequency domain (&), and the actual number of k-points needed in Eqgs. 11-12 is
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Figure 5: Absorption spectrum of bulk silicon computed vitie nonsymmetric k-point mesh proposed in ReA Lorentzian broadening of
0.11 eV has been added to the curves. The different componeants afe represented by different colors.
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Figure 6: Absorption spectrum of carbon diamond as compwigddifferent Monkhorst-Pack k-point grids, compared lhe £xperimental
results from Ref?. We used 16 eigenvalues in Eq. 25. A Lorentzian broadeniigsafeV has been added to the computed curves.

decrease by aboit%. For the sake of simplicity we will first illustrate the timreversal symmetry result for a generic real
non-local Hamiltonian which satisfies the propeHyr,r’,t) = H(r,r’, —t). We consider the corresponding time-dependent
Schrddinger equation

A [ et )6 le’ (A1)
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Figure 7: Absorption spectrum of silicon carbide as comgpwiith an8 x 8 x 8 shifted Monkhorst-Pack k-point grid compared to the
experimental results from R&t. The results are shown for two different values of the Lariemt broadening.
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By time inversion one has:

0t 1) / (e, )k (r, —t)dr (A2)
and the complex conjugate of this equation is:
D _ / B, v £)6% (v, —)dr’. (A3)
By comparing Eqg. A3 with the time-dependent Schrodingeaéiqn corresponding te-k
d(b” /H r, v’ t)y_k(r,t)dr (A4)
we have that
Go-x(r,t) = P (r, —1); (A5)
by Fourier transforming Eqg. A5 one has:
Dok (T, w) = Py (r,w). (AB)

It is important to note thatlcopsex in Eq. 4 is a self-consistent Hamiltonian, namely it depesr¢he solution of the time-
dependent Schrddinger equat|on Under the assumpuon ALqtis easy to see that the COHSEX Hamiltonian under time-
reversal symmetry transforms && o usex (r,1',t) = Hiomepx (6,1, —t). This property is consistent with the derivation
of this appendix. Indeed for the COHSEX Ham|ltonian Eq. Alnkztbecome

Ak (r, —t . .
_z% - /HCOHSEX (v, 1", =) fuse(r, —t)dr’ = /HCOHSEX(rar/at)¢vk(ra —t)dr’ (A7)

and Eg. A3 remains unchanged, when a complex conjugatetapeis applied. Sinc&.x(r,t) = ¢, (r) + ¢, (r,t) the
properties in Egs. A5-A6 are still valid for perturbed oatist, namelyp! , (r,t) = ¢'%, (r, —t) and¢! _ k(r w) = ¢ (r,w).

For this reason, assuming the time-reversal symmetry ietbernal time-dependent potential, the perturbed densttyix in

Eq. 12 can be considered as real. Furthermore, since foy geeturbed orbital ak we can obtain the corresponding by

a simple complex conjugate operation, the total cost of #iewtation is significantly decreased (except of Ethpoint and the
k-points at the boundaries).
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