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An approach recently developed to solve the Bethe-Salpeterequation within density matrix perturbation the-
ory is extended to the calculation of optical spectra of periodic systems. This generalization requires numerical
integrations within the first Brillouin Zone, that are efficiently performed by exploiting point group symmetries.
The technique is applied to the calculation of the optical spectra of bulk Si, diamond C and cubic SiC. Numerical
convergence and the accuracy of the Tamm-Dancoff approximation are discussed in detail.

PACS numbers:

I. INTRODUCTION

The ability to compute optical absorption spectra from firstprinciples is of fundamental importance both to complementand
help interpret experiments and to predict the properties ofnew materials1,2. For example calculations of absorption spectra may
be instrumental in the search of photoelectrodes with optimal sunlight absorption for solar cell applications3,4. It is thus desirable
to develop theoretical methods and computational techniques to obtain absorption spectra that are both accurate and scalable to
systems with a large number of atoms.

Two widely used approaches to computeab initio optical absorption spectra are time-dependent functionaltheory (TDDFT)5

and many-body perturbation theory (MBPT)1. When local or semi-local exchange-correlation functionals are used, time-
dependent density functional theory may be applied to relatively large systems (up to thousands of electrons) and it hasbeen
proven to be accurate for several molecules. However, the most commonly used local approximations for the TDDFT kernel
poorly describe the optical properties of extended periodic solids and nanostructures1. Within MBPT, the GW approxima-
tion (where G indicates the single-particle Green’s function and W the screened Coulomb potential) has been used to compute
quasi-particle energies and the Bethe-Salpeter equation (BSE) solved to compute optical spectra. The GW/BSE approachis
computationally more expensive than TDDFT but it overcomessome of the limitations of local TDDFT, e.g., in the description
of excitons in periodic systems1,6–8and of charge transfer excitations in molecules9. Standard techniques to solve the BSE make
use of an electron-hole basis set7, that requires the explicit calculation of a large number ofunoccupied electronic states, and the
evaluation of a large number of exchange integrals between valence and conduction states.

Recently we have proposed a method to solve the BSE that does not require the explicit calculation of empty states9. This
approach combines ideas proposed in the context of TDDFT10,11 and techniques to represent the dielectric matrix12,13 based on
density functional perturbation theory14. The evaluation of the BSE kernel involves a number of orbitals equal to the number of
occupied states (Nv) and numerically it scales as ground-state Hartree-Fock calculations (see Sec. II). The approach developed in
Ref. 9 makes efficient use of iterative solvers and matrix by vectormultiplications are performed by using fast Fourier transform
techniques, without building and storing explicitly neither the BSE Hamiltonian nor dielectric matrices.

In this work we generalize the formalism of Ref.9 to periodic systems, and thus we include proper integrations over the first
Brillouin zone. The method is then applied to the study of theoptical properties of bulk silicon, carbon diamond and cubic
silicon carbide. The convergence with respect to several numerical parameters and the comparison with previous results6–8 are
extensively discussed.

The rest of the paper is organized as follow. In Sec. II the BSEformalism for periodic systems is presented within a density
matrix framework and the techniques used to avoid the explicit inclusion of empty states are illustrated. In Sec. III we show
how the symmetry of the system can be used to accelerate the solution of the BSE. In Sec. IV we present the application of the
method to the calculation of the optical absorption spectraof bulk silicon, carbon diamond and cubic silicon carbide, and we
compare our results with previous calculations. Sec. V contains our conclusions, and in Appendix A we give some details of the
implementation of time-reversal symmetry operations.

II. THEORY

The density matrix perturbation theory formulation of the BSE has been introduced in Ref.9. Here we present in detail its
extension to periodic systems. Because of several formal analogies, the derivation given below can be easily extended to the
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TDDFT formulation presented in Refs.10,11,15, including not only (semi-)local exchange-correlation functionals but also hybrid
functionals.

The starting point of our derivation is the quantum-Liouville equation for density matrices written in the Coulomb-hole plus
screened-exchange (COHSEX) approximation16:

i
dρ̂k(t)

dt
=

[
ĤCOHSEX(t), ρ̂k(t)

]
, (1)

where the square brackets indicate commutators and a hat denotes quantum-mechanical operators; within a real space represen-
tation,ρk(r, r′, t) =

∑
v φvk(r, t)φ

∗
vk(r

′, t) and the density matrix is given by:

ρ(r, r′, t) =
∑

k∈BZ

wkρk(r, r
′, t) =

∑

v

∑

k∈BZ

wkφvk(r, t)φ
∗
vk(r

′, t), (2)

k denotes a point in the Brillouin zone (BZ) andφvk(r, t) are single particle occupied Bloch orbitals. In the following we will
adopt the notationρ(r, t) to indicateρ(r, r, t). In Eq. 2 we have substituted the integral over the BZ with a summation over a
discrete set of k-points:

1

ΩBZ

∫

ΩBZ

dk −→
∑

k∈BZ

wk (3)

wherewk weighs the contribution of each k-pointk andΩBZ is the BZ volume.
The time-dependent quasi-particle Hamiltonian operator applied to a valence state, in Hartree atomic units and withinthe

COHSEX approximation is:
∫

ĤCOHSEX(r, r′, t)φvk(r
′, t) dr′ =

(
−
1

2
∇2 + vH(r, t) + vext(r, t)

)
φvk(r, t)

+

∫
ΣCOHSEX(r, r′, t)φvk(r

′, t)dr′, (4)

wherevext is an external time-dependent periodic potential,

vH(r) =

∫
ρ(r′, t)v(r, r′)dr′ (5)

is the Hartree potential, andΣCOHSEX = ΣCOH +ΣSEX is the self-energy in the COHSEX approximation
∫

ΣCOH(r, r′)φvk(r
′, t)dr′ =

1

2

∫
δ(r− r′)Wp(r

′, r;k)φvk(r
′, t)dr′ (6)

∫
ΣSEX(r, r′, t)φvk(r

′, t)dr′ = −
∑

v′

∑

k′∈BZ

∫
φv′k′(r, t)W (r′, r;k− k′)φ∗

v′k′(r′, t)φvk(r
′, t)dr′. (7)

In Eqs. 5-7v(r, r′) is the Coulomb potential,W (r′, r;k − k′) =
∫
ǫ−1(r′, r′′;k − k′)v(r′′, r)dr′′ is the statically screened

Coulomb interaction, andWp = W − v. We note that, since the Hamiltonian (Eq. 4) depends on the density matrixρ̂, the set
of equations 1 for differentk points are coupled; this would be so also for DFT Hamiltonians in the (semi-)local approximation,
that depend only on the charge density.

Linearization of Eq. (1) with respect tovext leads to

i
dρ̂′

k
(t)

dt
= L · ρ̂′

k
(t) + [v̂′ext(t), ρ̂

◦
k
] , (8)

L · ρ̂′k(t) =
[
Ĥ◦

COHSEX , ρ̂′k(t)
]
+ [v̂′H [ρ̂′](t), ρ̂◦k] +

[
Σ̂′[ρ̂′](t), ρ̂◦k

]
, (9)

where variables with superscript “◦” represent unperturbed quantities, and those with prime denote linear variations. Within a
real space representation, the charge responseρ̂′ = ρ̂− ρ̂◦ is given by

ρ′(r, r′, t) =
∑

k∈BZ

wkρ
′
k(r, r

′, t) =
∑

v

∑

k∈BZ

wk [φ
◦
vk(r)φ

′∗
vk(r

′, t) + φ′
vk(r, t)φ

◦∗
vk(r

′)] . (10)

Eq. 10 denotes the linear variation of the density matrix andρ̂′
k
= ρ̂k − ρ̂◦

k
is the contribution tôρ′ of the k-pointk. We note

that v̂′H andΣ̂′ depend on the perturbed density matrixρ̂′. In Eq. 9 a non-Hermitian operatorL acting onρ̂′
k

has been defined,
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which is known as Liouvillian super-operator9–11, as its action is defined on a space of operators. By Fourier transforming Eq. 8
into the frequency domain, one obtains

(ω − L) · ρ̂′
k
(ω) = [v̂′ext(ω), ρ̂

◦
k
] . (11)

This equation, derived here in the context of the BSE, is formally the same within the density functional perturbation theory
(DFPT) formulation of TDDFT (see e.g. Eq. (14) in Ref. 11), but a different definition of the LiouvillianL is used in the two
cases.

The solution of Eq. 11 yields the perturbed density matrix inthe frequency domain:

ρ′(r, r′, ω) =
∑

k∈BZ

wkρ
′
k
(r, r′, ω) =

∑

v

∑

k∈BZ

wk [φ
◦
vk(r)φ

′∗
vk(r

′,−ω) + φ′
vk(r, ω)φ

◦∗
vk(r

′)] . (12)

Eq. 12 shows thatρ′(ω) is fully determined by the set of the Nv unperturbed occupied statesφ◦∗
vk and by the two sets of Nv

perturbed orbitalsφ′∗
vk(r

′,−ω) andφ′
vk(r, ω), orthogonal to the occupied state subspace. We note thatρ′(ω), unlikeρ′(t) in

Eq. 10, is a non-Hermitian operator. In order to simplify thenumerical implementation, we assume time-reversal symmetry holds
by imposingv′ext(r, t) = v′ext(r,−t) in Eq. 9. As a consequencev′ext(r, ω) is a real function andφ′

v−k
(r, t) = φ′∗

vk(r,−t),
implying φ′

v−k
(r, ω) = φ′∗

vk(r, ω) andφ′
v−k

(r,−ω) = φ′∗
vk(r,−ω). Therefore, assumingv′ext(r, t) = v′ext(r,−t) yields a

realρ′(ω). This assumption does not limit the generality of our approach, since we are interested in computing the macroscopic
dielectric function of bulk systems (see Eqs. 13-16 below);the latter is an intrinsic property of the system and does notdepend
on the specific time orω dependence of the applied electric field. Furthermore sincewe can perform thek ↔ −k transformation
by a complex conjugate operation, the total number of k-points included in Eqs. 11-12 can be significantly reduced. Details on
the time-reversal symmetry operations are given in Appendix A.

The absorption spectrum of a solid is related to the imaginary part of themacroscopic dielectric function εM defined by the
equation (see also14):

E0i(ω) = Ei(ω) + 4πPi(ω) = Σjε
ij
M (ω)Ej(ω) (13)

where the indexesi andj indicate Cartesian components,E0 is the applied external electric field,E is the screened field andP
is the electronic polarization induced byE. In order to computeεM , it is convenient to start by setting the value of the screened
electric fieldE14. By introducing the potential

v′ext = −E(ω) · r (14)

in Eq. 11, and expressing the polarization in terms of the density operator,

Pi(ω) = −
1

V

∑

k∈BZ

wkTr(r̂iρ̂
′
k) = −

1

V
Tr(r̂iρ̂

′), (15)

from Eq. 13 one has

ε
ij
M (ω) = δij −

4π

V

∑

k∈BZ

wk

〈
r̂i|(ω − L+ iη)−1 · [r̂j , ρ̂

◦
k
]
〉
, (16)

whereV is the crystal volume,η is a positive infinitesimal, and we have written the scalar product of two operatorsA andB as
〈Â|B̂〉 ≡ Tr(Â†B̂). As already discussed in the Appendix of Ref.9, the definition ofǫM in Eq. 16 is equivalent to the definition
of the BSE macroscopic dielectric function given in Ref.1 (Eqs. 2.23 and B26). However the formulation of Ref.9 was so far
applicable only to molecules. In addition, the position operator in Eq. 14 is ill defined in periodic boundary conditions; this
problem can be overcome within perturbation theory, following Refs.14,17.

The numerical solution of Eq. 11 and Eq. 16 requires a basis set for ρ̂′. From Eq. 12 it follows that only the elements ofρ̂′

between unperturbed occupied and empty orbitals are different from zero. The use of those orbitals as a basis set leads tothe so
called electron-hole (e-h) representation, widely used inthe literature to solve the BSE6–8. This approach requires the explicit
calculation of empty electronic states and convergence with respect to their number has to be carefully checked. By using
the projector operatorŝQk onto the unperturbed empty state subspace, explicit calculations of empty states may be avoided9:
Q̂k = Î − P̂k = Î −

∑
v |φ

◦
vk〉〈φ

◦
vk|, whereP̂k is the projector onto the occupied state subspace for a fixedk in the first BZ

andÎ is the identity operator. The evaluation ofQ̂k does not require the explicit calculation of empty states. Since Bloch states
corresponding to different k-points are orthogonal, the projection can be preformed independently for each k-point. Within this
formalism a generic operator̂A can be represented by a set of 2×Nv×Nk orbitals that are defined in the following way:

|avk〉 = Q̂k Â |φ◦
vk〉, (17)

〈bvk| = 〈φ◦
vk| Â Q̂k, (18)
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where the indexv runs from 1 to the number of occupied bands Nv, whilek is a point of the discrete mesh used to perform the
integral in the first BZ. IfÂ = ρ̂′ we haveavk(r) = φ′

vk(r, ω) andbvk(r) = φ′
vk(r,−ω). Within this representation the operator

L takes the form:

L =

(
D + 2K1x −K1d 2K2x −K2d

−2K2x + K2d −D − 2K1x +K1d

)
, (19)

whereD, the exchange termsK1x andK2x and the direct termsK1d andK2d are defined as:

∑

v′

∑

k′∈BZ

Dvk,v′k′ |av′k′〉 =
∑

v′

∑

k′∈BZ

(Ĥ◦
COHSEX − ǫv′k′) δvv′ δkk′ |av′k′〉, (20)

∑

v′

∑

k′∈BZ

K1x
vk,v′k′ |av′k′〉 =

∑

v′

∑

k′∈BZ

wk′Q̂k

(∫
1

|r− r′|
φ◦∗
v′k′(r′)av′k′(r′)dr′

)
|φ◦

vk〉, (21)

∑

v′

∑

k′∈BZ

K2x
vk,v′k′ |bv′k′〉 =

∑

v′

∑

k′∈BZ

wk′Q̂k

(∫
1

|r− r′|
b∗v′k′(r′)φ◦

v′k′(r′)dr′
)
|φ◦

vk〉, (22)

∑

v′

∑

k′∈BZ

K1d
vk,v′k′ |av′k′〉 =

∑

v′

∑

k′∈BZ

wk′Q̂k

(∫
W (r, r′;k− k′)φ◦∗

v′k′(r′)φ◦
vk(r

′)dr′
)
|av′k′〉, (23)

∑

v′

∑

k′∈BZ

K2d
vk,v′k′ |bv′k′〉 =

∑

v′

∑

k′∈BZ

wk′Q̂k

(∫
W (r, r′;k− k′)b∗v′k′(r′)φ◦

vk(r
′)dr′

)
|φ◦

v′k′〉. (24)

The operatorD describes bare single particle ground-state excitations,theK1x andK2x terms include so-called local field effects
and theK1d andK2d terms describe electron-hole interactions. The integralsentering the definition ofK1d andK2d include
divergent terms in reciprocal space; in our implementationthese divergences are integrated by using the method proposed in
Refs.18,19.

The formalism described here to solve the BSE is equivalent to a time-dependent COHSEX within linear response; the
COHSEX self-energy enters both in the definition of the bare independent quasi-particle (QP) ground-state excitationsin D and
in theK1d andK2d components of the kernel. In the linearization procedure used in Eqs. 8-9, the dependence ofW (which
entersΣCOHSEX ) on the density matrix is neglected20; this implies that only the linearizedΣSEX contributes toK1d andK2d.
The COHSEX approximation is known to overestimate quasi-particle gaps21, and single particle states and eigenvalues obtained
within the GW approximation are usually preferred as starting points for BSE calculations. Within our current implementation
Ĥ◦

QP (Ĥ◦
COHSEX ) is approximated either by the Kohn-Sham (KS) Hamiltonian whose gap is corrected by the use of a scissor

shift ∆ (Ĥ◦
QP = Ĥ◦

LDA + ∆Q̂k) or by including several GW corrected eigenvalues using Eqs. 24 − 25 in Ref.9; the scissor
approximation is accurate for the s-p bonded solids considered in this work22. The introduction of a more general scheme to
include quasi-particle corrections within our formulation of the BSE will be the subject of future work. For example, the use in
Eq. 20 of the enhanced COHSEX approximation presented in Ref.23 may yield quasi-particle corrections of accuracy similar to
that of the GW approximation, in a way fully consistent with our formulation.

The evaluation of the integrals defined by Eqs. 23-24 is the most expensive part in a BSE calculation. We note that the number
of orbitals involved in the definition ofK1d andK2d is equal to the number of occupied states. Hence the scalability of our
approach is the same as that of a ground state Hartree-Fock calculation (assumingW = v for simplicity; the scalability of
the calculation of the dielectric matrix is discussed in detail in Ref.12). Specifically, in a plane-wave (PW) implementation the
evaluation ofK1d andK2d scales asα[N2

v ×N2

k
×NPW × logNPW ], whereNPW is the size of the plane-wave basis set andα is

constant with respect to system size; this is exactly the same scaling as that of calculations of the Hartree-Fock exact-exchange;
as shown in the next section the computational complexity can be further decreased toα[N2

v ×Nk ×NkI
×NPW × logNPW ],

whereNkI
is the number of k-points in the irreducible Brillouin zone,by exploiting the symmetry operations of the system

point group. In general the constant (or pre-factor)α of a BSE calculation is much larger than that of a ground stateHartree-
Fock calculation. For example for the systems studied in this work, a number of Lanczos iterations between 1000 and 2000 is
necessary to achieve convergence and for each iteration four operations are performed, with the same complexity of Hartree-
Fock exact-exchange calculations (only one of such operations is required within the Tamm-Dancoff approximation). Within a
electron-hole approach, the evaluation ofK1d andK2d scales as [Nv ×Nc ×N2

k
×NPW × logNPW ]. Since in generalNc is

much larger thanNv, the approach presented in this work is more efficient than anelectron-hole approach and increasingly so
for large systems. Within a matrix representation, the dimension ofL (Eq. 19) is2×Nv ×Nc×Nk in an e-h approach. Only in
cases whereNc andNk can be chosen small enough, the matrixL can be built explicitly and kept in memory for subsequent use
(such as, i.e., the calculation of the dielectric tensor using the Lanczos algorithm). StoringL clearly allows for a large decrease
in the pre-factorα of e-h BSE calculations, with respect to those presented here. However explicit calculation and storage of
L are possible only for relatively small systems, as the required memory becomes rapidly unaffordable for large values ofNc
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andNk. Within the density matrix perturbation theory approach ofthis work, the dimension ofL is 2 × Nv × NPW × Nk;
if one choosesNc to be the total number of conduction states, sinceNc ≫ Nv andNPW = Nc + Nv ≈ Nc, the matrices
representingL in the density matrix perturbation theory approach and in the e-h approach have similar dimensions15. NPW

is usually a large number, and thus within our method the matrix L is never built explicitly. Our approach is instead based on
iterative calculations, where the application ofL to a generic vector is performed by taking advantage of procedures analogous
to those used in applying the Hamiltonian to wavefunctions in ground state calculations.

In the evaluation ofK1d andK2d, one needs to evaluate the inverse dielectric matrixǫ−1 entering the definition of the screened
Coulomb interactionW (r′, r;q) =

∫
ǫ−1(r′, r′′;q)v(r′′, r)dr′′ (whereq is a generic wave vector). Also in this case the explicit

calculation of empty electronic states can be avoided by using DFPT. In particular, following Refs. [12,13], we use an eigenvalue
decomposition of the symmetrized dielectric matrix24 ǫ̃ in the random-phase approximation (RPA), and an iterative algorithm
to obtain eigenvalues and eigenvectors: such algorithm involves the evaluation of the action ofǫ̃ on trial potentials. Finally no
inversion of the dielectric matrix is necessary as a spectral decomposition of̃ǫ−1 is easily obtained from the eigenvalues (λi) and
eigenvectors (̃vi) of ǫ̃:

ǫ̃ −1(q) = Î +

N∑

i=1

|ṽi(q)〉(λ
−1

i (q) − 1)〈ṽi(q)|, (25)

As shown in Ref.9 and in Sec. IV below, convergence of computed spectra can be achieved with a small numberN of eigenpairs
included in Eq. 25. Indeed it has been shown that the eigenvaluesλi are always greater than or equal to 124 and that for a variety
of systems(λ−1

i − 1) decays rapidly to zero, as the eigenvalue index increases12,13.

III. USE OF SYMMETRIES IN THE SOLUTION OF THE BETHE-SALPETER EQUATION

As shown in the previous section, the solution of the BSE for crystalline materials (and in general for periodic systems)
involves the evaluation of integrals over a grid in the first Brillouin zone. Our implementation exploits the symmetry ofthe system
to reduce the computational time and the memory requirements of the calculations. In a crystal the most general symmetry
operation is given by a combination of a rotationR and a fractional translationf (denoted by{R|f}). The set of symmetry
operations{R|f} constitute the space group of the crystal. By using rotationsR, we can express a generic point in the BZ as
k = RkI , wherekI belongs to the irreducible BZ (IBZ). The unperturbed Bloch wavefunctions satisfy the following equation25:

φ◦
vk(r) = φ◦

vRkI
(r) = φ◦

vkI
(R−1r− f). (26)

The perturbed orbitals implicitly depend on the direction of the electric field (Eq. 14). For this reason they satisfy therelationship:

φ′i
vk(r, ω) = φ′i

vRkI
(r, ω) =

∑

j

Rijφ
′j
vkI

(R−1r− f , ω) (27)

wherei andj indicate Cartesian coordinates; the same relationship holds for theφ′∗
vk(r,−ω) perturbed orbitals. These properties

can be used to improve the efficiency of the numerical solution of the equations described in the previous section. We first
consider the calculation ofPi in Eq. 15. From the definition of̂ρ′(ω) in Eq. 12 we have

Pij(ω) = −
1

V

∑

k∈BZ

wkTr(r̂iρ̂
′j
k
) = −

1

V

∫
riρ

′j(r, ω)dr, (28)

where we have emphasized the dependence ofPi andρ̂′
k

on the direction of the electric field, corresponding to the j-th Cartesian
coordinate. By defining

̺′j(r, ω) =
∑

kI∈IBZ

wkI
ρ′

j
kI
(r, ω) (29)

from Eqs. 26-27 and Eq. 12, we have

ρ′j(r, ω) =
1

NS

∑

R

∑

l

Rjl̺
′l(R−1r− f , ω) (30)

whereNS indicates the number of symmetry operations of the space group of the system; finally one has:

Pij = −
1

V

1

NS

∑

R

∑

l

Rjl

∫
ri̺

′l(R−1r− f , ω)dr

= −
1

V

1

NS

∑

R

∑

l,m

RimRjl

∫
rm̺′l(r, ω)dr. (31)
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The set of Eqs. 29-31 shows that the perturbed density matrixρ̂′ (and consequently the macroscopic dielectric function) can be
computed by solving Eq. 11 only for the k-points in the irreducible Brillouin zone instead of the full Brillouin zone. Symmetry
operations can be further exploited in the calculation of theK1x andK2x components of the kernel defined in Eqs. 21-22. To
this end in Eq. 21 we define:

n′j(r′) =
∑

v′

∑

k′∈BZ

wk′φ◦∗
v′k′(r′)a

j
v′k′(r

′) =
∑

k′∈BZ

wk′n′j
k′(r

′), (32)

where the orbitalsajvk(r) satisfy Eq. 27 (where for simplicity we have omitted the implicit dependence on thej-th Cartesian
coordinate). Likewise in Eq. 29, we define

ñ′j(r′) =
∑

kI∈IBZ

wkI
n′j

kI
(r′) (33)

and finally we have

n′j(r′) =
1

NS

∑

R

∑

l

Rjlñ
′l(R−1r′ − f). (34)

Eq. 33 implies that, in order to evaluate the term in parentheses in Eq. 21 (and in Eq. 22), it is necessary to consider only the
orbitals corresponding tok′ points inside the irreducible BZ. Such simplification cannot be exploited in a straightforward manner
for the calculation ofK1d andK2d as defined in Eqs. 23-24, where one needs to sumk′ over the full BZ.

In order to calculateρ′j(r, ω), the linear system of Eq. 11 is iteratively solved using the non-Hermitian Lanczos algorithm
introduced in Ref.11. To apply the required symmetrization operations (i.e. Eq.34), three simultaneous iterative chains are
performed at the same time, corresponding to the three directions of the perturbing electric field.

IV. APPLICATIONS TO BULK SILICON, CARBON DIAMOND AND SILICON CARBIDE

The formalism presented in the previous sections has been implemented in the framework of the Quantum Espresso (QE)
package, that uses plane-waves as a basis set and pseudopotentials26. The quasi-particle Hamiltonian̂H◦ in Eq. 20 is approxi-
mated byĤKS +∆Q̂k, whereĤKS is the Kohn-Sham (KS) Hamiltonian and∆ is the difference between the quasi-particle gap
and the KS gap (scissor approximation). From quasi-particle (QP) calculations at the GW level of theory16 it is known that the
scissor approximation is accurate for the description of the band structure of several sp-bonded bulk systems22.

We computed the absorption spectra of solids as the imaginary part of the macroscopic dielectric functionεM ( Eq. 16). In
generalεM is a tensor but in the specific cases studied here this tensor is diagonal and the diagonal elements all have the same
value.

We first discuss the absorption spectrum of bulk silicon. Theground state calculation has been performed using the local
density approximation (LDA) in the Perdew-Zunger27 parametrization and the pseudopotential was taken from theQuantum
Espresso library28. We used a lattice constant optimized at the LDA level of theory (10.20 a0), as given in Ref.29. The value of
the scissor shift∆ is determined as the difference of the experimental value ofthe minimum direct QP gap at theΓ point (3.4
eV)30 and the LDA gap at the same point (2.57 eV). The use of a computed G0W0 quasi-particle gap would not significantly
affect our results, since the G0W0 approximation reproduces the experimental value within 0.1 eV22. A cutoff of 18 Ry was
used to expand the ground-state wavefunctions as well as thedielectric matrix (in Eq. 25); all the empty bands describedby this
cut-off are implicitly included in our calculation, corresponding to at least 328 empty bands per k-point. In Refs.6,7, as few as
4 conduction states were considered sufficient to reasonably converge the spectrum of bulk silicon. However, even in this case,
our approach has a few advantages over the traditional e-h approach: the convergence with respect to the number of empty states
does not need to be tested; the number of perturbed orbitals included in our calculations is equal to Nv(=4); due to the large
amount of e-h pairs included implicitly in our approach the spectrum can be computed up to high energy and the validity of the
f-sum rule can be easily verified (see below).

As shown in Ref.31 the convergence of the static macroscopic dielectric constant (head of the dielectric matrix) is rather slow
with respect to the k-points included in the first BZ. In orderto integrate the BSE we use Monkhorst-Pack (M-P) grids of special
k-points as implemented in QE32,33. As shown in the early work of Benedictet al.8, in order to improve the convergence of
computed spectra it is useful to shift the grid from the origin (Γ point). In the QE implementation, automatically generated
k-point grids centered atΓ may be shifted by

(
1

2n
b1 +

1

2n
b2 +

1

2n
b3

)
, wheren is the grid dimension andb1, b2 andb3 are

reciprocal lattice primitive vectors. Since in the face-centered cubic lattice after such shift the k-point grid does not have the
full symmetry of the crystal, additional points are generated, leading to a mesh with four times the number of k-points asin the
original grid. This fact can be understood in the simple caseof a single k-point1× 1× 1 mesh shifted in

(
1

2
b1 +

1

2
b2 +

1

2
b3

)
.
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By applying all the symmetry operations (48 for the systems considered in this work) we can generate additional k-points1

2
b1,

1

2
b2, 1

2
b3 equivalent by symmetry. This leads to a mesh with four times the k-points as the original1 × 1× 1 mesh. Of course

only the k-point
(
1

2
b1 +

1

2
b2 +

1

2
b3

)
is included in the IBZ and this property is exploited to accelerate the calculations, as

discussed in Sec. III. If the single k-point is shifted by a random vector in the BZ, the application of the symmetry operations
may lead up to 48 different k-points in the full BZ (this is thenumber of symmetry operations of the point group of the diamond
lattice). Similar arguments can be applied to the case of a k-point mesh of larger dimensions. The convergence with respect to
the dimension of the grid is discussed below.

In order to test the computational parameters and approximations entering the solution of the BSE, we have first performed
calculations for Si with a4×4×4mesh with the origin shifted by

(
1

8
b1 +

1

8
b2 +

1

8
b3

)
. This grid is then symmetrized, leading to

256 k-points in the full BZ and10 in the IBZ. This mesh is sufficient to obtain accurate ground state properties but does not yield
converged results for absorption spectra; nevertheless itis sufficiently accurate for the purpose of testing additional numerical
parameters and approximations involved in the solution of the BSE. In Fig. 1 we show the convergence of the absorption spectrum
of bulk silicon as a function of the number of eigenvalues andeigenvectors used in Eq. 25. The convergence is rapid and no
difference is present between the spectra obtained using 16and 48 eigenvalues. We note that the dimension of the full matrix is
2733, that is much bigger than the small number of eigenpotentials used here for its representation. In Fig. 2 we compare results
obtained with and without the Tamm-Dancoff approximation (TDA). Minor differences are observed only in the high energy
part of the spectrum. We have also computed the f-sum rule forthese spectra and found that the full BSE fulfills97% of the
f-sum rule while the TDA spectrum yields107%. The TDA appears to be reliable for the optical properties ofbulk systems, as
widely accepted since the early use of the BSE7. However the TDA may break down for the optical spectra of molecules and
nanostructures9,34 and for the electron energy loss spectra of bulk systems35. In the following, calculations on larger k-point
grids are carried out within the TDA approximation.

We now consider the convergence of the spectrum of bulk silicon as a function of the dimension of the k-point grid used in
the calculations. In Fig. 3 we show the results for three different Monkhorst-Pack (M-P) grids32 of dimensionn × n × n with
n = 8, 10, and12, respectively, and we compare them with the experimental spectrum36. In order to improve the convergence,
the origin of those grids is shifted by

(
1

2n
b1 +

1

2n
b2 +

1

2n
b3

)
. After symmetrization the total number of k-points in the grid

is 4 × n × n × n. Our calculations give accurate results for the position and intensity of the two main peaks, compared to
experiment, with an error of at most0.12 eV for the first (E1) transition. However in the computed spectra we obtain a weak
additional peak between the two main transitions which has astrong dependence on the k-point mesh used in the calculation.
This extra peak was already present in some of the earlier BSEcalculations of the optical spectrum of bulk silicon6,7 and in
recent publications37, as shown in Fig. 4. When the same k-point mesh is used, our approach reproduces the same result of a
well converged electron-hole calculation (see panel b of Fig. 4).

Since the early applications of the BSE to the calculation ofspectra of bulk systems, it was suggested that the use of M-P grids
was likely responsible for the appearance of spurious peaksin the spectra38. It was also suggested that the use of grids shifted
off the high symmetry directions8 or randomly distributed k-points may help avoid the appearance of spurious spectral features.
For example in Ref.38 the example of an independent particle spectrum computed with 400000 k-points was presented, showing
improved accuracy. However such a large mesh is not affordable in the solution of the BSE for realistic solids. For the sake
of completeness, in this work we have also considered the useof a k-point grid off symmetry, obtained by shifting the origin
of a regular grid at1

64
b1 +

1

32
b2 +

3

64
b3, as suggested in Refs8,38; in this case the grid is not symmetrized and the formalism

described in Sec. III to accelerate the calculations cannotbe applied (only the time-reversal symmetry is used, as explained in
Appendix A). The results are shown in Fig. 5 for some of the components of the dielectric tensor. Since the grid does not have
the full symmetry of the crystal, the diagonal components ofεM are different from each other, and the off-diagonal components
of the tensor are different from zero. In Ref.8 the perturbation was applied along the(1, 1, 1) direction, amounting to an average
of all the components of the tensor. This average eliminatesthe spurious peaks, which, however, are still present on thexx and
yy diagonal components of the tensor (see Fig. 5). In this work, we have not considered random k-points in the integrationof the
BSE. In the literature, the BSE spectrum of silicon has already been computed using 1000 k-points randomly distributed over
the BZ, finding a shoulder instead of a peak between the two main transitions (see Fig.2 of Ref.39). Since a random distribution
of k-points does not have the lattice symmetry, an effect analogous to the one shown in Fig. 5 might occur also in this case,
especially for a small set of k-points. We note that a systematic test of the convergence of random distributions of k points
or grids shifted off-symmetry can not take advantage of the symmetry to simplify the calculations and would become rapidly
impractical when increasing the size of the sampling.

As a further application of our technique we have computed the absorption spectrum of carbon diamond. Also in this case
the ground state calculation was performed using the local density approximation (LDA) and the pseudopotentials were taken
from the Quantum Espresso library28. The lattice parameter was set to the experimental value of 6.74 a040. A cutoff of 40 Ry
was used to expand the wavefunctions and more than 300 empty band are implicitly included in our calculation. The value of
the scissor shift∆ is obtained as the difference between the value of the experimental minimum direct gap (7.3 eV)41 and the
LDA minimum direct gap (5.66 eV). As shown in Ref.22 the G0W0 quasi-particle and the experimental gap differ by 0.2 eV. As
suggested in Ref.8 a 6.4% stretch of the valence band was applied, to correct for the underestimate of the valence band width
given by the LDA.
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Figure 1: Absorption spectrum of bulk silicon computed as a function of the number of eigenvalues and eigenvectors used in the spectral
decomposition of the dielectric matrix (Eq. 25). A mesh of 256 k-points in the BZ corresponding to10 k-points in the IBZ has been used. A
Lorentzian broadening of0.24 eV was added to the curves.

Figure 2: Absorption spectrum of bulk silicon computed withand without the Tamm-Dancoff approximation (TDA). A mesh of256 k-points
in the BZ corresponding to10 k-points in the IBZ has been used. A Lorentzian broadening of0.24 eV was added to the curves. We used 16
eigenvalues in Eq. 25 (see Fig. 1).

We tested the convergence of our results with respect to the number of eigenpairs included in Eq. 25 and the accuracy of the
Tamm-Dancoff approximation. The conclusions are similar to the case of bulk silicon. In Fig. 6 we show the results for the
calculated absorption spectrum of carbon diamond for two different k-point grids and we compare them with the experimental
curve (from Ref.42). In this case the convergence with respect to the dimensionof the k-point grid is faster than for bulk silicon;
however, following Ref.43 a larger Lorentzian broadening than in bulk Si was used for the computed spectrum (0.57 eV), which
overall has less features than that of Si. The comparison with the experimental data is satisfactory, with a shift in the main peak
of about 0.1 eV.

As a final example we consider the absorption spectrum of silicon carbide in the zincblende structure. The calculation was
performed in the local density approximation with the lattice parameter set to the experimental value of 8.24 a0

40. A cutoff
of 40 Ry was used to expand the wavefunctions, correspondingto the implicit inclusion of more than 580 empty states. The
value of the scissor shift is obtained as the difference between the experimental gap of 2.39 eV40 and the LDA gap of 1.30
eV. In Fig. 7 we show the BSE spectrum computed for a8 × 8 × 8 shifted k-point mesh and the experimental curve from
Ref.44. Overall the agreement between theory and experiment is good and the main peak position is reproduced with an error of
about 0.15 eV. If a Lorentzian broadening of 0.57 is used, as in the case of diamond, a good agreement between the computed
and experimental intensity is found, but the first shoulder of the experimental spectrum is not visible. This shoulder becomes
detectable in the spectrum computed using a 0.27 eV broadening. In this case the intensity of the main peak is overestimated;
overall our computed spectra are similar to previous results in the literature39,45.



9

Figure 3: Absorption spectrum of bulk silicon computed withdifferent Monkhorst-Pack k-point grids, compared to the experimental results36.
A Lorentzian broadening of0.11 eV has been added to the computed curves.

Figure 4: (a) Comparison of the bulk silicon spectrum (computed with a12× 12× 12 shifted k-grid) with some of the early BSE calculations
(Ref.6 and Ref.7). In Ref.6 a grid containing 2048 k-points in the BZ was used while in Ref.7 a 32 k-point grid was extrapolated up to 500
k-points. (b) Comparison of the bulk silicon spectrum computed using an8 × 8 × 8 shifted k-grid using our method and the electron-hole
implementation of the Yambo code37; in this case an energy dependent broadening was used in order to compare with Ref.37 (in the energy
range shown in the figure the broadening increases linearly from 0.02 eV to 0.15 eV as a function ofω).

V. CONCLUSIONS

In this work we have presented the extension to periodic systems of the density matrix perturbation theory formalism9 for
the calculation of optical absorption spectra. Within thisapproach the explicit calculation of empty electronic states and the
storage and inversion of the dielectric matrix for the calculation of the screened Coulomb interaction are avoided. Theuse of
both spatial and time-reversal symmetries leads to a significant reduction of the computational workload. As a proof of principle,
we have applied our approach to the calculation of the optical absorption spectra of bulk silicon, carbon diamond and silicon
carbide. The convergence of numerical parameters, such as the dimension of the k-point grid and the number of eigenpairsused
to expand the dielectric screening, have been carefully discussed. The accuracy of the Tamm-Dancoff approximation forbulk
systems has been confirmed by the explicit calculation of absorption spectra and sum rules. Our results exhibit good agreement
with previously published data6–8 and with experimental spectra36,42.

This work was supported by NSF CHE-0802907 grant and DOE BES-FG02-06ER46262 grant and computer time was pro-
vided by NERSC and Teragrid under grant numbers TG-ASC090004 and TG-MCA06N063. We gratefully acknowledge many
useful discussions with Deyu Lu, Andrea Dal Corso and Stefano Baroni.

Appendix A: Time-reversal symmetry

In order to simplify the implementation described in Sec. II, it is useful to exploit the time-reversal symmetry in the solution
of the Bethe-Salpeter equation, which consists in assumingvext(r, t) = vext(r,−t) in Eq. 4. The use of this symmetry yields
a real perturbed density matrix in the frequency domain (Eq.12), and the actual number of k-points needed in Eqs. 11-12 is
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Figure 5: Absorption spectrum of bulk silicon computed withthe nonsymmetric k-point mesh proposed in Ref.8. A Lorentzian broadening of
0.11 eV has been added to the curves. The different components ofεM are represented by different colors.

Figure 6: Absorption spectrum of carbon diamond as computedwith different Monkhorst-Pack k-point grids, compared to the experimental
results from Ref.42. We used 16 eigenvalues in Eq. 25. A Lorentzian broadening of0.57 eV has been added to the computed curves.

decrease by about50%. For the sake of simplicity we will first illustrate the time-reversal symmetry result for a generic real
non-local Hamiltonian which satisfies the propertyĤ(r, r′, t) = Ĥ(r, r′,−t). We consider the corresponding time-dependent
Schrödinger equation

i
dφvk(r, t)

dt
=

∫
Ĥ(r, r′, t)φvk(r

′, t)dr′. (A1)

Figure 7: Absorption spectrum of silicon carbide as computed with an 8 × 8 × 8 shifted Monkhorst-Pack k-point grid compared to the
experimental results from Ref.44. The results are shown for two different values of the Lorentzian broadening.
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By time inversion one has:

−i
dφvk(r,−t)

dt
=

∫
Ĥ(r, r′, t)φvk(r,−t)dr′ (A2)

and the complex conjugate of this equation is:

i
dφ∗

vk(r,−t)

dt
=

∫
Ĥ(r, r′, t)φ∗

vk(r,−t)dr′. (A3)

By comparing Eq. A3 with the time-dependent Schrödinger equation corresponding to−k

i
dφv−k(r, t)

dt
=

∫
Ĥ(r, r′, t)φv−k(r, t)dr

′ (A4)

we have that

φv−k(r, t) = φ∗
vk(r,−t); (A5)

by Fourier transforming Eq. A5 one has:

φv−k(r, ω) = φ∗
vk(r, ω). (A6)

It is important to note that̂HCOHSEX in Eq. 4 is a self-consistent Hamiltonian, namely it dependson the solution of the time-
dependent Schrödinger equation. Under the assumption of Eq. A5, it is easy to see that the COHSEX Hamiltonian under time-
reversal symmetry transforms aŝHCOHSEX(r, r′, t) = Ĥ∗

COHSEX(r, r′,−t). This property is consistent with the derivation
of this appendix. Indeed for the COHSEX Hamiltonian Eq. A2 would become

−i
dφvk(r,−t)

dt
=

∫
ĤCOHSEX(r, r′,−t)φvk(r,−t)dr′ =

∫
Ĥ∗

COHSEX(r, r′, t)φvk(r,−t)dr′ (A7)

and Eq. A3 remains unchanged, when a complex conjugate operation is applied. Sinceφvk(r, t) = φ◦
vk(r) + φ′

vk(r, t) the
properties in Eqs. A5-A6 are still valid for perturbed orbitals, namelyφ′

v−k
(r, t) = φ′∗

vk(r,−t) andφ′
v−k

(r, ω) = φ′∗
vk(r, ω).

For this reason, assuming the time-reversal symmetry in theexternal time-dependent potential, the perturbed densitymatrix in
Eq. 12 can be considered as real. Furthermore, since for every perturbed orbital atk we can obtain the corresponding−k by
a simple complex conjugate operation, the total cost of the calculation is significantly decreased (except of theΓ point and the
k-points at the boundaries).
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