
Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year

Manuscript Category

Genome analysis

An efficient graph kernel method for non-coding

RNA functional prediction.

Nicolò Navarin 1 and Fabrizio Costa 2,3∗

1Department of Mathematics, University of Padova, via Trieste 63, 35121 Padova, Italy
2Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, D-79110 Freiburg, Germany
3Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK

∗To whom correspondence should be addressed.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The importance of RNA protein-coding gene regulation is by now well appreciated. Non-

coding RNAs (ncRNAs) are known to regulate gene expression at practically every stage, ranging from

chromatin packaging to mRNA translation. However the functional characterization of specific instances

remains a challenging task in genome scale settings. For this reason, automatic annotation approaches

are of interest. Existing computational methods are either efficient but non accurate or they offer increased

precision, but present scalability problems.

Results: In this paper we present a predictive system based on kernel methods, a type of machine learning

algorithm grounded in statistical learning theory. We employ a flexible graph encoding to preserve multiple

structural hypothesis and exploit recent advances in representation and model induction to scale to large

data volumes. Experimental results on tens of thousands of ncRNA sequences available from the Rfam

database indicate that we can not only improve upon state-of-the-art predictors, but also achieve speedups

of several orders of magnitude.

Availability: The code is available from http://www.bioinf.uni-freiburg.de/~costa/EDeN.tgz.

Contact: nnavarin@math.unipd.it, costa@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the early 2000s, a systematic analysis of transcription in human

cells (Willingham and Gingeras, 2006) found a significant discrepancy

between the observed transcriptional activity and the activity predicted

for protein- coding genes. It was shown that up to 90% of the genome

was being transcribed, but that only a minor portion of RNA transcripts

(1.5%) was encoding for protein open reading frames. This finding was

suggesting the presence of a ”hidden layer” of regulatory elements within

the human and other eukaryal genomes: the set of such RNA sequences

was termed non-coding RNAs (ncRNAs). Today it is known that there

exist many types of ncRNAs that have catalytic functions (like enzymes)

or that play key roles in both normal cellular processes and disease states.

mapping ncRNAs with The functional annotation of ncRNAs, either by in

silico or by experimental approaches, has since become a fundamental

task in bioinformatics and biology. The identification of ncRNAs is

however a harder task than gene identification since one cannot rely on

the presence of strong statistical signals such as protein open reading

frames. In addition, the conservation of sequence information in ncRNAs

is subject to a lower evolutionary pressure than in proteins. A significant

component of the functionality of a ncRNA is in fact due to its folding

structure (Tinoco and Bustamante, 1999). As a consequence ncRNAs

evolve with a characteristic substitution pattern that preserves base- pair

interactions, resulting in compensatory double substitutions (e.g., AU into

GC) and compatible single substitutions (e.g., AU into GU). To tackle the

problem of ncRNA identification and structural characterization we can

however exploit both curated resources and experimentally determined

secondary structure collections. The European Bioinformatics Institute

(EBI) currently maintains the RFam database (Burge et al. (2013)) that

gathers information about several thousands ncRNA families defined on

1

© The Author (201 ). Published by Oxford University Press. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com 

7

Associate Editor: Prof. Alfonso Valencia



2 Navarin and Costa

the basis of a shared common ancestor. Protocols like SHAPE (Wilkinson

et al., 2006) can then be exploited to improve structure prediction tools

(Deigan et al., 2009) as they offer, for a single RNA sequence, in-vitro

evidence for the binding state of each nucleotide. While currently no

technique exist that can extract all functionally active ncRNA elements

in a cell, there are protocols, like hiCLIP (Sugimoto et al., 2015), that

can identify double stranded RNAs at transcriptome level. Crucially this

information can be used to uncover trans- acting regulation of ncRNAs

and cis- regulatory motives.

The amount of information on functional RNA structures will likely

keep on growing at ever increasing speed. There is therefore a need for

computational methods that can help characterize and organize ncRNAs

at large and very large scale. In this paper we consider the problem of

building an in-silico classifier to automatically annotate a large set of

putative ncRNA sequences. Tackling this problem requires to address

several key issues, among which that of 1) efficiency, 2) flexibility and

3) robustness, that we detail in the following.

We say that an approach is efficient if it can exploit large numbers

(from thousands to hundreds of thousands) of RNA sequences annotated

with structural information in training and if it can be applied to genomes

or transcriptomes in their entirety.

We say that an approach is flexible if it can make use of independent

sources of information on ncRNAs structural properties. In particular,

it should be possible to model secondary structure information derived

from in-vivo or in-vitro experiments and/or derived from computational

approaches. Flexible solutions should ideally be able to accommodate

multiple structural hypothesis, uncertainty on the hypothesis and complex

information such as the presence of pseudo-knots.

Finally, we say that an approach is robust if it can cope with uncertainty

on the ncRNA specification, in particular it should be able to deal with

imprecise boundaries, i.e. when the start and end of the ncRNA is

not known precisely. This issue is due to noise in the next generation

sequencing (NGS) mapping phase which is a common and essential step

in the quantification of RNA expression. Imprecise boundaries are known

to cause folding algorithm to yield significantly different structures (see

Will et al. (2012)).

In this work we propose a machine learning based approach to address

all the aforementioned issues. Our method is efficient as it exploits recent

advances in representation (Shervashidze et al., 2011; Costa and De Grave,

2010; Da San Martino et al., 2012b, 2016) and model induction (Bottou,

2010) to scale to large data volumes. The system is flexible as it is operates

via a kernel on a graph representation that can encode arbitrarily complex

information. We guarantee robustness using a windowed approach that

jointly considers subsequences of different sizes and different starting

positions. Finally the method is precise and it can reliably distinguish

among sequences that belongs to known ncRNA families and sequences

that do not belong to any family, a key property when annotating -omics

datasets.

This paper organized as follows: in Section 2 we review a variety of

approaches for the in-silico prediction of ncRNAs functions; in Section 3

we present our approach, explaining the various strategies to extract

structural information and how to encode it in a graphical format suitable

for processing by an efficient graph kernel; finally in Section 4 we

empirically investigate the sensitivity/specificity trade off and compare

the proposed approach to strong popular baselines.

2 Related works

Amongst the most prominent approaches to model functionally related

ncRNA sequences we can distinguish those that need to perform

comparative genome analysis (Parker et al., 2011), and those that require

in input only sequences of nucleotides. In this work we consider the latter

case. Amongst these we can identify approaches that are based exclusively

on sequence information, only on structural conformations or that can take

both sources of information into account.

Sequence based approaches have the advantage of being computationally

efficient, but they are not suited to detect evolutionarily distant homologies,

as they cannot relay on the more conserved structural information, and

suffer therefore from elevated false negative error (Will et al., 2007; Wilm

et al., 2006).

Purely structural approaches are based on the folding structure

topology and ignore the nucleotide composition information. In Childs

et al. (2009), the authors extract a number of graph properties, defined over

the graph representation of the minimum free energy conformation. These

approached have the advantage of being applicable to highly dissimilar

sequences, but, in addition to being computationally expensive, they incur

in a high false positive error as sequence-specific clues are ignored (as

an example just consider miRNA families which cannot be distinguished

since they all form a single hairpin). For these reasons we do not discuss

further these approaches.

Approaches that combine both structural and sequential information

try to reach a better compromise between sensitivity and specificity.

These methods range from more sophisticated graph kernels (Sakakibara

et al., 2007) to the state-of-the-art INFERNAL (Nawrocki et al., 2009).

Often these approaches have a strong modeling bias. INFERNAL for

example does not cope well with variable sub-structure sizes (Mosig et al.,

2009)) and suffers from severe scalability problems as it requires a) the

pre-computation of the alignment of all the input sequences and b) a

computationally expensive calibration phase; graph-kernel-based methods

commonly require the pairwise evaluation of a similarity notion between

structures, yielding a computational complexity of O(n2) which prevents

applications to large scale settings.

2.1 Sequence-based methods

The most popular sequence identification method is BLAST (Altschul

et al., 1990) that compares a sequence of interest q to a large database

of sequences, to yield the closest matches. To do so, BLAST identifies

compatible k-mers (subsequences of length k) and then expands the

matching regions to find increasingly larger k+i-mers until maximal

matching regions are found. BLAST can be used to predict family

membership by using the similarity notion it defines in a k-nearest

neighbors predictive system. With respect to the characteristics of

efficiency, flexibility and robustness: BLAST is relatively efficient

(linear complexity although with high constant factors due to the k-mer

approximate matching); it is not flexible as it does not consider structural

information; it is robust as it will try to find locally matching cores within

the larger query sequence.

2.2 Sequence-Structure-based methods

Predictive power is increased when considering structure information, but

the computation of the true secondary structure of an RNA sequence is not

an easy task. Even the most accurate predictors, based on experimentally

tabulated energy models, when predicting the optimal minimum free

energy (MFE) structure do not always obtain accurate results (Ding and

Lawrence, 2003). Rather than considering a single answer one could allow

for multiple hypothesis to co-exist. The true structure is in fact likely to

be among the set of the best sub- optimal structures. However considering

the whole ensemble of alternatives incurs in exponential costs (Hofacker

and Schuster, 1999), which would negatively impact efficiency.



An efficient graph kernel method for non-coding RNA functional prediction 3

2.2.1 INFERNAL

Among the methods that consider the secondary structure information, the

most popular one is INFERNAL (Nawrocki et al., 2009). The tool is based

on a variant of profile stochastic context-free grammars called covariance

models (CMs). INFERNAL starts from an alignment and a pre-computed

consensus structure, i.e. a secondary structure shared by sequences in the

same family. CMs are closely related to profile Hidden Markov Models

(HMM) (Yoon, 2009), as they both capture position-specific conservation

information. However, in a profile HMM each position of the profile

is treated independently, while in a CM base-paired positions are inter-

dependent. Indeed, for many of these base-pairs, it is not the specific

nucleotides that make up the pair that is conserved by evolution, but rather

the fact that the pair maintains Watson-Crick base-pairing. With respect to

the requirements of efficiency, flexibility and robustness, INFERNAL does

not scale to large settings, both in training, since alignments of more than

a few hundred sequences do not generally yield meaningful results, and in

testing (see the Experimental section); it is not flexible as it implements its

own folding algorithm and hence cannot take experimental folding clues

or multiple folding hypothesis into consideration; it is not robust since

it relies on a global alignment procedure that usually breaks if sequence

boundaries are misspecified.

2.2.2 Kernel methods

In the last decade, progress has been made in the Machine Learning

and Data Mining community to extend the input data type from fixed

size vectors to more flexible formats, ranging from sequences, to trees

and finally to graphs. A successful paradigm has emerged in the field

of supervised learning that makes use of linear models with good

generalization properties (i.e. Support Vector Machines (Boser et al.,

1992)) which can be easily extended both to structured input and to a

non-linear setting using the so-called kernel-trick (Aizerman et al., 1964),

i.e. an implicit mapping into a very high-dimensional space (referred as

feature space) expressed via a suitable dot product between two examples.

To deal with entities represented as graphs, a variety of graph kernels

have been proposed in literature. Different notions of similarity are

obtained choosing diverse types of substructures to consider, ranging from

paths to small subgraphs.

Stem kernel. Stem kernel (Sakakibara et al., 2007) is a natural extension of

the all-subsequences string kernel (Shawe-Taylor and Cristianini, 2004)

for RNA sequences. The feature space of the all-subsequences string kernel

is defined as all the possible subsequences of the input string, both the

contiguous and non- contiguous ones. For example, two RNA sequences

CUG and CAU have 4 common subsequences: ǫ (the empty string), C, U

and C-U, where - represents the bond between two nucleotides. Note that

the characters in a subsequence does not need to be contiguous. The all-

subsequences kernel calculates the inner product of the feature vectors by

counting all common subsequences (considering gaps). The Stem kernel is

a simple kernel for RNA secondary structures, that maps them in a feature

space representing all the possible base pairs. The kernel calculates the

inner product in the feature space implicitly, starting from RNA sequences,

thus no additional information about the secondary structure is needed.

The computational complexity of calculating the Stem kernel between

two RNA sequences of length n is O(n4).

Marginalized kernel on RNA sequences. Meraz, Richard F. & Holbrook

(2004) proposed the application of marginalized kernel to RNA sequences

represented as a labeled dual graph. In this representation, every

node represents helical regions (sequences of paired nucleotides) and

the edges represent the loops (sequences of non-paired nucleotides).

This representation uses only the information about the pairing of the

nucleotides in the sequence, discarding the information about the type

of structure (stems, hairpins, bulges and internal loops) and resort to an

implicit way to encode it in final graph. A marginalized kernel (a kernel that

counts the common random walks between two graphs) is then applied on

these graphs. The computational complexity on RNA sequences of length

n is O(n3). With respect to the requirements of efficiency, flexibility

and robustness, marginalized graph kernels do not scale, both because

of the high per-sequence cost and because of the quadratic cost of a

pairwise similarity evaluation; they are not very flexible as they commit

to a specific way to compute all structures and cannot easily take into

account experimental evidence to bias structural hypothesis; finally, they

are not robust since the structure computation yields significantly different

structures when boundaries are misspecified.

3 Methods

In this section, we detail how to derive a sparse vector representation for

ncRNAs using an explicit graph kernel (Costa and De Grave, 2010; Da San

Martino et al., 2016) that can then be used directly for classification tasks

e.g. by efficient Stochastic Gradient Descent Support Vector Machines.

3.1 Graph Kernel

We adopt the recently introduced (Costa and De Grave, 2010) fast kernel

called Neighborhood Subgraph Pairwise Distance Kernel (NSPDK), since

this kernel is suitable for large datasets of sparse graphs with discrete

vertex and edge labels. Here, to increase efficiency, we choose an explicit

version that materializes all the features in a sparse vector representation.

The NSPDK kernel considers as features, all pairs of small subgraphs

(neighborhood subgraphs up to radius r∗) that can be connected by a

shortest-path of length at most d∗. The hyper parameters r∗ and d∗ are

user-defined and in practice are small integers (less than 10). The type of

features that the NSPDK is considering, when considering graphs encoding

RNA structures, is depicted in Fig. 2. The NSPDK kernel between two

graphs is defined as the sum of the products between the counts of matching

features (for all radii and distances). Note that this computation requires

to solve the (rooted) graph isomorphism problem. Since running an exact

isomorphism test is computationally expensive, the authors propose to

substitute the test with a more efficient graph invariant computation (see

Costa and De Grave (2010) for further details).

More formally, let G = (V,E) be a graph, with VG being the set of

vertices and EG = {(u, v)|u, v ∈ VG} the set of edges. Two vertices

are adjacent if there is an edge connecting them. A path is an alternating

sequence of vertices and edges, starting and ending at a vertex, in which

each edge is adjacent in the sequence to its two endpoints. The shortest-

path distance between two vertices u and v is the number of edges in the

shortest path connecting them. The neighborhood of radius r of a vertex

v ∈ V (G) is the set of vertices at a distance less than or equal to r from

x. In a graph, an induced subgraph of a set of vertices W is the graph that

have W as vertices, and contains every edge of the original graph whose

endpoints are in W . The neighborhood subgraph of radius r of a vertex x

is the subgraph induced by the neighborhood of radius r of x. It is denoted

by Nx
r (X). Two graphs G and G′ are said to be isomorphic if it exists

a bijection f : V (G) → V (G′) such that (u, v) ∈ EG if and only if

(f(u), f(v)) ∈ VG′ .

We define a relation Rr,d(A
u, Bv , G) between two rooted graphs Au,

Bv and a graph G to be true iff both Au and Bu are in {Nv
r |v ∈ V (G)}

(where the set inclusion is up to isomorphism) and the shortest-path

distance between u and v in G is exactly d. In other words, the relation

is true for all pairs of neighborhood graphs of radius r whose roots are at





An efficient graph kernel method for non-coding RNA functional prediction 5

Fig. 2. RNA secondary structure encoding and graph kernel features: Top A) The

graph encoding includes nucleotide information (vertex labels) and binding information

(edge labels), here depicted with different shades of gray to distinguish backbone links

from base pairing. B) Additional vertices are inserted in order to induce features related to

stacking base-pairs quadruplets (thin light gray vertices at the center of each stacking pair).

Right: Example of features induced by the graph kernel NSPDK for a pair of vertices u, v

at distance 3 with radius 0,1,2. Neighborhood graphs are enclosed in dashed ovals.

preserves hairpins and multi-loops, but abstracts notions such as the

primary sequence, stack lengths, bulges, internal loops and single-stranded

regions. RNAshapes supports five different abstraction levels, allowing the

preservation of more details up to all loops and unpaired regions.

As an example, we report the different shape abstractions for the same

sequence used in Steffen et al. (2006), where the underscore symbol ”_”

stands for unpaired region and the brackets ”[]” stand for a stem region:

AUCGGCGCACAGGACAUCCUAGGUACAAGGCCGCCCGUU

..(((.((..(((....))).(((.....))))))))..

Shape_Type Result

1 _[_[_[]_[]]]_

2 [_[[][]]]

3 [[[][]]]

4 [[][]]

5 [[][]]

Given a fixed shape abstraction level we follow (Giegerich et al., 2004)

and consider all possible shapes in which a sequence can fold. Since many

structures can have the same shape, we select as the unique representative

of the shape the minimum free energy configuration, called the shrep (for

shape representative). We rank all the shreps and consider only the k most

energetically favorable ones. Both the abstraction level and the value for

k are considered as hyper parameters to be optimized during the model

selection phase.

3.4 Misspecified sequence boundaries

While the abstract shape approach protects against committing to a single

wrong structural hypothesis, we still have to address the problem of

uncertainty on the exact sequence boundaries. This problem does not only

arise in the case of genome annotation but can also manifest itself in the

case of transcriptomic data do to noise in the reads decoding and in the

mapping process. Uncertainty in the sequence boundaries has important

consequences since folding algorithms are not robust to this type of noise

and can yield drastically different structures when a few nucleotides are

added or removed from the beginning or end of the sequence. To achieve

robustness we adopt a multi-windowed approach: instead of considering

only the full sequence we consider the set of all subsequences obtained

from a sliding window approach. Instead of committing to a single window

and shift size, we iterate the sliding window approach for multiple values

of the window (an fix the shift to a fraction of the size). Each resulting

subsequence is then folded using the RNAshapes approach detailed in

the previous section, yielding k suboptimal graphs per subsequence. The

disjoint union of all the graphs constitutes the final graph encoding for the

original sequence. Fig. 1 depicts the windowing approach, where in bold

we represent the original sequence retrieved from Rfam.

Note that the window size (ranging from 25 to 100 nucleotides in

our experiments) influences the locality of the structural features that

the method is aware of: larger window sizes allow to capture multi-loop

structures, while smaller ones can only capture single hairpin loops. In

Fig. 1 we give an example of how the proposed approach can correctly

identify some of the true hairpins that are not detected when folding the

entire sequence.

3.5 Stacking base pairs

It is known that quadruplets formed by two consecutive stacking base pairs

carry considerable information about the stability and hence likelihood of

the corresponding stem structure. To better encode this type of information

we introduce additional vertices with a non-informative label and link them

to each of the four nucleotides of the stack; in this way the neighborhood

subgraphs features correspond exactly to individual stacking base pairs

(see Fig. 2).

4 Experimental analysis

We cast the ncRNAs annotation task as a multiclass problem where each

class is a functionally distinct set of ncRNAs. We adopt the one-versus-all

multiclass formulation and evaluate the predictive performance using the

area under the precision/recall curve (APR) which is more informative in

highly unbalanced tasks than ROC AUC.

4.1 Robustness analysis

4.1.1 Dataset construction

We extract data from Rfam (Gardner et al., 2011), a database that catalogs

non coding RNAs using curated sequence alignments and covariance

models. ncRNA sequences are grouped in ”families” if they share the

same function and have a clear common ancestor. Out of the total set of

2588 Rfam families we selected a subset of families that could satisfy the

following requirements. i) A family should have a number of members

that allows statistical learning, we therefore selected the families with at

least 100 sequences. ncRNAs typically have a length in the range of 40-

400 nucleotides. As current structural prediction tools becomes unreliable

for sequences that exhibit interactions spanning more than 150nt (Lange

et al., 2012), we selected families with an average sequence length less than

150nt. ii) To study the robustness of various approaches we added noise to

each sequence boundary by adding a random number of nucleotides both

on the left and on the right of the sequence. The padding is constructed so

as to respect the nucleotide frequency of each specific sequence, while the

length of the added noisy context varies from 0 to the necessary number

of nucleotides so as to obtain sequences of the same length of 250,300,

350, and 400 nucleotides. In this way we can control for the confounding

effect of the sequence length which could otherwise be used by a learning

algorithm as a discriminative feature to identify specific families. iii) To

control for near rote learning and test for the generalization capacity we

split each family in three subsets: one for training, one for validation, and

one for testing, ensuring that no sequence in the validation and test splits

had sequence similarity grater than 50% with any other sequence in the

training split. The families that yielded an empty validation or test set under

these requirements were discarded. Note that the validation set was used

only to tune the hyper-parameters of the learning algorithm, while the test



6 Navarin and Costa

class Rfam # avg. Original len. Padding to 200nt

ID class seq. len. BL IN Our BL IN Our

1 RF00001 1180 104±27 0.59 0.85 0.81 0.61 0.92 0.78

2 RF00005 703 114±26 0.52 0.02 0.57 0.49 0.41 0.50

3 RF00015 1056 121±27 0.88 0.57 0.99 0.89 0.98 0.99

4 RF00016 222 105±27 0.5 0 0.59 0.5 0 0.78

5 RF00019 1225 110±6 0.6 0.96 0.81 0.61 0.98 0.72

6 RF00020 264 117±5 0.54 0.95 0.8 0.54 0.85 0.74

7 RF00026 318 105±4 0.55 0.98 0.91 0.49 0.96 0.85

8 RF00029 572 92±24 0.55 0.89 0.90 0.57 0.73 0.85

9 RF00031 233 65±4 0.51 0.62 0.15 0.51 0.07 0.11

10 RF00050 146 132±20 0.56 0.78 0.90 0.56 0.83 0.98

11 RF00059 594 106±19 0.6 0.99 0.89 0.6 0.88 0.93

12 RF00066 238 60±7 0.54 0.88 0.97 0.47 0.90 0.81

13 RF00097 340 102±13 0.51 0.91 0.22 0.51 0.91 0.2

14 RF00140 124 99±14 0.57 0.87 0.85 0.61 0.81 0.83

15 RF00156 290 120±19 0.52 0.86 0.91 0.52 0.95 0.91

16 RF00162 111 143±15 0.5 0.81 0.65 0.5 0.73 0.6

17 RF00163 287 45±2 0.51 0.78 0.91 0.54 0.66 0.43

18 RF00169 195 99±2 0.52 0.95 0.84 0.52 0.87 0.73

19 RF00263 109 115±20 0.5 0.88 0.14 0.5 0.77 0.56

20 RF00322 195 107±21 0.54 0.91 0.81 0.55 0.96 0.9

21 RF00406 165 132±4 0.52 0.88 0.75 0.27 0.69 0.81

22 RF00409 1168 138±3 0.88 0.98 0.97 0.91 0.92 0.98

23 RF00420 428 121±4 0.55 0.97 0.9 0.55 0.92 0.89

24 RF00504 583 99±22 0.53 0.95 0.97 0.85 0.85 0.98

25 RF00557 142 142±19 0.53 0.88 0.8 0.53 0.87 0.89

26 RF00560 292 129±6 0.65 0.93 0.91 0.65 0.88 0.95

27 RF00619 185 117±15 0.53 0.94 0.67 0.36 0.92 0.49

28 RF00645 110 123±20 0.61 0.85 0.83 0.61 0.73 0.89

29 RF00655 234 105±9 0.58 0.89 1.00 0.53 0.71 1.00

30 RF00779 248 82±20 0.52 0.88 0.94 0.57 0.9 0.99

31 RF00875 233 82±3 0.55 0.91 0.94 0.64 0.85 0.95

32 RF00876 124 86±4 0.52 0.89 0.90 0.44 0.94 0.73

33 RF00906 1270 137±20 0.54 0.99 0.97 0.54 0.99 0.96

34 RF00989 283 114±8 0.55 0.89 0.89 0.58 0.8 0.96

35 RF01016 524 119±5 0.65 0.96 1.00 0.64 0.89 1.00

36 RF01028 140 70±17 0.53 0.89 0.99 0.56 0.99 0.99

37 RF01055 105 148±16 0.5 0.77 0.63 0.5 0.82 0.72

38 RF01059 952 102±13 0.54 0.98 0.99 0.53 0.97 1.00

39 RF01063 198 88±15 0.51 0.88 0.98 0.53 0.7 0.87

40 RF01699 223 111±33 0.54 0.87 0.84 0.54 0.67 0.93

41 RF01705 152 99±28 0.5 0.73 0.87 0.51 0.52 0.85

42 RF01725 148 107±8 0.5 0.69 0.56 0.51 0.35 0.56

43 RF01731 119 140±38 0.52 0.89 0.66 0.27 0.5 0.76

44 RF01734 110 73±12 0.5 0.80 0.56 0.50 0.50 0.2

45 RF01739 125 94±30 0.5 0.82 0.84 0.5 0.5 0.76

46 RF01942 491 103±14 0.58 0.97 0.87 0.63 0.52 0.93

47 RF02012 116 135±12 0.5 0.84 0.69 0.5 0.5 0.85

AVG 367 112±23 0.55 ∗0.84 0.80 0.55 0.76 ∗0.79

Table 1. Predictive performance estimate (Area under Precision/Recall curve)

for the baseline methods BLAST and INFERNAL and our approach on the

dataset of sequences of original length and fixed (padded) length of 200nts.

BL: Blast, IN: Infernal, Our: our proposed approach. The methods with ∗

perform significantly better than the other ones.

set was used to derive an unbiased estimate of the predictive performance.

In Table 1 we report the 47 Rfam families that satisfied all the requirements.

The average number of examples per class (including training, validation

and test sets) is 367, with a maximum of 1270 examples and a minimum

of 105, for a total of 17270 sequences.

4.1.2 Experimental results and discussion

We evaluated the predictive performance of our method in comparison to

the two baselines presented in Section 2.1. Other methods presented in

Section 2.2.2 have not be evaluated since their computational complexity

is too high for the large scale setting we are interested in.

Sequences length APR on Test set Test times

IN Our IN Our

original ∗0.84±0.10 0.80±0.10 7h30m 15m

200 0.76±0.11 ∗0.79±0.11 30h 37m

250 0.73±0.12 ∗0.78±0.11 48h 43m

300 0.73±0.13 0.75±0.11 75h 46m

350 0.69±0.11 ∗0.72±0.12 100h 1h12m

400 0.56±0.12 ∗0.68±0.13 127h 1h30m

Table 2. APR results of INFERNAL and our proposed method, at the increasing

of noise around the real sequences. The method with ∗ performs significantly

better than the other.

We first tested if the sequence length is alone a significant predictor for

family membership. Using a k-nearest neighbour classifier exclusively on

the sequence length yielded an average APR of only 0.09.

We then considered as a baseline BLAST. To classify a sequence s,

we query the training database to obtain the k highest matches (where

k is an hyper-parameter of the method). Each retrieved sequence counts

as a vote for the class it belongs to and the prediction is then obtained

via the majority vote. The second baseline is based on an INFERNAL

model (see Section 2.2.1) for each family. The sequences in each family are

aligned with the sequence alignment program MUSCLE (Edgar, 2004) and

a consensus structure is identified with RNAalifold (Hofacker et al., 1989),

finally we built a calibrated covariance model with INFERNAL. In this

way, given some representative sequences in the training set, we generate

a model for each family. INFERNAL can then estimate the probability of

a query sequence w.r.t. each model. As a prediction we consider the model

with the highest confidence. Finally, for our proposed method, described in

Section 3, we trained a multi-class SVM using the one-versus-all approach.

As learning procedure, we adopted the Stochastic Gradient Descent

because it is very fast compared to more classic algorithms (e.g. SMO)

while achieving very similar predictive performances (Zhang, 2004).

For the assessment of the classification performance, we considered the

area under the Precision/Recall curve (APR) measure. After preliminary

experiments, we fixed the the shape type parameter t of RNAshapes to

t = 4. We optimized the other hyper parameters of RNAshapes using

a grid-search approach. We validated the parameter w controlling the

window size in the set {75, 100}. The parameter M controlling the

number of foldings generated from each fragment has been validated in

the set {2, 3}. Note that the performance of the kernel methods can be

further improved considering, for example, multiple window sizes at the

same time. However, this approach would increase the parameter space

of the method, and thus we decided to leave this approach as a future

work. Finally, for each dataset the kernel parameters have been optimized

using a grid-search approach on the following sets: r = {1, 2, 3} ,

d = {3, 6}. Thus, a total of 6 kernel parameter configurations have been

tested, that combined with the RNAshapes parameters gives a total of 24

possible parameter configurations for the proposed method. Finally, the α

parameter of the SGD has been validated in the set {10−1, .., 10−7}.

In Table 1 we report the experimental results on the test set for the

original dataset, and for the dataset where padding has been added to

each sequence (up to 200 nts). We start our discussion considering the

dataset where no padding has been added. In this case, INFERNAL is

the best performing method. This is not a surprise since the dataset we

consider comes from the Rfam database, where the INFERNAL tool is

used to discover the sequences belonging to a family, starting from a

small set of manually aligned seeds (see Section 4.1.1). However, in

this setting our proposed method shows predictive performances that

are close to the INFERNAL ones. Moreover, the computational time

required from our proposed method is considerably lower that the one of

INFERNAL, as will be detailed in Section 4.3. Let us consider the dataset

with padding to 200 nucleotides. Surprisingly BLAST performs well for



An efficient graph kernel method for non-coding RNA functional prediction 7

Sequences length APR Test set Test times

IN Our IN Our

1x negatives 0.08±0.10 ∗0.76±0.11 102h 2h32m

2x negatives - 0.72±0.11 - 3h30m

6x negatives - 0.70±0.12 - 3h40m

10x negatives - 0.62±0.13 - 5h

Table 3. APR results of INFERNAL and our proposed method, with the presence

of a "zero" class containing random sequences. The method with ∗ performs

significantly better than the other.

a few RNA families. Indeed, for some ncRNA families the sequence

carries enough information about the function. In these cases, it’s useless

to apply techniques that consider the secondary structure because of the

additional computational complexity. Moreover in these cases, considering

the structure may also introduce additional noise to the data, resulting in

a decay in classification performances. This happens in the classes 9 and

44 in our dataset. However, for the majority of the classes, the approaches

that considers secondary structure information (INFERNAL and NSPDK)

achieve significantly higher classification performance w.r.t. BLAST. The

comparison between INFERNAL and the NSPDK is tighter: INFERNAL

wins in 18 cases, while NSPDK wins in 27 (on class 36 the performances

for the two methods are the same). On average, the APR value on the

test set for BLAST is 0.55, for INFERNAL it is 0.76 while for the

NSPDK kernel is 0.79. In order to assess if the difference in performance

among the proposed method and the considered baselines is statistically

significant, we performed a Wilcoxon signed-rank test (Wilcoxon, 1945).

We consider the performance difference significant if the 1-tail test results

in a p-value <0.05. Both INFERNAL and the proposed method perform

significantly better than BLAST in all the considered settings. INFERNAL

performs significantly better than our proposed method when no padding

is present (as expected: we recall that the dataset is biased in favour of

INFERNAl), while our proposed method performs significantly better

than infernal when considering padding to 200 nucleotides. We than

analyzed what happens when we increase the size of the padding. Table 2

summarizes this set of experiments. We can see that, adding more and more

padding, the predictive performances of the two methods (INFERNAL and

our proposed method) decrease. However, our proposed method shows

constantly higher AUC with respect to INFERNAL, showing that it is

more robust to the noise in the boudariesof the sequences. Also for these

experiments, we computed the same statistical test. The proposed method

performs significantly better than infernal with all the considering padding

lengths (with the only exception of length 300 nts, where the proposed

method performs better but the difference is not statistically significant).

4.2 Genome simulation analysis

In this section, we present our second set of experiments, aimed at assessing

the robustness of the proposed method when in the dataset there are non-

functional RNA sequences, i.e. sequences that do not belong to any ncRNA

family.

4.2.1 Dataset construction

We started from the same dataset as in the previous section, fixing the length

of the sequences to 200 nucleotides. We want to generate sequences that do

not belong to any class, in order to mimick the fact that in whole-genome

analysis, the majority of the RNA is non-functional or it does not belong

to any known ncRNA family. To do so, for each sequence in the dataset we

generated a number t of shufflings (possibly preserving the di-nucleotides,

i.e. shuffling two nucleotides at a time). We tested different values of t,

i.e. 1,2,6,10, obtaining increasingly difficult classification problems. Note

that, with t = 1, we generated one shuffling for each sequence in the

original dataset, and we considered the standard shuffling (i.e. we shuffled

the single nucleotides). For the other values of t, we generated the same

number of single and di-nucleotide shufflings. Thus, the number of samples

in each version of the dataset is increasing. With t = 1, the new dataset

have the double the sequences as in the original dataset, with t = 2 three

times and so on.

4.2.2 Experimental results and discussion

Table 3 reports the APR of the proposed method, together with the

INFERNAL baseline, on this set of experiments. In this setting, the Infernal

baseline performs poorly already with t = 1. On the contrary, our proposed

method is able to deal with such scenario. As expected, the predictive

performances decrease increasing t. Overall, this experiment shows that

our proposed approach is robust to this kind of noise, i.e. to the presence

of sequences that do not belong to any ncRNA family.

4.3 Computational runtime analysis

In this section, we discuss the computational requirements of the

considered methods. We divide the computational times in the training

phase and the test phase. The training phase consists in all the operations

that have to be performed in order to build the predictive model, and

that are executed only once. The test phase, on the contrary, comprises

the step necessary to classify the test instances. For the BLAST baseline

the training phase consists in the computation of some indices on the

training sequences. The test phase consists in the scanning of the target

sequences against the training ones. This baseline is very fast, and requires

only few seconds to be computed (both training and test phases) in all

our experimental settings. INFERNAL training phase requires to build

a covariance model for each class, and to calibrate it. Its test phase

consists in the scanning (with the tool cmscan) of the target sequences

against the generated covariance models. As for the proposed method,

its training phase consists in the feature generation for the training and

validation instances, the training of the classifier (one for each parameter

combination), and the parameter selection (via classification of validation

instances). The test phase consists in the feature generation for the test

instances, and their classification (with SVM).

Let us start our discussion with the first experimental setting, presented

in Section 4.1. The training step for the INFERNAL baseline on the dataset

with no padding, required approximately 10 hours; with a fixed length of

200 nts, it required approximately 20 hours; with sequences of 350 nts,

the calibration phase required approximately 90 hours. The computational

times required for the test phase, for all the considered sequence lengths,

are reported in Table 2, fourth column. We can see that they are in the

order of several hours. Indeed, this is the slowest method we considered.

As for the proposed method, with no padding the training phase require

at most 3 hours for each parameter configuration. With sequences of 200

nts, the training phase required at most 4.5 hours; increasing the length

to 350 nts, it required at most 6 hours. The computational times required

by our proposed method for the test phase, are reported in Table 2, fifth

column. Our proposed method is very fast on the test phase. Note that

there are several techniques for speeding up the training phase of kernel

methods. For example, parameter estimation can be performed on just

a subset of the training data. Moreover, instead of a grid-search, a local

search on the parameters grid can be performed. Moreover, a single training

procedure can be performed considering all the parameter configurations

at once (Massimo et al., 2016). The exploration of these approaches is

however out of the scope of this paper, where we put emphasis on the

test times, and we leave the analysis of these techniques for a future

work. Concluding, the INFERNAL baseline and the proposed method

have comparable training times (in orders of magnitude), due to the fact

that many parameter configurations have to be validated for the proposed



8 Navarin and Costa

method. However, in the test phase, our proposed method is thousands of

times faster than INFERNAL.

We now discuss the second experimental setting, presented in

Section 4.2. For the case with t = 1, Infernal training phase required

113 hours. The scanning phase, as reported in Table 3, fourth column,

required 102 hours. The performance of the method are poor, and it is

computationally very demanding, so we decided not to go further with

higher values of t. As for the proposed method, with t = 1 the training

phase required 5.5 hours; with t = 2 the training phase required overall

at most 6 hours. With t = 6 it required 12 hours, while with t = 10

the computational time increases to 15 hours. The computational times

required by the proposed method for the test phase are reported in Table 3,

fifth column. Also in this scenario, our proposed method is very fast

compared to INFERNAL.

5 Conclusions and future work

In this paper we proposed a novel approach for non-coding RNA functional

annotation based on graph kernel techniques capable of addressing the key

requirements of 1) efficiency, 2) flexibility and 3) robustness. An extensive

empirical evaluation shows that 1) it is possible to learn from tens of

thousands of examples and test in linear time paving the way to efficient

genome scale annotations; 2) it is possible to easily encode multiple

windows and suboptimal folding structures to improve predictive accuracy;

and 3) it is possible to be resilient to sequence boundary misspecification

and obtain a prediction accuracy that degrades gracefully with the increase

in noise level. Given the efficiency of the proposed approach we plan

to develop an efficient and easy to use web server to perform ncRNA

annotations for novel genomes. In the future we will investigate the

encoding of more complex structural information such as the presence

of pseudo-knots and how to include structural information derived from

experimental protocols such as SHAPE and hiCLIP.

6 Acknowledgments

This work was funded by the Federal Ministry of Education and Research

(BMBF grant 031 6165A e:Bio RNAsys), by the German Research

Foundation (DFG grant BA 2168/3-3) and by the University of Padova

under the strategic project BIOINFOGEN.

References

Aizerman, M. A., Braverman, E. M., and Rozonoer, L. I. (1964).

Theoretical foundations of the potential function method in pattern

recognition learning. In Automat. Remote Contr., volume 25, pages

917 – 936.

Altschul, S., Gish, W., and Miller, W. (1990). Basic local alignment search

tool. Journal of Molecular Biology, 215(3), 403–410.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm

for optimal margin classifiers. In Proceedings of the 5th Annual ACM

Workshop on Computational Learning Theory, pages 144–152. ACM

Press.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient

descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Burge, S. W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki,

E. P., Eddy, S. R., Gardner, P. P., and Bateman, A. (2013). Rfam 11.0:

10 years of RNA families. Nucleic Acids Res., 41(Database issue),

D226–32.

Childs, L., Nikoloski, Z., May, P., and Walther, D. (2009). Identification

and classification of ncRNA molecules using graph properties. Nucleic

acids research, 37(9), e66.

Costa, F. and De Grave, K. (2010). Fast neighborhood subgraph pairwise

distance kernel. In J. F. Joachims and Thorsten, editors, Proceedings

of the 27th International Conference on Machine Learning (ICML-10),

pages 255–262. Omnipress.

Da San Martino, G., Navarin, N., and Sperduti, A. (2012a). A memory

efficient graph kernel. In The 2012 International Joint Conference on

Neural Networks (IJCNN). Ieee.

Da San Martino, G., Navarin, N., and Sperduti, A. (2012b). A Tree-Based

Kernel for Graphs. In Proceedings of the Twelfth SIAM International

Conference on Data Mining, pages 975–986.

Da San Martino, G., Navarin, N., and Sperduti, A. (2016). Ordered

Decompositional DAG Kernels Enhancements. Neurocomputing, 192,

92–103.

Deigan, K. E., Li, T. W., Mathews, D. H., and Weeks, K. M. (2009).

Accurate shape-directed rna structure determination. Proceedings of the

National Academy of Sciences, 106(1), 97–102.

Ding, Y. and Lawrence, C. E. (2003). A statistical sampling algorithm

for RNA secondary structure prediction. Nucleic Acids Res., 31(24),

7280–7301.

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high

accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

Fera, D., Kim, N., Shiffeldrim, N., Zorn, J., Laserson, U., Gan, H. H.,

and Schlick, T. (2004). RAG: RNA-As-Graphs web resource. BMC

bioinformatics, 5, 88.

Frasconi, P., Costa, F., De Raedt, L., and De Grave, K. (2014). klog: A

language for logical and relational learning with kernels. Artif. Intell.,

217, 117–143.

Gardner, P. P., Daub, J., Tate, J., Moore, B. L., Osuch, I. H., Griffiths-

Jones, S., Finn, R. D., Nawrocki, E. P., Kolbe, D. L., Eddy, S. R., and

Bateman, A. (2011). Rfam: Wikipedia, clans and the "decimal" release.

Nucleic acids research, 39(Database issue), D141–5.

Giegerich, R., Voss, B., and Rehmsmeier, M. (2004). Abstract shapes of

RNA. Nucleic acids research, 32(16), 4843–51.

Hofacker, I. L. and Schuster, P. (1999). Complete suboptimal folding.

Biopolymers, Vol., 49, 145–165.

Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M.,

and Schuster, P. (1989). Fast folding and comparison of RNA secondary

structures. Monatshefte f??r Chemie Chemical Monthly, 125, 167–188.

Lange, S. J., Maticzka, D., Möhl, M., Gagnon, J. N., Brown, C. M., and

Backofen, R. (2012). Global or local? predicting secondary structure

and accessibility in mrnas. Nucleic Acids Research.

Massimo, C. M., Navarin, N., and Sperduti, A. (2016). Hyper-Parameter

Tuning for Graph Kernels via Multiple Kernel Learning. In Neural

Information Processing of ICONIP, Kyoto, Japan, October 16–21, 2016,

Part II , pages 214–223. Springer.

Meraz, Richard F. & Holbrook, S. R. (2004). Classification of non-coding

RNA using graph representations of secondary structure. Science.

Mosig, A., Zhu, L., and Stadler, P. F. (2009). Customized strategies

for discovering distant ncRNA homologs. Brief. Funct. Genomic.

Proteomic., 8(6), 451–460.

Nawrocki, E. P., Kolbe, D. L., and Eddy, S. R. (2009). Infernal

1.0: inference of RNA alignments. Bioinformatics (Oxford, England),

25(10), 1335–7.

Parker, B. J., Moltke, I., Roth, A., Washietl, S., Wen, J., Kellis,

M., Breaker, R., and Pedersen, J. S. (2011). New families of

human regulatory RNA structures identified by comparative analysis

of vertebrate genomes. Genome research, 21(11), 1929–43.

Sakakibara, Y., Popendorf, K., Ogawa, N., Asai, K., and Sato, K. (2007).

Stem kernels for RNA sequence analyses. Journal of bioinformatics and



An efficient graph kernel method for non-coding RNA functional prediction 9

computational biology, 5(5), 1103–22.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern

Analysis. Cambridge University Press, New York, NY, USA.

Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K., and

Borgwardt, K. M. (2011). Weisfeiler-Lehman Graph Kernels. Journal

of Machine Learning Research, 12, 2539–2561.

Steffen, P., Voss, B., Rehmsmeier, M., Reeder, J., and Giegerich, R.

(2006). RNAshapes: an integrated RNA analysis package based on

abstract shapes. Bioinformatics (Oxford, England), 22(4), 500–3.

Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio,

A., Luscombe, N. M., and Ule, J. (2015). hiCLIP reveals the in vivo

atlas of mRNA secondary structures recognized by Staufen 1. Nature,

519(7544), 491–494.

Tinoco, I. and Bustamante, C. (1999). How RNA folds. Journal of

molecular biology, 293(2), 271–81.

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods.

Biometrics Bulletin, 1(6), 80–83.

Wilkinson, K. A., Merino, E. J., and Weeks, K. M. (2006). Selective

2[prime]-hydroxyl acylation analyzed by primer extension (SHAPE):

quantitative RNA structure analysis at single nucleotide resolution. Nat.

Protoc., 1(3), 1610–1616.

Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen, R.

(2007). Inferring noncoding RNA families and classes by means of

Genome-Scale Structure-Based clustering. PLoS Comput. Biol., 3(4),

e65.

Will, S., Joshi, T., Hofacker, I. L., Stadler, P. F., and Backofen, R. (2012).

LocARNA-P: Accurate boundary prediction and improved detection of

structural RNAs. RNA, 18(5), 900–914.

Willingham, A. T. and Gingeras, T. R. (2006). {TUF} love for junk

{DNA}. Cell, 125(7), 1215 – 1220.

Wilm, A., Mainz, I., and Steger, G. (2006). An enhanced RNA alignment

benchmark for sequence alignment programs. Algorithms Mol. Biol.,

1(1), 1–11.

Yoon, B.-J. (2009). Hidden Markov Models and their Applications in

Biological Sequence Analysis. Current genomics, 10, 402–415.

Zhang, T. (2004). Solving Large Scale Linear Prediction Problems Using

Stochastic. In ICML 2004, pages 919–926.




