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ABSTRACT

Motivation: Atomistic or coarse grained (CG) potentials derived from

statistical distributions of internal variables have recently become

popular due to the need of simplified interactions for reaching larger

scales in simulations or more efficient conformational space sampling.

However, the process of parameterization of accurate and predictive

statistics-based force fields requires a huge amount of work and is

prone to the introduction of bias and errors.

Results: This article introduces SecStAnT, a software for the cre-

ation and analysis of protein structural datasets with user-defined pri-

mary/secondary structure composition, with a particular focus on the

CG representation. In addition, the possibility of managing different

resolutions and the primary/secondary structure selectivity allow ad-

dressing the mapping-backmapping of atomistic to CG representation

and study the secondary to primary structure relations. Sample data-

sets and distributions are reported, including interpretation of struc-

tural features.

Availability and implementation: SecStAnT is available free of

charge at secstant.sourceforge.net/. Source code is freely available

on request, implemented in Java and supported on Linux, MS

Windows and OSX.

Contact: giuseppe.maccari@iit.it

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on July 22, 2013; revised on September 17, 2013; accepted

on October 5, 2013

1 INTRODUCTION

Molecular dynamics (MD) computer simulations, and more spe-
cifically force field (FF)-based atomistic MD (Adcock and

McCammon, 2006), are considered invaluable tools to get insight

in the structure and function of biological matter. Within this
approach, the inter-atomic interactions are represented by means

of a sum of analytical terms, whose parameters were optimized in
the course of the past decades, based on quantum chemistry

calculations or experimental data. This approach is implemented
in a number of widely used software packages (van Gunsteren,

1996; Jorgensen et al., 1996; Vanommeslaeghe et al., 2010; Wang

et al., 2004).
Despite its undoubted utility, the atomistic MD presents some

weaknesses. Single proteins simulations can now reach the

sub-�s scale with ordinary computational resources. However,

most biologically interesting phenomena occur on wider time

and space scales, needing large parallelism. This problem is not

likely to be simply resolved by the increase of the processors

power and of parallelism, becoming increasingly harder as the

system complexity grows. Recent efforts have focused on the

development of dedicated hardware. An example is the super-

computer Anton (Shaw et al., 2008), which implements specia-

lized hardware for protein dynamics, leading to simulation time

scales into the range of hundreds of micro seconds to millisec-

onds. However, such systems are not broadly available to the

scientific community. A second problem of the atomistic ap-

proach is related to the model itself. As longer time scales are

explored in the simulations, the traditional FFs show inaccura-

cies especially in the evaluation of the relative energies of differ-

ent secondary structures (Freddolino et al., 2008; Lindorff-

Larsen et al., 2012). A great effort is currently in the course to

produce a new generation of FFs to fix these problems, although

this task appears hard without the introduction of more complex

interactions with larger number of parameters (Chaudret et al.,

2013; Zhao et al., 2010). This, in turn, worsens a problem already

existing in the traditional FFs, i.e. the complexity of the opti-

mization procedure.
Apparently paradoxically, the reductionist approach has re-

cently been considered as a possible alternative. Minimizing the

number of parameters of the model allows applying more effi-

cient parameters optimization strategies to accurately reproduce

given properties. Direct emanations of this approach are the

coarse grained (CG) models, representing group of atoms with

single interacting centers (beads) (Tozzini, 2005) and the so called

‘knowledge based’ or statistical potentials (SP) (Tadmor et al.,

2011), i.e. potentials with a relatively small number of param-

eters, derived by the statistical analysis of the increasingly larger

experimental structures databases. CG models solve directly the

first class of problems, as they immediately reduce the computa-

tional cost of orders of magnitude. On the other hand, SPs,

though bearing many limitations specifically residing in the dif-

ficulty of combining transferability and predictive power with

structural accuracy (Vendruscolo and Domany, 1998), have

shown better performance than traditional atomistic FFs for

docking or homology modeling applications (Poole and

Ranganathan, 2006).

The combination of CG with SPs has been used in models for

MD simulations, such as MARTINI (Marrink et al., 2007),*To whom correspondence should be addressed.
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representing the amino acid at an intermediate resolution level

(with 2–6 beads), embedded in CG explicit water, or the one by

Bahar and Jernigan, with a similar resolution but with implicit

water(Jernigan and Bahar, 1996), or the one developed by us

(Tozzini et al., 2006), based on a single bead per amino acid

(placed on Ca) in implicit water. This resolution level can be

considered the minimal where internal variables can still expli-

citly describe secondary structures, and therefore called

‘minimalist’.
Specifically referring to minimalist models (Tozzini, 2010a),

different algorithms were considered to produce SPs, such as

direct or iterative Boltzmann inversion (BI) (Reith et al., 2003),

relative entropy minimization (Chaimovich and Shell, 2011) and

reverse Monte Carlo (Lyubartsev and Laaksonen, 1995). They

all rely on the statistical distributions of the internal variables,

either used as direct input or as target quantity for the potential

optimization. This implies that the quality of statistical distribu-

tion determines the accuracy of the model (Trovato and Tozzini,

2012). In turn, the quality of the statistical distribution is deter-

mined by the statistical relevance of the dataset (i.e. number and

diversity of included structures) and its composition in terms of

sequence or secondary structures. The latter in particular is rele-

vant for the parameterization of potentials capable of accurately

reproducing the secondary structure tendency of different amino

acids.
The RSCB Protein Data Bank (PDB) (Rose et al., 2013), the

most comprehensive database of biomolecular—and specifically

proteins—structures, is the natural source of data for building

statistical sets and corresponding probability distributions.

Biomolecules coordinates are stored in a format that is a

widely used, internationally referred representation for

macromolecular data, including experimental and structural in-

formation. These, however, are integrated within the coordinates

file, and not of immediate use to the aim of building, e.g. primary

or secondary structure-dependent dataset.

In this article, we describe and validate SecStAnT, a tool with

an intuitive and sleek interface able to automatically create from

PDB user-defined datasets of protein structural composition or

primary sequence motives at different levels of resolution (atom-

istic or CG). Furthermore, a large number of internal variable

distributions can be evaluated together with two and three body

correlation functions. The latter point is particularly innovative

and useful for the parameterization and validation of the CG

models. In fact, the correlation map between the internal vari-

ables describing the backbone conformation within the CG rep-

resentation has the same role of the well-known Ramachandran

plot (Tozzini et al., 2006). Although there are a number of tools

to evaluate the latter [for instance (Gopalakrishnan et al., 2007)],

to our knowledge, none are freely available to evaluate the cor-

responding correlation maps within the minimalist representa-

tions. The ability to evaluate the SP by means of BI facilitates

the parameterization process of CG models. In addition, the

possibility to consider both atomistic and CG resolutions

allows in principle to directly make connections between the

two levels. This is particularly important in view of generating

CG models fully compatible with atomistic FFs to be included in

a coherent multiscale representation, which are often considered

as possible solutions to combine the advantages of CG and

atomistic representation and eliminate their disadvantages
(Colombo and Micheletti, 2005; Tozzini, 2010b).

We illustrate SecStAnT and its potentialities reporting sample

datasets distributions and correlations. Interesting novel features

emerge from this statistical analysis to which we give a physical-
chemical interpretation.

2 METHODS

2.1 Model definition

Three typical resolution levels used to represent a protein model are re-

ported in Figure 1: (i) the fully atomistic; (ii) the ‘backbone-only’ and (iii)

the ‘minimalist’ (Ca only). In the latter case, the internal variables defin-

ing the backbone conformation are the bond angle � between three

subsequent Cas and the dihedral ’ between four subsequent Cas (see

Fig. 1C). These are the homologues of the � and � dihedrals defined

within the atomistic representation of the backbone. Consequently, the

(�, ’) correlation map can be considered the homolog of the

Ramachandran plot, which is, in fact, the (�, �) correlation map

(Tozzini et al., 2006). Other important internal variables, which are rele-

vant to the CG representation and specifically to the minimalist one, are

the distances between Ca in general, and specifically those separated by a

given number of amino acids (i.e. r14, r15, . . . ). SecStAnT is able to treat

every custom subset of atoms, including atomistic (A), minimalist (C) and

also intermediate representation, such as the (B) and others. Because the

main focus is on the minimalist, a large number of distribution calcula-

tions for the minimalist representation are implemented.

2.2 Statistical analysis and normalization

Three classes of statistics calculations are available: single variable distri-

butions, two- and three-variables correlation maps (hereafter 2D and 3D

maps). A list of distributions and correlations is represented in Table 1.

Single variables distributions can be done of any of the defined internal

variables, and in some cases of their complementary (e.g. the distribution

of ‘non-bonded’ beads, which are the complementary of the ri,iþ1, . . . ,

ri,iþ3 with respect to the set of all ri,js). The primary output data are the

non-normalized occurrences, i.e. the �Ns:

�Ni ¼ NðxiÞ�xi ð1Þ

X
i

NðxiÞ�xi ¼ Ntot ð2Þ

with Ntot the total number of occurrences of a given variable within the

dataset and �xi is the width of the histogram intervals (bins). Besides the

raw data �Ni, additional differently normalized are of interest. One is the

normalized relative occurrence, tending to the probability distribution in

the �xi!0, �Ni!1 limit

Fig. 1. An illustration of proteins representations available in SecStAnT:

(A) atomistic representation, (B) backbone-only representation and (C)

minimalist (Ca-only) representation. Relevant internal variables are indi-

cated in B and C
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NðxiÞ

Ntot
� PðxiÞ ð3Þ

In addition, especially to the aim of using the distribution for the FFs

parameterization, it is often useful to separate the purely geometric effect

defining

PðxiÞ ¼
PðxiÞ

P0ðxiÞ
¼

NðxiÞ

N0ðxiÞ
ð4Þ

where N0 (P0) is the probability distribution in the non-interacting par-

ticles system (ideal gas), which can be evaluated analytically in some

cases. For instance, if x is ri,j, then N0 is the number of uniformly dis-

tributed particles at distance r from a given one, and one has

N0ðrÞ / �4�r
2 PðrÞ /

NðrÞ

�4�r2
¼ gðrÞ ð5Þ

where g(r) is called the pair distribution function and contains the same

information as P or N but, having the ideal part extracted, reflects spe-

cifically the effect of the interactions. The g(r) here defined with N0¼ 4�r2

is the one corresponding to the ideal infinite gas, with standard normal-

ization [g(r)! 1 for r!1]. However, when applied to finite size sys-

tems, it brings uneven behavior of g(r), making it vanishing at large r

values. Besides the standard normalization, two additional are imple-

mented accounting for the finite size of the proteins:

N0ðrÞ ¼ Cr� ð6Þ

N0ðrÞ ¼ �4�r
2 1�

3

4

� �
r

R

� �
þ

1

16

� �
r

R

� �3� �
ð7Þ

where in Equation (6), ��1.5, fitted on a statistical dataset of large pro-

teins (Zhou and Zhou, 2002). The normalization in Equation (7) corres-

ponds to the distribution of the ideal gas confined in a sphere of radius R,

analytically evaluated (reducing to N0¼�4�r
2 for small r). This normal-

ization works well if the proteins in the dataset are not excessively dis-

persed, R being their average gyration radius (Tozzini, 2010a).

Another noticeable case of non-trivial N0 is the bond angle, for which

N0(�)/sin(�). In any case, the �Ni, the Ps and the Ps are given in the

output (see the Supplementary Material for additional details).

Two variables (2D) and three variables (3D) maps are implemented for

combinations of variables particularly relevant to the secondary structure

analysis. Included in this list, there are the (�, ’) map for the Ca repre-

sentation, and the (�, �) (Ramachandran plot) for the backbone-only

representation. In this case, the output is only the �Ni, and the same

normalized to its maximum value, which is a convenient normalization

for visualization of 2D and 3D maps.

2.3 Potentials generation and other applications

Statistical distributions can be used for the generation of the FFs, specif-

ically in the case of the minimalist model. A commonly used representa-

tion of the FFs for these models is (Tozzini, 2010a; Trovato and Tozzini,

2012):

U ¼ Ub þU� þU� þUloc þUnloc ð8Þ

where Uloc and Unon-loc are the local and non-local parts of the non-

bonded interactions. Depending on the model, the separation between

Uloc and Unon-loc can be based either on physical-chemical criteria, or on

geometrical-structural criteria or a combination of them (Tozzini et al.,

2007). In any case, at least the ri,iþn distances with i¼ 4,5,6 are usually

included in the local part, thus an expansion of the FFs terms reads:

Ub ¼
P
i

ubðri, iþ1Þ

U� ¼
P
i

u�ð�iÞ

U� ¼
P
i

u�ð�iÞ

Uloc ¼
P

i, n¼4, 5, 6

uloc, nðri, iþnÞ

Unloc ¼
P

i, j4iþ6

unlocðri, jÞ

ð9Þ

A rough first approximation to evaluate FF terms of a given internal

variable is to consider the potential of mean force, namely:

wðxÞ ¼ �kT ln PðxÞ � �kT ln
NðxÞ

N0ðxÞ

� �
ð10Þ

where x is any of the variables on which the FF terms depend, kT the

Boltzmann factor. This is defined the BI and gives an operative way to

evaluate numerically the interactions in a system on statistical basis (the

numerical w can subsequently be fitted with an analytical form). w(x) can

be obtained with a single passage from Equation (4) and is delivered in

the output files.

3 RESULTS

3.1 Workflow

The program is roughly composed of two modules, as described

in Figure 2. The first one, the parsing module, performs the

dataset building, extracting structures from PDB and fragment-

ing them in elements with defined secondary structures. The

input selection is performed through a graphical interface by

combining secondary structure information with any other selec-

tion criterion available on the Research Collaboratory for

Structural Bioinformatics (RCSB) advanced search interface as,

for instance, the experimental method for the structure determin-

ation, the release year and so forth. The downloading process is

performed through RCSB FTP interface, according to the server

guidelines; a cache mechanism is implemented to avoid multiple

downloads of a single entry. As anticipated, the queries consist of

secondary structures composition and sequence motifs.

Secondary structures can be selected either based on the infor-

mation included into the PDB file itself (provided by the PDB

file author) (Berman et al., 2003) or on the DSSP file [provided

by RSCB and based on the DSSP algorithm (Andersen et al.,

2002)]. Secondary structures identified by the two algorithms are

listed in Supplementary Table S1 in the Supplementary Material.

Primary structure is defined by standard regular expression

search. During the extraction process, information on primary,

secondary and super-secondary structures (when available) is

mined and stored. Either the whole proteins or only the structure

Table 1. List of available distributions and correlations

Name Description

1D r1,1þn (1� n� 6) Ca distance distributions

� Bond angle distribution

’ Dihedral angle distribution

g(r) total g(r) distribution

g(r) non-bonded Distribution of non-bonded g(r)

2D (��, �þ) Thetaþ, theta� angles correlation

(’, ��) Phi, Theta� angles correlation

(’, �þ) Phi, Thetaþ angles correlation

(r1–3, �) r1–3, Theta- angles correlation

(�,�) Ramachandran’s correlation plot

3D (r1–4, ’, ��) r1–4, Phi, Tetha
� angles correlation

(r1–4, ’, �þ) r1–4, Phi, Tetha
þ angles correlation
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fragments with the selected secondary structure can be stored in

hierarchical organized folders for future consultation (see

Supplementary Material for the detailed description of the

output dataset organization). In the analysis module, the frag-
ments dataset is used to build different kinds of distributions of

internal variables and their correlations. A description of the

statistical analysis process as well as sample distributions and

correlations are discussed below. The output format (described

in detail in the Supplementary Material) is given in numerical

form, conveniently readable by a large number of commonly

used graphics software packages.

3.2 Structural dataset

Two sample datasets were built, one for a helical fragments and

one for unstructured fragments. Each dataset was separated in

two subsets of X-ray crystallographic and nuclear magnetic res-
onance (NMR)-derived structures, although only distributions of

X-ray data are shown (the others are given in the Supplementary
Material). For each database query, search results were filtered

by the RCSB server on the basis of a similarity threshold of 30%.
To further limit the unstructured dataset size, we additionally

selected those entries released after the year 2001. The data
were saved at the ‘minimalist’ resolution level. The search re-

sulted in a total of 16 400 structures for the X-ray a helical struc-
tures, 3550 for NMR a helical, 11 672 for X-ray unstructured

and 3839 for NMR unstructured. Detailed RCSB queries are
reported in Supplementary Material.

3.3 Internal variables distribution

Sample distributions and maps evaluated on the datasets
described in the previous section are here reported. Figure 3

reports the single variable distributions (evaluated on X-ray
datasets).
The difference between red and black lines reflects the second-

ary structure difference, the black lines representing the a-helices
dataset and the red lines the unstructured proteins dataset. For
the helices, the local variables distributions of (�, ’, r1–3 and r1–4)

are single peaked and little dispersed, the signature of the local
order. In particular, the a-helix is characterized by �� 91deg,

’� 50deg. Conversely, those of the unstructured proteins are
multimodal and more disordered.
The distribution of the non-bonded distances (Fig. 3D) shows

similar differences concerning the comparison between helical
and unstructured datasets, although the distribution itself in

both cases is more complex.
It can be observed that the � distributions in panel A show a

striking similarity with the r1-3 distributions, the solid lines in
panel C, which is obvious considering that the two variables

are related by r1–3¼ 2lsin(�/2) (l is the Ca-Ca distance). In fact,
this relationship is also directly measured by the (r1–3, �) correl-
ation map reported in the Supplementary Material.

3.4 Internal variables correlation

A comparison between the correlation maps of the conform-

ational variables of the all-atom and CG models is reported in
Figure 4, where the (�, ’) correlation map of a helices and un-

structured proteins (Panels A and B, respectively) is compared
with the Ramachandran plots (�, � correlation map) of the

same datasets (Panel C and D).
The (�, ’) correlation map can be considered the equivalent of

the Ramachandran plot for the minimalist representation
(Tozzini, 2010a). In fact, the helices plot shows a peaked concen-

tration in a specific area both in Panel A and C (green area),
defining the ‘helical region’. The helical peak is also present in the

unstructured proteins plot (Panel B and D), which, however, also
shows occurrence in other areas, corresponding to extended

structures (around �¼ 130, ’��175 and �¼�135, �¼ 135,
blue area), turns and coils, as well as out of the region corres-

ponding to defined secondary structures, as expected. The ‘un-
structured’ proteins Ramachandran map (Fig. 4D) shows a more

broad population of all the allowed areas, with concentration in
all the secondary structures areas (delimited by green, red and

blue lines, representing the right-handed, and left-handed helices

Fig. 2. Schematic illustration of the SecStAnT workflow. The process is

separated in two modules. In the parsing module, input data are down-

loaded and processed by a thread pool. Each entry is fragmented by user-

defined primary and secondary structure criterions. In the analysis

module, each fragment is then saved separately and a series of statistics

is calculated
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and extended structures), because of the residual presence of

folded secondary structures even in the unstructured proteins.

The corresponding areas are well visible and separated also in

the (�, ’) correlation map, confirming its usability in the analysis

of the secondary structures as the Ramachandran map.

Additional concentrations are visible in the two maps out of

the secondary structures regions, related to unstructured transi-

tion or random conformations. It must be noted that in the (�, ’)

correlation map, two subsequent � are involved with any given ’.

As a consequence, two possible maps can be evaluated: N(��, ’)
between a dihedral and the preceding bond angle and N(�þ, ’)

between a dihedral and the following bond angle. These are dif-

ferent due to the directionality of the polypeptide (see a

comparison in Supplementary Material). A detailed discussion

about this point is beyond the scope of this article and is ad-

dressed elsewhere (Spampinato et al., in preparation).
It is interesting to note that, with respect to the Ramachandran

map, the (�, ’) map has a more direct interpretation: the ’ dihe-

dral directly represents the helicity, thus ’¼� 180 corresponds

to flat structures, ’¼ 0 to rings, whereas positive and negative ’

correspond to right- or left-handed structures with different de-

grees of helicity. For instance, the presence of a populated area at

’��170 and �� 120 indicates that the extended structures tend

to have a weak left-handed torsionality. This representation

allows more immediately to identify different kind of helices.
More detailed information for the unstructured proteins data-

set is given in the (r1-4, �, ’) 3D map represented in Figure 5. The

relations between r1–4 distribution and the previously defined

correlation are:

Pð�,�Þ /

Z
Pð�, �, r1�4Þdr1�4 ð11Þ

Pðr1�4Þ /

Z
P �, ’, r1�4ð Þd�d’ ð12Þ

In the 3D map, the highly populated regions distributed in the

volume can be visualized with iso-values surfaces (in gray, in the

upper part of Fig. 5), making the separation between secondary

structures even more immediate than in the 2D map. Again this

is a consequence of choosing immediately physically interpret-

able variables for the 3D map building. In fact, the r1–4 is a

particularly important variable especially in certain kind of heli-

ces, being associated to the formation of local hydrogen bonds

stabilizing certain kind of helices and turns.
For this reason, an alternative visualization of the 3D map by

means of the iso-variable sections, e.g. the iso-r1–4 (lower part of

Fig. 5) is also particularly interesting. Figure 5 reports the sec-

tions corresponding to three relevant values of the single variable

r1–4 distribution (red dots A, B, C in the top right plot). 2D maps

of these slices are also reported in the tree bottom plots (corres-

ponding letters) each with its colors bar. By definition, the single

variable r1–4 distribution (right upper plot) is the (renormalized)

integral over � and ’ of the 3D map. The 3D representation is

generated with Visual Molecular Dynamics (VMD) software

from the CUBE file. The surface corresponding to the helical

region (residually populated also in the ‘unstructured’ dataset)

is a roughly ellipsoid shape located at r1–4� 5.75 Å. This is also

confirmed by the r1–4¼ 5.75 section (plot A Fig. 5), in which a

high concentration in the helical area is observed. In this plot,

one can also observe an upside-down parabolic shape is popu-

lated (red-blue shades). This kind of correlation is, in fact,

induced among the variables � and ’ by keeping constant the

r1–4 (see Trovato and Tozzini, 2012).
At higher levels of r1–4 other structures appear, first a transi-

tion region (plot B) and then the extended structures region (plot

C). We defer a discussion of the structural meaning of the infor-

mation present in the 2D and 3D map to a forthcoming work.

Other sample 2D and 3D maps involving different variables are

reported in the Supplementary Material.

Fig. 4. Two variables correlation maps. (A) ��, ’ map of the X-ray PDB

a helices; (B) ��, ’ map of the X-ray PDB unstructured proteins; (C)

Ramachandran plot (�, �) of the X-ray PDB a helices; and (D)

Ramachandran plot (�, �) of the X-ray PDB unstructured proteins.

The color bar is reported at the bottom

Fig. 3. X-ray distributions of internal variables. (A) �; (B) ’; (C) r1–3
(solid lines) and r1–4 (dashed lines); and (D) r ‘non–non-bonded’ (rij,

with j4iþ 3). Black lines: a helices dataset, red lines: unstructured

proteins

672

G.Maccari et al.

 at U
niversity of T

oledo on N
ovem

ber 9, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

due to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt586/-/DC1
SI
paper 
ile
-
data set
are
-
e
-
-
-
-
``
''
data set
-
-
-
)
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt586/-/DC1
SI
http://bioinformatics.oxfordjournals.org/


4 CONCLUSIONS

SecStAnT is an efficient and flexible software tool to create se-
lective databases of structures extracted from the PDB and to
calculate statistical distribution of internal variables. The focus

of selection criteria is on the secondary and primary structure,
for which accurate algorithms are considered. Additionally, all
the selection criteria for the initial input data, implemented in the

RCSB ‘advanced query’ form, are available. Despite the focus on
the minimalist CG representation, SecStAnT can be as well used
for different CG models with a compatible Ca-based backbone

representation, like the popular MARTINI (Marrink et al.,
2007). Statistical distributions and correlations of a number of
internal variables can be performed with different normalization,

allowing the generation of SP by BI.
Moreover, this software was thought as a part of a larger

package for proteins (and other biomolecules) multiscale model-

ing. Consequently, it was designed to be extended to include
advanced techniques for SP generation, such as iterative BI,
multivariable potential generation. The ability to the directly

evaluate correlations among variables gives the possibility to
obtain more accurate potentials correcting the potential of
mean forces by subtracting the correlation effects. In addition,

given the capability of SecStAnT to produce highly selective

distributions, the primary and secondary structure selectivity

can be easily introduced into these potentials.
Apart from SP parameterization, another important class of

SecStAnT applications concerns the secondary structure ten-

dency evaluation of amino acids or sequence motifs, i.e. the

problem of prediction of secondary structure from primary se-

quence. SecStAnT currently offers the possibility to address it at

the minimalist level, with the advantage of simplifying the prob-

lem, and possibly including additional information by means of

3D maps. The Ramachandran plot indicates a limited and con-

fined set of conformations, governed by steric overlap between

atoms in the side chains of adjacent residues (Betancourt and

Skolnick, 2004). Using this information, structure prediction

methods allow a limited search in areas of the conformations

space where the correct conformation is most likely to be

(Keskin et al., 2004). The possibility to calculate Ramachandran

plots of extremely well-defined dataset of secondary structure

fragments permit to have informative statistics. Furthermore,

SecStAnT allows to calculate the probability distribution of

(�, ’) and (�, �) for Ca and backbone-only representations,

respectively, giving the ability to address the mapping-backmap-

ping of atomistic to CG representation. In conclusion, SecStAnT

is designed with the aim to facilitate the extraction of

Fig. 5. r1–4, �, ’ map for the X-ray PDB unstructured proteins. An iso-surface (level¼ 120) is represented in gray and three r1–4¼ const sections are in

color. The three r1–4 values are chosen corresponding to three relevant values of the single variable r1–4 distribution (red dots A, B, C in the top right

plot). 2D maps of these slices are also reported in the tree bottom plots (corresponding letters) each with its colors bar. By definition, the single variable

r1–4 distribution (right upper plot) is the (renormalized) integral over � and ’ of the 3D map. The 3D representation is generated with VMD from the

CUBE file
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information from proteins structures datasets, aid the parameter-

ization of statistics-based potentials and investigate the se-

quence–structure relationship. Furthermore, the expansion of

atomistic-level statistics, as well as the introduction of new mini-

malistic representations will allow in principle to realize accurate,

transferable and predictive potentials for multiscale models.

More generally, it can be considered as tool to find useful direc-

tions navigating the continuously expanding ocean of protein

structures.
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