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Abstract The Radon transfornh can be defined for a suitable func-

Motivation: Arrays of three-dimensional (3D) data are tionf (see Appendix B in Deans, 1993), continuous and with
ubiquitous in structural biology, biomedicine and clinical compact support in ardimensional space. Its value in each
imaging. The Radon transform can be implied in theipointx is obtained by integration over the { 1)-dimen-
manipulation mainly for the solution of the inverse tomosional manifold orthogonal t in the function domain; in
graphic problem, since experimental data are often collecte@vo dimensions (2D) thenanifolds are lines, planes in 3D
as projections or as samples of the Radon space. In electrafd so on. Thus, in andimensional space, we have:
tomography, new applications of the transform may become

convenient if a fast and accurate transformation algorithm f(p, £) = I f(x)d(p — & - x)dx,

is adopted.

Results: A direct Fourier method (DFM) is proposed to ) ) , A ]
compute the 3D Radon transform from a sampled functignP€ing & unit vector iR". In 3D, f is conveniently repre-
with compact support. This paper describes an alread§entéd in spherical coordinatgs ¢, ¢), p being the radial
known two-step algorithm and illustrates its DFM imp|e_coord|nate along§whose d|rect|orA1 is described by two angu-
mentation by coordinate transformations in 2D Fourierlar variables. A discrete version bfs obtained by sampling
space. The algorithm is easily inverted to obtain a densitihe transform at equispaced values ajgrgandd, although
distribution from the Radon transform. The main applicathe sampling points are not equispaced in Euclidean space.
tions are in the field of electron tomography, especially in The Radon transform of a real object can be obtained ex-
processes of angular refinement, since whatever projectigrerimentally, for instance, in an X-ray CT instrument. This
of a structure can be retrieved from its Radon transform ifis why a huge amount of literature is dedicated to recovering

a fast and accurate way. The times required to computetgrom f. Nowadays, different algorithms can satisfactorily
number of projections with use of the Radon transform argy|ye this ‘inverse problemin this paper, we wish to illus-
compared with those required by other algorithms. Furthef e 4 fast and convenient algorithm to cope with the direct
uses of the Radon transform can be foreseen in appl|cat|0B§0b|em in 3D, i.e. obtaining the Radon transform of a
based on ‘projection onto convex sets’ (POCS). sampled 3D density distribution. Some applications of com-

Availability: Software is available free of charge UpoON huted Radon transforms will also be presented.
request to the authors.
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A tight relationship exists between Fourier transform (FT)
and Radon transform of a function (Deans, 1993). The 1D FT

of f along the radial directigmrepresents a radial sampling

The Radon transform (Radon, 1917; 1986 for Englisﬂf the n-dimensional FT pf. This fundamental property,
translation) is an important item of integral geometry (Helga?@s€d on the central section theorem, holds troglimen-
son, 1984) which holds the key for X-ray and emission tomaional spaces. In 2D, it represents the basis for direct Fourier
graphy as well as for electron tomography (ET), radioastrg€thods (DFM) to solve the inverse problem of X-ray CT

nomy and geophysics [Deans (1993) and references therei(ﬂ.ee’ for example, Bellon and Lanzavecchia, 1997). Sampled

Besides this relevance in modern science, it offers an alterngrsions of a 20, called sinograms (see, for example, van
tive way to represent and manipulate image and volume datdeel, 1987) can be computed either by projecting an image
other than the usual pixel (Sagizal, 1988) or voxel repre- along a set of discrete directions (Bellon and Lanzavecchia,
sentation (Radermacher, 1994). 1995) or by DFM (Lanzavecchit al, 1996). In the latter
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case, the 2D FT of an image is converted from Cartesian e second step is identical to the first one, provided that the

polar coordinates antlis obtained by 1D FT inversion along 7@y is transposed B(r,z,v). Now, each planey(constant)

p*. contains a set of lines coming one from each sinogram. All

planes are fetched in turn and their sinograms are computed
s above to obtain the plane integrals, and stored back in the
rray which, at the end, contaih§p,u,0). The process is

fis sampled on a Cartesian grid, the direct computatidn ofrepresented schematically in Figdre

requires the interpolation of the density distribution on all

planes, in order to make in-plane integration feasible. This The DFM computation of sinograms performed in both

involves a 3D interpolation in real space. In reciprocal spacgteps can be inverted, with strictly comparable efficiency and

3D interpolation could be used to determine the complex c@ccuracy, by carrying out sets of 2D tomographic reconstruc-

efficients along radial lines which are Fourier inverted; botfions via DFM (see, for example, Bellon and Lanzavecchia,

processes are Computation intensive. 1997) Thus, the 3D Radon transform is easily converted to
The computing cost is substantially reduced in a two-stefp€ original structure.

process. The simple recipe to carry it out is: first, rotate the

structure stepwise around one axis and obtain a set of projdéaterpolation in Fourier space

tions; second, compute the 2D Radon transform of each P%he conversion of coordinates requires a resampling in the

jection (Marret al, 1981). This method is easily understood molex Eourier space. This is bossible since the Shannon
since the projections obtained in the first step are collectioforP pace. P

of integrals of lines parallel to the projecting directions. In thﬁ'tﬁéﬁnlgggs IiLur?hlerlr;%ifr?;ra; fst?r?;?orgLv?/iTﬁ?ﬁﬁﬁzlzua?d
second step, these line integrals are further integrated alo § : : ' P

all possible lines within the projection planes. The resulto'? , the relationship between a discrete Fourier series,

X ; . evaluated with respect to the support, and the continuous
the two integrations corresponds to the plane integrals Oftransform is such that the coefficients of the former represent

The lay-out of these planes spans the domaihiospheri- 3 discrete sampling of the latter (Brigham, 1974). In order to
cal coordinates. use the Shannon reconstruction, the band extension of the
This two-step contrivance avoids the use of 3D interpolaransform must be finite, though evaluating its extension

tion; however, the computation of all projections in direcinjight be difficult.

space is time expensive, especially if good accuracy isQur DFM to compute sinograms performs the resampling

needed. The number of rotations reqmred is half the numbﬁFourier domain with the moving window Shannon recon-

of independent projections needed (Bellon and Lanzavesryction algorithm (Lanzavecchia and Bellon, 1994) and

chia, 1995). In what follows, a fast and accurate DFM impleyjith improved interpolating kernels (Lanzavecchia and Bel-

mentation of the two-step algorithm is proposed. lon, 1995). All interpolation steps in this study used a recon-
structing function of the type:

In 3D, the numerical computation dfcan again be per-
formed in direct or in reciprocal space. In the former case,

Fast DFM computation of the Radon transform

m+n+ -1

ﬁ‘(x)=% Z f(j/N)sin[n-n-(x—j/N)]

A
sinfr - (x — j/N)] }

. - . < (x—j/N
The collection of projections of a 3D structure on a set o‘? (eoskr - (<= i/N)

j=m
lanes rotated around a common axis is called a ‘single-axis . . .

Seometry’ set. Suppose the structure is rotated s?epwisé’_"'th a window widthn = 11 andA = 2 (¢7,). Thus, each

around the axis, with angular incremeni®, and projected point of a polar raster is c_)btalr_led from t_he linear comblna}tlon

on thex,zplane. The ordered set of projections is a 3D matri®f 11.>< .11 terms (regl or imaginary) weighted by appropriate

sampling a continuous functié(r,z,u). The planes parallel coefficients stored in tables to speed up computations.

to zu are the series of 2D Radon transforms (sinograms) of =

all structure sections orthogonalzcConversely, the single- APplications to electron tomography

axis geometry set can be obtained by computing the singne reconstruction of a macromolecular protein assembly
grams of all structure slices orthogonal to the rotation axigom its 2D projections observed in the electron microscope,
Each slice, once copied and converted into a sinogram, c@iich is the aim of ET, represents a fundamental tool of

be stored back in the array which will eventually confain  structural biology (Frank, 1996). Electron tomography is a

In this way, the transposed matRgr,u,2) is obtained. Sino- typical inverse problem; its solution via the Radon transform

grams can be obtained efficiently as described elsewhenas been proposed by Radermacher (1998). For ice-
(Lanzavecchiat al, 1996): the 2D FT of each slice is com-embedded samples, however, the directions along which the
puted and converted to polar coordinates; 1D FT inversiostructure is projected are distributed at random. Thus, obtain-
alongr* yields the sinogram lines. Rotation axes other thaing a regular sampling of the Radon space and inverting it to
zcan be chosen if the proper transposition is performed firghe real space by DFM is a cumbersome task. Rather, convol-
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Fig. 1. Flow of operations in the two-step computation of the Radon transta@fra sampled functioh The dotted parts of arrafBandR
are symmetry related to the parts enclosed by continuous lines and do not need to be computed. The process can belitaiaft&dmo
R, by reversing the flow direction.

uted back-projection methods (CBPM) are usually adoptefl994), looks attractive since the Radon transform is easily

in the reconstructions. _ , obtained. The sinogram of a projection is recovered ffom
The Radon transform can play a role in ET refinemengiih 5 process involving 2D interpolation ang) planes,

stages. Preliminary reconstructions are obtained from @nce each of its lines is parallelgoConverting the sino-
number of observed projections assigned with a triad Qfram into its parent projection is done by a DFM tomo-
Euler angles. Several strategies have been proposed to de, bhic reconstruction (Lanzavecchkizal, 1996).

these angles (van Heet al, 1992; Radermacher, 1994;  \ve adopted this technique to refine random conical tilt re-
Penczelet al, 1996). The first determinations are often inaCtgnstructions of metal replicas of some oligomers of the
curate or completely wrong so that the projections need to pgsjicobacterpylori toxin (Lanzavecchiat al. 1998). Pre-
accurately aligned by an iterative process which starts froffininary reconstructions were projected to improve the azi-
a preliminary structure; this ‘angular refinement’ (Scl&tz muyth angles estimated from correlation analysis of untilted
al,, 1995) is a lengthy task. A *first trial’ reconstruction is micrographs (Radermachetral, 1987). The refinement re-
projected along sets of angular values and the projections gjfigired some iterations to converge. This experience offered
compared with original images to assess their correspothe opportunity to compare the performances of some pro-
dence. Projections may be computed by: (i) straightforwar@cting algorithms for structures enclosed ir? o4 128
integration of voxels using a nearest-neighboun) ap-  voxel boxes. Tablda shows the times spent to compute
proximation or bilinear interpolatiorb(); both algorithms Radon transforms; times to project structures with different
are quite inaccurate; (i) by rotation of the array with a relialgorithms are compared in Talle.

able interpolation (e.g. three-step algorithm with shifts in Accuracy is an important aspect in processes involving

Fourier space; see Tosatial, 1996), followed by discrete ppp i the case of it can be evaluated by measuring how

integration along the lines of the resulting array; (iit) by 36| 4 structure obtained after forward and back transform-

interpolation in Fourier space (Malzbender, 1993); (iv) bY;tion compares with the original. Results of tests carried out

extracting sinograms of projections frofand reconstruct-  on different structures show tiny errors, of norelevance in ET
ing them. The latter technique, proposed by Radermachstudies.
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Table 1.(a) Times required to compute the direct Radon transform of a
function and its inverse (IBM RISC 684166 Mhz)

Operation Array dimension

643 1283 2563
Direct
Radon transform 85 82' 782'
Inverse
Radon transform '5 50" 465'

(b) Times required to compute 128 projections of a structure with
different methods. For projections obtained from the Radon transform,
time is inclusive of transform computation; the method becomes more
convenient on increasing the number of projections. Rotations are
performed with a three-step algorithm and Fourier shift. Direct
projections of volume use the nearest-neighbour technigog ¢r

bilinear interpolationl.i.). The same computer was used as in (a)

1996), but might also be imposed on 3D Radon space. A fast
algorithm of direct and inverse Radon transform makes in-
vestigating further constraints in POCS applications attract-
ive.
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