
Fast computation of 3D Radon transform via a
direct Fourier method
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Abstract

Motivation: Arrays of three-dimensional (3D) data are
ubiquitous in structural biology, biomedicine and clinical
imaging. The Radon transform can be implied in their
manipulation mainly for the solution of the inverse tomo-
graphic problem, since experimental data are often collected
as projections or as samples of the Radon space. In electron
tomography, new applications of the transform may become
convenient if a fast and accurate transformation algorithm
is adopted.
Results: A direct Fourier method (DFM) is proposed to
compute the 3D Radon transform from a sampled function
with compact support. This paper describes an already
known two-step algorithm and illustrates its DFM imple-
mentation by coordinate transformations in 2D Fourier
space. The algorithm is easily inverted to obtain a density
distribution from the Radon transform. The main applica-
tions are in the field of electron tomography, especially in
processes of angular refinement, since whatever projection
of a structure can be retrieved from its Radon transform in
a fast and accurate way. The times required to compute a
number of projections with use of the Radon transform are
compared with those required by other algorithms. Further
uses of the Radon transform can be foreseen in applications
based on ‘projection onto convex sets’ (POCS).
Availability: Software is available free of charge upon
request to the authors.
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Introduction

The Radon transform (Radon, 1917; 1986 for English
translation) is an important item of integral geometry (Helga-
son, 1984) which holds the key for X-ray and emission tomo-
graphy as well as for electron tomography (ET), radioastro-
nomy and geophysics [Deans (1993) and references therein].
Besides this relevance in modern science, it offers an alterna-
tive way to represent and manipulate image and volume data,
other than the usual pixel (Sanz et al., 1988) or voxel repre-
sentation (Radermacher, 1994).

The Radon transform f
^
 can be defined for a suitable func-

tion f (see Appendix B in Deans, 1993), continuous and with
compact support in an n-dimensional space. Its value in each
point x is obtained by integration over the (n – 1)-dimen-
sional manifold orthogonal to x in the function domain; in
two dimensions (2D) the manifolds are lines, planes in 3D
and so on. Thus, in an n-dimensional space, we have:

f
^
(p, �) �� f (x)�(p� � � x)dx,

ξ being a unit vector in Rn. In 3D, f
^
 is conveniently repre-

sented in spherical coordinates (p, υ, ϕ), p being the radial
coordinate along ξ whose direction is described by two angu-

lar variables. A discrete version of f
^
 is obtained by sampling

the transform at equispaced values along p, υ and ϕ, although
the sampling points are not equispaced in Euclidean space.

The Radon transform of a real object can be obtained ex-
perimentally, for instance, in an X-ray CT instrument. This
is why a huge amount of literature is dedicated to recovering

f from f
^
. Nowadays, different algorithms can satisfactorily

solve this ‘inverse problem’. In this paper, we wish to illus-
trate a fast and convenient algorithm to cope with the direct
problem in 3D, i.e. obtaining the Radon transform of a
sampled 3D density distribution. Some applications of com-
puted Radon transforms will also be presented.

Radon transform via Fourier transform

A tight relationship exists between Fourier transform (FT)
and Radon transform of a function (Deans, 1993). The 1D FT

of f
^
 along the radial direction p represents a radial sampling

of the n-dimensional FT of f. This fundamental property,
based on the central section theorem, holds true in n-dimen-
sional spaces. In 2D, it represents the basis for direct Fourier
methods (DFM) to solve the inverse problem of X-ray CT
(see, for example, Bellon and Lanzavecchia, 1997). Sampled

versions of a 2D f
^
, called sinograms (see, for example, van

Heel, 1987) can be computed either by projecting an image
along a set of discrete directions (Bellon and Lanzavecchia,
1995) or by DFM (Lanzavecchia et al., 1996). In the latter
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case, the 2D FT of an image is converted from Cartesian to

polar coordinates and f
^
 is obtained by 1D FT inversion along

p*.

In 3D, the numerical computation of f
^
 can again be per-

formed in direct or in reciprocal space. In the former case, if

f is sampled on a Cartesian grid, the direct computation of f
^

requires the interpolation of the density distribution on all
planes, in order to make in-plane integration feasible. This
involves a 3D interpolation in real space. In reciprocal space,
3D interpolation could be used to determine the complex co-
efficients along radial lines which are Fourier inverted; both
processes are computation intensive.

The computing cost is substantially reduced in a two-step
process. The simple recipe to carry it out is: first, rotate the
structure stepwise around one axis and obtain a set of projec-
tions; second, compute the 2D Radon transform of each pro-
jection (Marr et al., 1981). This method is easily understood
since the projections obtained in the first step are collections
of integrals of lines parallel to the projecting directions. In the
second step, these line integrals are further integrated along
all possible lines within the projection planes. The result of
the two integrations corresponds to the plane integrals of f.

The lay-out of these planes spans the domain of f
^
 in spheri-

cal coordinates.
This two-step contrivance avoids the use of 3D interpola-

tion; however, the computation of all projections in direct
space is time expensive, especially if good accuracy is
needed. The number of rotations required is half the number
of independent projections needed (Bellon and Lanzavec-
chia, 1995). In what follows, a fast and accurate DFM imple-
mentation of the two-step algorithm is proposed.

Fast DFM computation of the Radon transform

The collection of projections of a 3D structure on a set of
planes rotated around a common axis is called a ‘single-axis
geometry’ set. Suppose the structure is rotated stepwise
around the z axis, with angular increments ∆υ, and projected
on the x,z plane. The ordered set of projections is a 3D matrix
sampling a continuous function P(r,z,υ). The planes parallel
to z,υ are the series of 2D Radon transforms (sinograms) of
all structure sections orthogonal to z. Conversely, the single-
axis geometry set can be obtained by computing the sino-
grams of all structure slices orthogonal to the rotation axis.
Each slice, once copied and converted into a sinogram, can

be stored back in the array which will eventually contain f
^
.

In this way, the transposed matrix P(r,υ,z) is obtained. Sino-
grams can be obtained efficiently as described elsewhere
(Lanzavecchia et al., 1996): the 2D FT of each slice is com-
puted and converted to polar coordinates; 1D FT inversion
along r* yields the sinogram lines. Rotation axes other than
z can be chosen if the proper transposition is performed first.

The second step is identical to the first one, provided that the
array is transposed to P(r,z,υ). Now, each plane (υ constant)
contains a set of lines coming one from each sinogram. All
planes are fetched in turn and their sinograms are computed
as above to obtain the plane integrals, and stored back in the
array which, at the end, contains f (p,υ,ϕ). The process is
represented schematically in Figure 1.

The DFM computation of sinograms performed in both
steps can be inverted, with strictly comparable efficiency and
accuracy, by carrying out sets of 2D tomographic reconstruc-
tions via DFM (see, for example, Bellon and Lanzavecchia,
1997). Thus, the 3D Radon transform is easily converted to
the original structure.

Interpolation in Fourier space

The conversion of coordinates requires a resampling in the
complex Fourier space. This is possible since the Shannon
criterion holds true in reciprocal space (Lanzavecchia and
Bellon, 1998). Furthermore, for a function with a finite sup-
port, the relationship between a discrete Fourier series,
evaluated with respect to the support, and the continuous
transform is such that the coefficients of the former represent
a discrete sampling of the latter (Brigham, 1974). In order to
use the Shannon reconstruction, the band extension of the
transform must be finite, though evaluating its extension
might be difficult.

Our DFM to compute sinograms performs the resampling
in Fourier domain with the moving window Shannon recon-
struction algorithm (Lanzavecchia and Bellon, 1994) and
with improved interpolating kernels (Lanzavecchia and Bel-
lon, 1995). All interpolation steps in this study used a recon-
structing function of the type:

�A
n(x) � 1

n �
m�n��1

j�m

f (j�N)
sin[n � � � (x� j�N)]

sin[� � (x� j�N)]
� �cos[� � (x� j�N)]�

A

with a window width n = 11 and A = 2 (�2
11). Thus, each

point of a polar raster is obtained from the linear combination
of 11 × 11 terms (real or imaginary) weighted by appropriate
coefficients stored in tables to speed up computations.

Applications to electron tomography

The reconstruction of a macromolecular protein assembly
from its 2D projections observed in the electron microscope,
which is the aim of ET, represents a fundamental tool of
structural biology (Frank, 1996). Electron tomography is a
typical inverse problem; its solution via the Radon transform
has been proposed by Radermacher (1998). For ice-
embedded samples, however, the directions along which the
structure is projected are distributed at random. Thus, obtain-
ing a regular sampling of the Radon space and inverting it to
the real space by DFM is a cumbersome task. Rather, convol-
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Fig. 1. Flow of operations in the two-step computation of the Radon transform R of a sampled function f. The dotted parts of arrays P and R
are symmetry related to the parts enclosed by continuous lines and do not need to be computed. The process can be inverted, to obtain f from
R, by reversing the flow direction.

uted back-projection methods (CBPM) are usually adopted
in the reconstructions.

The Radon transform can play a role in ET refinement
stages. Preliminary reconstructions are obtained from a
number of observed projections assigned with a triad of
Euler angles. Several strategies have been proposed to detect
these angles (van Heel et al., 1992; Radermacher, 1994;
Penczek et al., 1996). The first determinations are often inac-
curate or completely wrong so that the projections need to be
accurately aligned by an iterative process which starts from
a preliminary structure; this ‘angular refinement’ (Schatz et
al., 1995) is a lengthy task. A ‘first trial’ reconstruction is
projected along sets of angular values and the projections are
compared with original images to assess their correspon-
dence. Projections may be computed by: (i) straightforward
integration of voxels using a nearest-neighbour (n.n.) ap-
proximation or bilinear interpolation (b.i); both algorithms
are quite inaccurate; (ii) by rotation of the array with a reli-
able interpolation (e.g. three-step algorithm with shifts in
Fourier space; see Tosoni et al., 1996), followed by discrete
integration along the lines of the resulting array; (iii) by 3D
interpolation in Fourier space (Malzbender, 1993); (iv) by

extracting sinograms of projections from f
^
 and reconstruct-

ing them. The latter technique, proposed by Radermacher

(1994), looks attractive since the Radon transform is easily

obtained. The sinogram of a projection is recovered from f
^

with a process involving 2D interpolation on (υ,φ) planes,
since each of its lines is parallel to p. Converting the sino-
gram into its parent projection is done by a DFM tomo-
graphic reconstruction (Lanzavecchia et al., 1996).

We adopted this technique to refine random conical tilt re-
constructions of metal replicas of some oligomers of the
Helicobacter pylori toxin (Lanzavecchia et al. 1998). Pre-
liminary reconstructions were projected to improve the azi-
muth angles estimated from correlation analysis of untilted
micrographs (Radermacher et al., 1987). The refinement re-
quired some iterations to converge. This experience offered
the opportunity to compare the performances of some pro-
jecting algorithms for structures enclosed in 643 or 1283

voxel boxes. Table 1a shows the times spent to compute
Radon transforms; times to project structures with different
algorithms are compared in Table 1b.

Accuracy is an important aspect in processes involving

DFM. In the case of f
^
 it can be evaluated by measuring how

well a structure obtained after forward and back transform-
ation compares with the original. Results of tests carried out
on different structures show tiny errors, of no relevance in ET
studies.
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Table 1. (a) Times required to compute the direct Radon transform of a
function and its inverse (IBM RISC 604e, 166 Mhz)

Operation Array dimension

643 1283 2563

Direct

Radon transform 8.5′′ 82′′ 782′′

Inverse

Radon transform 5′′ 50′′ 465′′

(b) Times required to compute 128 projections of a structure with
different methods. For projections obtained from the Radon transform,
time is inclusive of transform computation; the method becomes more
convenient on increasing the number of projections. Rotations are
performed with a three-step algorithm and Fourier shift. Direct
projections of volume use the nearest-neighbour technique (n.n.) or
bilinear interpolation (b.i.). The same computer was used as in (a)

Method Array dimension

643 1283 2563

Radon transform 18.5′′ 130′′ 1100′′

Array rotation 170′′ 3220′′ = =

Direct

projection n.n. 24′′ 200′′ 1613′′

Direct

projection b.i. 41′′ 340′′ 2830′′

Concluding remarks

Although Radon space is usually dealt with to solve the in-
verse problem, a fast algorithm to switch from direct to
Radon space offers the opportunity to take advantage and to
explore further the applications of this transform. Filtration
algorithms, for instance, have been exploited to reject noise
from sinograms (Karp et al., 1988) and from a peculiar 3D
projection space (Lanzavecchia and Bellon, 1996). A filter
of this type can also be adopted in 3D Radon space.

Other possible applications deal with the recovery of mis-
sing data. This is the case of ET using conical and single-axis
tilt geometry. The strategy of projection onto convex sets
(POCS), devised for clinical tomography by Sezan and Stark
(1984), has been introduced in ET by Carazo (Carazo and
Carrascosa, 1987; Carazo, 1992). The technique is based on
the idea that the reconstructed function and/or the data set
must verify some general properties. If data are missing, the
reconstruction fails to satisfy these properties, which can,
however, be imposed as constraints. In this way, it is possible
to recover missing information by an iterative process. Con-
straints can be devised and imposed on the set of experi-
mental data in a projection space (Lanzavecchia and Bellon,

1996), but might also be imposed on 3D Radon space. A fast
algorithm of direct and inverse Radon transform makes in-
vestigating further constraints in POCS applications attract-
ive.
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