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Abstract. Here we study the integrality properties of singular moduli of a special
non-holomorphic function γ(z) which was previously studied by Siegel [10], Masser [8],
Bruinier, Sutherland, and Ono [3]. Similar to the modular j-invariant, γ has algebraic
values at any CM-point. We show that primes dividing the denominators of these
values must have absolute value less than that of the discriminant and are not split
in the corresponding quadratic field. Moreover we give a bound for the size of the
denominator.

1. Introduction and statement of results

We first recall the famous modular j-function given explicitly by

(1.1) j(τ) :=

(
1 + 240

∑∞
n=1

∑
d|n d

3qn
)3

q
∏∞

n=1 (1− qn)24
= q−1 + 744 + 196884q + 2149370q2 + . . .

where q := e2πiτ . The term singular moduli classically refers to values of the j-function
at quadratic irrationalities, which for the remainder of this paper we will refer to as
CM-points. These numbers are at the center of the beautiful subject known as complex
multiplication, and they enjoy numerous important properties. More specifically, these
singular moduli are algebraic integers, and they generate Hilbert class fields for imaginary
quadratic fields. Their minimal polynomials are therefore important in the study of
explicit class field theory. These polynomials are known as the Hilbert class polynomial
of discriminant −D, and are defined as

(1.2) H−D(j;X) :=
∏

Q∈SL2(Z)\Q−D

(X − j(αQ)) ∈ Z[X]

(for example, see [11, Ch. 6] and [9, Ch. 7]). Here, Q−D is the set of reduced, integral,
binary quadratic forms of a fixed discriminant −D; for a representative quadratic form
Q, αQ is the root of Q(x, 1) in the upper half-plane. Gross and Zagier in [5] further give
exact factorization formulas for the constant terms of H−D(j;X), explaining the fact
that they seem to be highly factorizable integers.
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Analogous “class polynomials” may be defined for non-holomorphic modular func-
tions. A natural first example is the function Ψ(z) defined as follows:

(1.3) Ψ(z) :=
E∗2(z)E4(z)

E6(z)
,

where

(1.4) E∗2(z) := 1− 3

πIm(z)
− 24

∞∑
n=1

∑
d|n

dqn

is the usual weight 2 non-holomorphic Eisenstein series and where

(1.5) E4(z) := 1 + 240
∞∑
n=1

∑
d|n

d3qn, E6(z) := 1− 504
∞∑
n=1

∑
d|n

d5qn

are the usual weight 4 and weight 6 Eisenstein series, respectively. This function has
algebraic values at CM-points (see [11, Ch. 2]) and was previously studied by Siegel in
[10] in connection with computing CM-values for j′(z). Following Masser we will also
define the normalized modular function

(1.6) γ(z) :=
Ψ(z)

6j(z)
− 7j(z)− 6912

6j(z)(j(z)− 1728)
.

This function was important in [6] and [3], and its singular moduli were first studied in
Masser ([8, App. 1]).

As mentioned above, for any level 1 modular function f we may define an analogue
of the “class polynomial”,

(1.7) H−D(f ;X) :=
∏

Q∈SL2(Z)\Q−D

(X − f(αQ)) ∈ Q[X].

We will generally refer to these polynomials simply as class polynomials. It is suspected,
but not yet proven, that for many modular functions including Ψ and γ, these poly-
nomials generate the appropriate ring class fields. The following table gives the class
polynomials H−D(γ;X) and H−D(Ψ;X) for several small discriminants:
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−D H−D(γ;X) H−D(Ψ;X)

−3 X − 23
211·33 X

−7 X − 181
36·537 X − 5

3·7

−8 X − 61
26·53·72 X − 5

2·7

−11 X − 172

214·72·11 X − 25

7·11

−12 X + 67
23·33·53·112 X − 5

11

−15 X2 + 313
34·5·113 ·X −

29·36061
38·53·74·115 X2 − 2·3

11
X + 1

72

−16 X + 179
36·72·113 X − 5

7

−19 X − 52·11
214·36·19 X − 25

3·19

−20 X2 − 52·7·251
26·113·192 ·X −

89·25931
218·53·115·192 X2 − 139

11·19X + 1
19

Several phenomena are apparent from this table. For example, the denominators
appear to be “highly factorizable.” In fact, it appears that the primes appearing in the
denominators are bounded by the size of the discriminant. This suggests that a Gross-
Zagier type phenomena occurs, but now for the denominators of the constant terms of
the class polynomials rather than for the constant terms as a whole. Based on numerics,
Ono and Sutherland proposed the following:

Conjecture 1 (Ono-Sutherland). Let −D be a negative discriminant, not equal to −4.
Then if p > D or if p splits in Q(

√
−D), we have that H−D(γ;x) and H−D(Ψ;X) are

p-integral.

We remark that throughout the paper, when we refer to a split, inert or ramified prime,
we mean that the prime is such in the appropriate quadratic field for the discriminant
in question. Our main result is the proof of this conjecture.

Theorem 1.1. The conjecture of Ono and Sutherland is true.

Remark. The relation between Ψ and γ given in equation (1.6) will play a crucial role in
the proof of Theorem 1.1. The fact that the denominators in H−D(Ψ;X) are in general
simpler than those in H−D(γ;X) should be apparent from (1.6). In particular Ψ is, in
many ways, a more basic modular function than is γ.
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The paper is organized as follows. In §2 we review relevant background information
including the formulas of Masser on singular moduli for γ(z), the formula of Gross and
Zagier. In §3 we complete the proof of 1.1 by combing the cited results in §2 along with
results from the theory of reduced binary quadratic forms, basic elliptic curve theory,
and Deuring lifting theory.
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2. Nuts and bolts

Here we review some important facts which we need in the proof of Theorem 1.1

2.1. Masser’s Formulas. Our starting point is an elegant formulation due to Masser
in [8, App. 1]. His careful study of Ψ and γ yields two formulas for singular moduli of
these functions in terms of modular polynomials and elliptic curves which we require.
The first concerns the function γ(z). We begin by reviewing the definition of the classical
modular polynomial Φ−D.

Definition 2.1. We say that two matrices B1 and B2 are equivalent if B1 = X ·B2 for
some X ∈ SL2(Z).

It is well-known that there are only finitely many equivalence classes of primitive
integer matrices of determinant −D. Write M1,M2, . . . ,Mn for representatives of these
equivalence classes and suppose M1 is such that αQ = M1αQ, where the action of a
matrix on a complex number is given by Möbius transformation.

Definition 2.2. We write Φ−D(X, Y ) for the classical modular polynomial, i.e. the poly-
nomial such that

(2.1) Φ−D(j(z), Y ) =
n∏
i=1

(Y − j(Miz)).

By [2], Theorem 1 of Section 3.4, the polynomial Φ−D(X, Y ) is symmetric in X and Y
and has coefficients that are rational integers. In particular, we can expand Φ−D(X, Y )
in a power series about X = Y = j(αQ) as

(2.2) Φ(X, Y ) =
∑
µ,ν

βµ,ν(X − j(αQ))µ(Y − j(αQ))ν ,

where βµ,ν = βν,µ. We write β = β0,1 = β1,0.
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We define Q to be special if there is more than one equivalence class of matrices M
such that MαQ = αQ. This can only happen if D = 3d2 for some integer d (see [8, App.
1]).

Lemma (Masser). If Q is not special, we have β 6= 0 and

(2.3) γ(αQ) =
β0,2 − β1,1 + β2,0

β
.

If Q is special, we have β 6= 0 and

(2.4) γ(αQ) =
β4,0 − β3,1 + β2,2 − β1,3 + β0,4

β
.

Proof. See [8, App. 1], (in particular, the equations on page 118). �

By definition, the βµ,ν are algebraic integers. Thus, to study integrality of γ(αQ) it
suffices to study the primes dividing β. From the definition of β, we have

(2.5) β =
n∏
i=2

(j(αQ)− j(MiαQ)).

We will later use this result to eliminate split primes by studying lifting of isomorphisms
of elliptic curves over Fp to Q.

In order to show that large primes cannot divide the denominators of our class poly-
nomials, and to study bounds for the powers of primes appearing, we will find another
formula of Masser convenient.

Lemma (Masser). Let τ be a CM point of discriminant −D for 4 < D and A,B,C
integers such that Aτ 2 +Bτ + C = 0. Then we have that

(2.6) Ψ(τ) = − g2S

g3A(C + 2Bτ)
.

Here, g2 and g3 are the usual invariants of the associated CM-elliptic curve (the non-
normalized Eisenstein series), and S is the sum of Cτ -division values of the Weierstrass
℘-function (We note that Masser defines the coefficients such that Cτ 2 +Bτ + A = 0).

2.2. The Gross-Zagier Formula. Gross and Zagier [5] give an exact formula for the
factorizations of the constant terms of the Hilbert class polynomials H−D(j;X). In fact
their result is more general. For two co-prime discriminants D1, D2, let wi be the number
of roots of unity in the quadratic order of discriminant di for i = 1, 2. Consider the norm
of difference of singular moduli defined by

(2.7) J(D1, D2) :=
(∏

(j(τ1)− j(τ2))
) 4

w1w2 ,
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where disc(τi) = Di and τi run through representatives of SL2(Z)\QDi
. Then for primes

` with
(
D1D2

`

)
6= −1 define

(2.8) ε(`) :=

{(
D1

`

)
if (D1, `) = 1(

D2

`

)
if (D2, `) = 1

.

We extend this definition to natural numbers by setting ε(
∏

i `
ni
i ) :=

∏
i ε(`i)

ni if(
D1D2

`i

)
6= −1 for all i. Their main result is the following factorization.

Theorem 2.1 (Gross-Zagier [5]). Suppose (D1, D2) = 1. Then

(2.9) J(D1, D2)
2 = ±

∏
x,n,n′∈Z
n,n′>0

x2+4nn′=D1D2

nε(n
′).

We are particularly interested in the following corollary.

Corollary 2.3 (Gross-Zagier [5]). For ` a rational prime dividing J(D1, D2)
2, we have

that
(
D1

`

)
6= 1,

(
D2

`

)
6= 1, and ` < D1D2

4
.

For our proof, we will need a generalization to the case when D1 and D2 are distinct,
but not necessarily co-prime. Lauter and Viray [7] prove a generalized Gross-Zagier type
formula for exactly this case. In particular, their Corollary 1.3 implies as a special case
the following:

Theorem 2.2 (Lauter-Viray, Corollary of Corollary 1.3 of [7]). If D2 = 3, 4, D1 is an
arbitrary discriminant, and ` is a rational prime dividing J(D1, D2), then ` ≤ D1.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 involves two pieces. We first show in Section 3.1 that
split primes do not appear in the denominators of H−D(γ;X) and H−D(Ψ;X). Then in
Section 3.2 we bound the size of prime divisors.

3.1. Split Primes. The aim of this section is to prove the following:

Theorem 3.1. Let −D be a negative discriminant not −4. If p splits in Q(
√
−D), we

have that H−D(γ;x) and H−D(Ψ;x) are p-integral.

Proof. We prove the result for γ. By (1.6) and Theorem 2.2, it applies to Ψ as well.
When D = 3, the result reduces to a calculation. Thus we may assume D > 3. We begin
with Masser’s result, given in Lemma 2.1. As each βµ,ν is an algebraic integer, it suffices
in both the special and the non-special case to show that split primes cannot divide
β0,1 = β. By the expression for β as a product of differences of j-values (2.5), it suffices
to show that if p is a split prime and p is a prime above p in Q(

√
−D) that j(αQ) 6≡ j(αQ′)

(mod p) for αQ not SL2(Z)-equivalent to αQ′ This is exactly the situation of Lemma 3.2
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of [6], which is also stated in Theorem 13.21 of [4], and is essentially a result of Deuring
lifting theory.

�

3.2. Large Primes. In order to finish the proof of Theorem 1.1, it suffices to show the
following:

Theorem 3.2. Let −D be a discriminant not −4, and p a prime such that p > D > 0.
Then H−D(γ;x) and H−D(Ψ;x) are p-integral.

Proof. We prove the result for Ψ. By (1.6) and Theorem 2.2, it applies to γ as well. As
above, the case when D = 3 is a calculation. We may therefore assume D > 3. By (1.6),
it suffices to consider primes dividing the denominators of singular moduli for Ψ(z) and
j(z) · (j(z) − 1728). Suppose D < ` is a rational prime. By Theorem 2.2, the factor
j(z)(j(z)− 1728) is not divisible by `, as it is well-known that

(3.1) j(i) = 1728, j(e2πi/3) = 0.

Thus, it suffices to show that ` does not divide the denominator of Ψ(τ). For this,
we use Masser’s formula for Ψ(αQ) given in Lemma 2.1. We will first consider the term
A(2C + Bτ) which appears in the denominator of (2.6). A short calculation shows

that the norm of the (2C + Bτ) term has norm C
A

(D+9B2

4
). Every integral, binary

quadratic form is SL2(Z)-equivalent to a unique form with “smallest” coefficients, which
we refer to as the reduced form. We recall that an integral, binary quadratic form
of negative discriminant Q = [A,B,C] = AX2 + BXY + CY 2 is called reduced if
|B| ≤ A ≤ C. Masser’s formula requires A,B,C > 0. If B > 0, we may use this form
and the inequalities quickly give us the bounds

(3.2) B ≤ A ≤
√
D

3
,

Which implies D+9B2

4
≤ D. The inequality also readily gives the bound

(3.3) C ≤ D

3
.

If the reduced form has B < 0, we may transform the reduced form Q by ( 0 1
−1 0 ),

which changes the sign of B and swaps A and C.
If B = 0, we have that D = 4AC, and so we have improved bounds

(3.4) A <

√
D

2
and C ≤ D

4
.

We may transform the reduced form Q by ( 1 1
0 1 ), gives us the quadratic A′x2 +B′x+C ′

where A′ = A, B′ = 2A and C ′ = A+C, so that we may use Masser’s formula. We find

that D+9B′2

4
= A(C + 2A). Using the bounds 3.4, we find the term C + 2A < D+18

√
D

4
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which is less than D except for D ∈ {8, 12, 16, 24, 28, 32}. A finite check shows that the
theorem holds in these cases.

Now g2 and g3 correspond to our model of the elliptic curve determined by τ , and
may be varied by scaling the model. Hence, using that

(3.5) j(τ)∆ = 123 · g32 and (j(τ)− 1728) ·∆ = g23,

we see that for an appropriate choice of ∆, we may take g2 and g3 to be algebraic integers
divisible only by primes dividing 12j(τ)(j(τ)− 1728). By Theorem 2.2 above, this gives
the desired bound for the size of the primes.

It remains only to control the denominators from the term S. Having chosen g2 and
g3 as above, we have by Lemma 4 of [1] that the numbers (AC)2℘(τ) are algebraic
integers. However we have already bounded the primes dividing AC. This concludes
the proof. �
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