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BIFURCATION OF HOMOCLINICS

JACOBO PEJSACHOWICZ

(Communicated by Carmen C. Chicone)

Abstract. We show that homoclinic trajectories of nonautonomous vector
fields parametrized by a circle bifurcate from the stationary solution when the
asymptotic stable bundles of the linearization at plus and minus infinity are
“twisted” in different ways.

1. Introduction

The purpose of this paper is to explain the appearance of homoclinic solutions of
nonautonomous differential equations in terms of the asymptotic behavior of their
linearization. The functional analytic methods used in proofs of existence of homo-
clinic trajectories of differential equations are mainly of three types. The first uses
Melnikov functions in order to prove the persistence of homoclinic orbits under a
small change of parameter. The second, typical of Hamiltonian systems, reduces
the problem of existence of a homoclinic orbit to the one of existence of a nontrivial
critical point of the action functional and then applies various generalizations of
the mountain pass theorem. Here we will use the third approach which parallels
the analysis of Hopf-bifurcation of periodic orbits from an equilibrium. Instead of
focusing on the existence of a single homoclinic, we will consider a family of dif-
ferential equations parametrized by a circle. Further, using a general bifurcation
principle for Fredholm maps, we will show that a branch of homoclinics bifurcat-
ing from the stationary solution appears whenever the asymptotic stable bundles
of the linearization at plus and minus infinity are twisted differently, i.e., noniso-
morphic. The study of homoclinics based on bifurcation theory is far from being
new [13]. What is new here is that the appearance of homoclinics is a consequence
of the nontrivial topology of the circle. It has been observed elsewhere that the
topology of the parameter space produces interesting and, sometimes, unexpected
global effects on dynamics. For example, it is accountable for the appearance of
Berry’s phase in the adiabatic approximation of linear Hamiltonian systems when
the Hamiltonian moves around a closed loop in the parameter space [3]. In [9] the
authors construct a refined version of the Conley index associated to a family of
flows parametrized by a circle, which encodes information about invariant sets of
the flows that cannot be obtained from a local analysis. Our arguments here will
be of the same type. We first translate the problem into one of bifurcation of zeroes
of a family of Fredholm maps. Then we will consider the index bundle of the family
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112 J. PEJSACHOWICZ

of linearizations at points of the trivial branch given by the stationary solutions of
the equation. The index bundle of a family of Fredholm operators is a refinement of
the ordinary index of a Fredholm operator which takes into account the topology of
the parameter space. It is known that nonorientability of the index bundle entails
bifurcation of zeroes of Fredholm maps [6]. On the other hand an elementary index
theorem, Proposition 3.1, computes the index bundle in terms of the asymptotic
stable bundles at plus and minus infinity, relating the appearance of homoclinics to
the asymptotic behavior of coefficients of linearized equations. The precise result
is stated in Theorem 2.1 of Section 2. Section 3 is devoted to the proof of this
theorem. Section 4 is an example.

2. The main result

We consider the system

(2.1)

{
u′(t) − g(λ, t, u(t)) = 0
limt→+∞ u(t) = 0 = limt→−∞ u(t),

depending on a parameter λ belonging to the circle S1.
Here g : S1×R×Rn → Rn is smooth, both g and Dug are bounded and moreover

g(λ, t, 0) = 0.
Because of the last assumption, for every λ ∈ S1, the pair (λ, 0) is a trivial

solution of (2.1). We are interested in nontrivial solutions, i.e., solutions (λ, u)
with u �= 0.

For each, λ ∈ S1, the linearization of (2.1) at u = 0 is given by

(2.2)

{
u′(t) − A(λ, t)u(t) = 0
limt→+∞ u(t) = 0 = limt→−∞ u(t),

where A(λ, t) = Dug(λ, t, 0).
We will assume:
(A1) As t → ±∞ the family A(λ, t) converges uniformly to a family of matrices

A(λ,±∞), such that A(λ,±∞) has no eigenvalues on the imaginary axis.
(A2) For some fixed λ0 ∈ S1 both (2.2) and its adjoint problem admit only the

trivial solution u ≡ 0.

As a consequence of (A1), the map λ → A(λ,±∞) is continuous. By stan-
dard perturbation theory the spectral projectors corresponding to the spectrum of
A(λ,±∞) on the left and right half plane are continuous as well. Hence the fami-
lies of vector spaces Es(λ,±∞) and Eu(λ,±∞), whose elements are the generalized
real eigenvectors of A(λ,±∞) corresponding to the eigenvalues with negative and
positive real parts, define a pair of vector bundles Es(±∞) and Eu(±∞) over S1.
This pair decomposes the trivial bundle Θ(Rn) = S1 × Rn into a direct sum:

(2.3) Es(±∞) ⊕ Eu(±∞) = Θ(Rn).

In what follows Es(±∞) and Eu(±∞) will be called stable and unstable asymptotic
bundles at ±∞ since they can be characterized in terms of the decay of solutions
of the linear system associated to A(λ,±∞).

Together with (A1), condition (A2) imposes some extra restrictions on the coeffi-
cients of (2.2). Indeed, if W

s/u
λ = {u(0)/u′(t) = A(λ, t)u(t), limt→+∞/−∞ u(t) = 0}

are the stable and unstable subspaces of the system u′(t) = A(λ, t)u(t) [10], then
solutions of (2.2) are in a one-to-one correspondence with elements of W s

λ ∩ Wu
λ .
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BIFURCATION OF HOMOCLINICS 113

The stable and unstable subspaces for the adjoint equation are the orthogonals
of W

s/u
λ . Hence, assumption (A2) is equivalent to

(2.4) W s
λ0

∩ Wu
λ0

= {0} and W s
λ0

+ Wu
λ0

= Rn .

It is well known that, if (A1) holds, then the image of W
s/u
λ under the flow asso-

ciated to the above equation converges, as t → ±∞, to Es/u(λ,±∞). In particular,
it follows from (2.3) that for λ = λ0 and hence for all λ ∈ S1,

(2.5) dimEs(λ,−∞) = dimEs(λ, +∞).

The equality (2.5) restricts the behavior of A(λ, t) at ±∞. Notice, however, that
(2.5) is always verified in the Hamiltonian case, because the stable and unstable
subspaces of a Hamiltonian system are Lagrangian.

Our main theorem relates the appearance of homoclinic solutions to the topology
of the asymptotic stable bundles Es(±∞).

Each vector bundle E over S1 comes with an associated topological invariant
w1(E) ∈ Z2 which measures whether the bundle is “twisted” or “untwisted”. In
order to define it, let us consider p : [0, 2π] → S1 defined by p(θ) = eiθ and let
us choose a frame for the pull-back p∗E, i.e., a basis {e1(θ), . . . , ek(θ)} of Ep(θ)

continuously depending on θ. Such a frame always exists. We define w1(E) ∈ Z2

by

(2.6) (−1)w1(E) = sign detC,

where C is the matrix expressing the basis {ei(2π), 1 ≤ i ≤ k} in terms of the basis
{ei(0), 1 ≤ i ≤ k}.

It is easy to see that w1(E) is independent from the choice of the frame. Clearly,
w1(E) = 0 if and only if E is orientable, i.e., it admits a frame with detC > 0.
Thus, via the isomorphism H1(S1; Z2) ∼= Z2, w1(E) can be identified with the first
Stiefel-Whitney class of E.

A vector bundle over S1 is orientable if and only if it is trivial, i.e., isomorphic to
the product bundle Θ(Rk). Indeed if detC > 0, there is a path C(θ) with C(0) = C
and C(2π) = Id. Then fi(θ) = C(θ)ei(θ) is a frame such that fi(0) = fi(2π) and
hence Φ(eiθ, x1, . . . , xk) =

(
eiθ,

∑
xifi(θ)

)
is an isomorphism between Θ(Rk) and

E. The converse is clear. Therefore, w1(E) is either zero or one depending on
whether the vector bundle E is isomorphic to a product bundle.

The space H1(R; Rn) of all absolutely continuous functions u ∈ L2(R; Rn) with
square integrable derivative is a natural function space for our problem since any
function u ∈ H1(R; Rn) is continuous and has the property that limt→±∞ u(t) = 0.
By bootstrap, any H1-solution of (2.1) is C1 and decays to 0 at ±∞ together with
its derivative.

Theorem 2.1. If the system (2.1) verifies (A1), (A2) and if

(2.7) w1(Es(+∞)) �= w1(Es(−∞)),

then for all ε small enough there is a solution (λ, u) of (2.1) with ||u||H1 = ε.

Remark 2.2. A point λ∗ ∈ S1 is a bifurcation point for homoclinic solutions of
(2.1) from the stationary solution u = 0, if there is sequence (λn, un); λn ∈ S1,
un �= 0 solution of (2.1) with λn → λ∗ and un → 0 in H1. By compactness of
S1 it follows that, under the hypothesis of the above theorem, there must be at
least one bifurcation point for homoclinic trajectories λ ∈ S1. However the theorem
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114 J. PEJSACHOWICZ

does not provide the exact location of bifurcation points. On the other hand, in
contradistinction to the local bifurcation invariants, (2.7) holds for any asymptot-
ically vanishing smooth nonlinear perturbation of (2.1) and, more importantly, is
computable directly from the coefficients of the linearization.

3. Proof of Theorem 2.1

Let X = H1(R; Rn), Y = L2(R; Rn) and let f : S1 × X → Y be defined by

(3.1) f(λ, u)(t) = u′(t) − g(λ, t, u(t)).

Using the embedding of X into C0(R), it is easy to show that f is C1 and the
Frechet derivative Duf(λ, 0) is the operator Lλ : X → Y defined by

(3.2) [Lλu](t) = u′(t) − A(λ, t)u(t).

We will show that the restriction of f to a neighborhood of the set of trivial
solutions is a family of C1-Fredholm maps of index 0. With this, our result will be
a consequence of the homotopy principle of the degree constructed in [11] for this
class of maps and the result in [6] relating the parity of a closed path of Fredholm
operators with the first Steifel-Whitney class of its index bundle.

Below we recall the properties of the degree and of the index bundle that will be
used in the proof.

The construction of the degree in [11] is based on the notion of parity of a
path of Fredholm operators of index 0. Given a path L : [a, b] → Φ0(X, Y ) with
invertible end points and transverse to the stratified one-codimensional variety Σ of
all noninvertible Fredholm operators, its parity σ(L) ∈ Z2 is defined as the number
of intersection points of the path with the top stratum Σ1 = {T ∈ Σ| dim ker T = 1}
counted mod 2. This definition extends to general paths with invertible end points
either by approximation with transversal paths as in [7] or by using parametrices
as in [6].

Let O ⊂ X be an open simply connected set and let f : O → Y be a C1-Fredholm
map of index 0 that is proper on closed bounded subsets of the domain. Using parity,
we can assign to each regular point of the map f an orientation ε(x) = ±1 with
the same properties as the sign of the Jacobian determinant in finite dimensions.
For this we choose a fixed regular point b of f (called base point) and then the
corresponding orientation εb(x) at any regular point x is uniquely defined by the
requirement εb(x) = (−1)σ(Df◦γ), where γ is any path in O joining b to x. Since
O is simply connected, the independence from the choice of the path follows from
the homotopy invariance of the parity. Let Ω be an open bounded set with closure
contained in O such that 0 /∈ f(∂Ω) and 0 is a regular value of the restriction of f
to Ω, then the base point degree of f in Ω is defined by

(3.3) degb(f, Ω, 0) =
∑

x∈f−1(0)

εb(x).

It was proved in [11] that this assignment extends to an integral-valued degree
theory for C1-Fredholm maps defined on simply connected sets, which are proper
on closed bounded subsets of its domain. The base point degree is invariant under
homotopies only up to sign and, as a matter of fact, no degree theory for general
Fredholm maps can be homotopy invariant. However, the change in sign along a
homotopy can be determined as follows [11, Theorem 5.1]: Let h : I ×O → Y be a
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BIFURCATION OF HOMOCLINICS 115

homotopy and let Ω be an open bounded subset of X such that 0 /∈ h([0, 1]× ∂Ω).
Assume (for simplicity) that b is a regular point both of h0 and h1, then

(3.4) degb(h0, Ω, 0) = (−1)σ(H) degb(h1, Ω, 0),

where H is the path t � Dht(b).
Next let us recall the properties of the index bundle. The Atiyah-Janich con-

struction [2] associates to each family L : Λ → Φ(X, Y ) of Fredholm operators
parametrized by a compact space Λ an element Ind L of the Grothendieck group
KO(Λ). This latter is, by definition, the group completion of the abelian semigroup
Vect()(Λ) of all isomorphisms classes of vector bundles over Λ. Namely, it is the
quotient of the semigroup Vect()(Λ) × Vect()(Λ) by the diagonal sub-semigroup.
The elements of KO(Λ) are called virtual bundles. Each virtual bundle can be
written as a difference [E] − [F ] where E, F are vector bundles over Λ and [E]
denotes the equivalence class of (E, 0). Moreover we have that [E] − [F ] = 0 in
KO(Λ) if and only if the vector bundles E and F are stable equivalent, i.e., they
become isomorphic after the addition of a trivial bundle to both sides.

The following is a variant of the Atiyah-Janich construction [6]: using the com-
pactness of Λ one can find a finite-dimensional subspace V of Y such that

(3.5) Im Lλ + V = Y for any λ ∈ Λ.

It follows from (3.5) that the family of finite-dimensional spaces Eλ = L−1
λ (V )

forms a vector bundle E over Λ. By definition, the index bundle or analytical index of
the family is the virtual bundle Ind L = [E]− [Θ(V )], where Θ(V ) = Λ×V denotes
the trivial vector bundle with fiber V. If V ⊂ W are two subspaces verifying the
transversality condition (3.5) and E ⊂ F are the corresponding vector bundles, the
restriction of the family L to F induces an isomorphism from F/E onto the trivial
bundle with fiber W/V. Since exact sequences of vector bundles split, it follows that
F is isomorphic to a direct sum of E with Θ(W/V ), and from this it follows that
[E] − [Θ(V )] = [F ] − [Θ(W )] in KO(Λ). Thus Ind L is well defined. It is additive
under direct sums and moreover Ind L = 0 if L is a family of isomorphisms. From
the functoriality of this construction it follows easily that Ind L is invariant under
homotopies of Fredholm families and, in particular, the index bundle is invariant
under perturbations by a family of compact operators. We will need also the
logarithmic property of the index bundle. Namely, if L : Λ → Φ(X, Y ) and M :
Λ → Φ(Y, Z) are two families, then Ind

(
L ◦ M

)
= Ind L + Ind M. For a simple

proof it is enough to notice that in the construction of the index bundle, one can
take any finite-dimensional subbundle of Λ×Y transverse to L in the sense of (3.5),
then the above formula follows immediately from the fact that E = L−1Θ(V ) is
transverse to the family M.

Using the above properties, we compute the index bundle of the family L defined
by (3.2) in terms of the asymptotic stable bundles Es(±∞).

Proposition 3.1. The family L : S1 → L(X; Y ) defined by (3.2) verifies that
i) Lλ is Fredholm of index 0 for all λ ∈ S1;
ii) Ind L = [Es(+∞)] − [Es(−∞)] ∈ KO(S1).

Proof. We split R into R = R+ ∪R− where R± = [0,±∞) and we denote with
X±, Y ± the spaces H1(R±; Rn) and L2(R±; Rn), respectively. Let us consider the
operators L±

λ : X± → Y ± defined as in (3.2) using the restrictions of A(λ, .) to R±.
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We will show that L±
λ are Fredholm and compute the index bundles of L±. First

we notice that if M±
λ : X± → Y ± is defined by

(3.6) [M±
λ u](t) = u′(t) − A(λ,±∞)u(t),

then K±
λ = M±

λ − L±
λ is a compact operator for each λ ∈ S1.

To see this, let us take for each m ∈ N a smooth function φm defined on R+

such that φm ≡ 1 on [0, m− 1] and φm ≡ 0 on [m, +∞). Then, K+
λ = limm→∞ Km

λ

where

(3.7) [Km
λ u](t) = φm(t)[A(λ, +∞) − A(λ, t)]u(t).

But Km
λ is a compact operator for every m because it factorizes through the in-

clusion H1([0, m] Rn) ⊂ L2(R+; Rn), which is compact. This shows that L is a
compact perturbation of M. On the other hand it is well known that Mλ are sur-
jective with ker Mλ = Es(λ, +∞). The second assertion is clear. For the first it is
enough to observe that a right inverse for Mλ is given by

(3.8) Sλ(v)(t) =
∫ t

0

Pλe(s−t)Aλ(s)v(s)ds +
∫ ∞

t

(id − Pλ)e(t−s)Aλ(s)v(s)ds,

where Pλ is the projector onto Es(λ, +∞). Thus M+
λ and hence also L+

λ are
Fredholm. Moreover by invariance of the index bundle by compact perturbations
Ind L+ = Ind M+ = [Es(+∞)] and similarly Ind L− = [Eu(−∞)].

In order to compute the index of L let us notice first of all that the restriction
map I : Y → Y − ⊕ Y + defined by Iv = (v|R− , v|R+) is an isomorphism, while the
restriction map J : X → X− ⊕ X+ is a monomorphism whose image is given by
Im J = {(u−, u+)/u−(0) = u+(0)}. Hence, if ψ(u−, u+) = u−(0) − u+(0), then
Im J = kerψ and therefore J is Fredholm of index −n. From the commutative
diagram

(3.9)

L−
λ ⊕ L+

λ

X− ⊕ X+ −→ Y − ⊕ Y +

J
�⏐⏐ I

�⏐⏐
X −→ Y

Lλ

it follows that Lλ is Fredholm. Moreover by continuity of the index and assumption
(A2), the index of Lλ must be 0. This proves i). Now ii) follows from (3.9) using the
logarithmic property of the index bundle. Indeed considering I and J as constant
families of Fredholm operators Ind I = 0, Ind J = −[Θ(Rn)]. But then by (2.3)

Ind L = [Eu(−∞)] + [Es(+∞)] − [Θ(Rn)] = [Es(+∞)] − [Es(−∞)].

With this established, let us come back to the proof of Theorem 2.1. Since L takes
values in the open set Φ0(X; Y ), it follows that, for δ small enough, the restriction
of f to S1 × B(0, δ) is a C1 family of Fredholm maps of index 0. Since Fredholm
maps are locally proper, it will be also a proper map taking δ small enough. For
definiteness, let λ0 = 1 ∈ S1. Since 0 is a regular point of f1, by the inverse function
theorem we can suppose that, for δ small enough, 0 is the only solution of f1(x) = 0
in B(0, δ). If for some ε < δ there are no solutions of f(λ, u) = 0 with ||u|| = ε, then
the map h : [0, 1]×B(0, ε) → Y defined by h(θ, u) = f(exp iθ/2π, u) is an admissible
homotopy. On the other hand we can take b = 0 as the base point for both
h0 = h1 and then by formula (3.3) degb(h0, B(0.ε), 0) = degb(h1, B(0.ε), 0) = 1.
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BIFURCATION OF HOMOCLINICS 117

By the homotopy formula (3.4) the parity of the closed path θ � Lexp iθ/2π must
be 0. On the other hand, it was proved in [6, Proposition 2.7] that the parity of
a closed path coincides with the first Stiefel-Whitney class of its index bundle.
Thus, we get 0 = w1(Ind L) = w1(Es(+∞))−w1(Es(−∞)), which contradicts the
hypothesis. �

Remark 3.2. What is crucial to the proof of Proposition 3.1 is that an asymptot-
ically hyperbolic matrix function has an exponential dichotomy [4] on both half
lines R± . Indeed, a version of Proposition 3.1 ii) holds under this sole assump-
tion if the corresponding projectors P+

λ , P−
λ depend continuously on the parame-

ter. In this case, formula (3.8) involving the fundamental matrix of the system
defines a right inverse for L+ and similarly for L−. Now, diagram (3.9) gives
Ind L = [Im P+]− [Im P−]. Similar arguments can be used in other function spaces
as well, extending to families of operators the index computations in [12, 10]. Fred-
holm properties of differential operators on infinite-dimensional spaces have been
recently established in [1, 8]. An extension of Proposition 3.1 to this case would
open the possibility of applying the general principle described here not only to
bifurcation of various types of bounded solutions of ordinary differential equations
but also to partial differential equations on unbounded domains, for example of the
type considered in [8].

4. An example

Let a(t) be any smooth function which vanish identically in a neighborhood of 0,
such that a(t) ≡ −1 outside of a compact subset of the real line. For λ = eiθ, 0 ≤
θ < 2π, let

A(λ, t) =
{

a(t)Rθ if t ≥ 0,
a(t)Rπ if t ≤ 0,

where Rθ =
(

cos θ sin θ
sin θ − cos θ

)

is the symmetry with respect to the line lλ generated by (cos θ/2, sin θ/2).
Here Es(+∞) = {(λ, u) ∈ S1 × R2 /u ∈ lλ} is the tautological line bundle

over the real projective space R P 1 ∼ S1, i.e., the Moebius strip, with C = −id.
Eu(+∞) = Es(+∞)⊥ while Es/u(−∞) are the trivial bundles Θ(l−1) and Θ(l1),
respectively. Moreover, due to the special form of A(λ, t), Es

λ(+∞) is positively
invariant under the flow of u′ = A(λ, t)u and Eu(−∞) is negatively invariant. It
follows from this that W s

λ = Es
λ(+∞) = lλ and Wu

λ = Eu
λ(−∞) = l1. Therefore W s

λ

and Wu
λ have a nontrivial intersection only when λ = 1. By Proposition 3.1 i) Lλ

is an isomorphism for all λ �= 1. From the implicit function theorem it follows that
λ = 1 is the only possible bifurcation point of homoclinic solutions for any nonlinear
problem of the form u′(t) − A(λ, t)u(t) + g(λ, t, u(t)) = 0 with g(λ, t, u) = o(||u||).
In fact, either using the degree theory described above or simply by applying the
Crandall-Rabinowitz bifurcation theorem [5] it can be shown that if g = o(||u||),
then a branch of homoclinics bifurcates from the stationary solution at λ = 1.
On the other hand, since ω1(Es(−∞)) = 1 �= ω1(Es(+∞)) = 0, the hypotheses
of Theorem 2.1 are verified by any smooth perturbation g with g(λ, t, 0) = 0,
limt→±∞ g(λ, t, u) = 0 and such that, for some λ0 �= 1, gλ0 is small enough in
the C1 norm. Therefore, equation u′(t) − A(λ, t)u(t) + g(λ, t, u(t)) = 0 will have
homoclinic solutions arbitrarily close to 0 for any g as above.
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In order to show that we cannot dispense with (A2), let us consider a similar
problem in R3 by taking the previous 2 × 2 system together with a third un-
coupled equation u′

3(t) − arctan t u3(t) = 0. This only has the effect of adding a
trivial line bundle to the previous Es(−∞) and hence the invariant ω1 remains
unchanged. But now the adjoint equation to (2.2) has a homoclinic solution
u∗(t) = (0, 0,

√
1 + t2 e−t arctan t) which must be orthogonal to ImLλ, for any λ ∈ S1.

Let us consider the perturbation g(λ, t, u) = (0, 0, u2
1 + u2

2 + u2
3). By the above

discussion, for any function u ∈ H1(R; R3) verifying Lλu − g(λ, t, u) = 0, we have∫
< u∗(t), g(λ, t, u(t)) > dt = 0. Hence u(t) must vanish and no bifurcation arises.

Notice that in this example we have Ind Lλ = −1, but it is clear how to construct
examples of any index.
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