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ABSTRACT

Although a coronal hole is permeated by a magnetic field with a dominant polarity, magnetograms reveal a more
complex magnetic structure in the lowest layers, where several regions of opposite polarity of typical size of
the order of 104 km are present. This can give rise to magnetic separatrices and neutral lines. MHD fluctuations
generated at the base of the coronal hole by motions of the inner layer of the solar atmosphere may interact with
such inhomogeneities, leading to the formation of small scales. This phenomenon is studied on a 2D model of
a magnetic structure with an X-point, using 2D MHD numerical simulations. This model implements a method
of characteristics for boundary conditions in the direction outer-pointing to Sun surface to simulate both wave
injection and exit without reflection. Both Alfvénic and magnetosonic perturbations are considered, and they show
very different phenomenology. In the former case, an anisotropic power-law spectrum forms with a dominance of
perpendicular wavevectors at altitudes ∼104 km. Density fluctuations are generated near the X-point by Alfvén
wave magnetic pressure and propagate along open fieldlines at a speed comparable to the local Alfvén velocity.
An analysis of energy dissipation and heating caused by the formation of small scales for the Alfvénic case is
presented. In the magnetosonic case, small scales form only around the X-point, where a phenomenon of oscillating
magnetic reconnection is observed to be induced by the periodic deformation of the magnetic structure due to
incoming waves.

Key words: magnetic reconnection – Sun: corona – waves

Online-only material: color figure

1. INTRODUCTION

Low-frequency fluctuations in the domain of magnetohydro-
dynamics (MHD) are believed to populate the plasma of the
solar corona. These fluctuations originate from photospheric
motions and propagate up to the corona along the magnetic
field that permeates the solar atmosphere. In situ measurements
have revealed MHD fluctuations in the solar wind for several
decades (Belcher & Davis 1971); this is considered to be an in-
direct indication of the presence of the same kind of fluctuations
in the corona, from where the solar wind emanates. Evidence
of velocity fluctuations of the order δv ∼ 30–50 km s−1 in the
corona at unresolved spatial and temporal scales has been de-
duced from nonthermal broadening of coronal lines (Acton et al.
1981; Warren et al. 1997; Chae et al. 1998). In recent years, ve-
locity fluctuations have also been ubiquitously detected in the
corona (Tomczyk et al. 2007; Tomczyk & McIntosh 2009). Such
fluctuations appear to propagate along magnetic lines at a speed
that is consisted with estimations of the Alfvén velocity; thus
they are considered to be Alfvén waves, although a different
interpretation has also been proposed in terms of kink magne-
toacoustic waves (Van Doorsselaere et al. 2008). More recently,
Alfvén waves with energy sufficient to power the quiet corona
and fast solar wind have been found (McIntosh et al. 2011).
Moreover, indirect evidences of Alfvén waves in coronal holes
have also been reported (see Banerjee et al. 2011 for a review).

Waves and turbulence are considered to be one of the energy
sources responsible for solar wind expansion (Sorriso-Valvo
et al. 2007; Marino et al. 2011; Hellinger et al. 2013). For
instance, observed variations of proton temperature with the
heliocentric distance are inconsistent with a simple adiabatic
expansion, which instead requires a continuous heat deposition
along the solar wind path (e.g., Matthaeus et al. 1999a).

Turbulence represents the best candidate to explain such an
extended heating. Moreover, turbulence formation has been
proposed as a mechanism responsible for solar wind acceleration
in the near-Sun region. The main idea is that waves produced by
photospheric motions propagate upward in coronal open-field
regions, which is where the solar wind originates. As a result
of vertical stratification and magnetic field expansion, these
waves are partially reflected downward. Nonlinear interactions
between MHD waves propagating in two opposite directions
generate an energy cascade toward small scales, eventually
dissipating part of the wave energy, which would then be
responsible for both coronal heating and wind acceleration
(Matthaeus et al. 1999b). Several models have been proposed
within such a framework: a model of Alfvén wave propagation
in the chromosphere and the corona, in which heating and
acceleration are a consequence of compressive waves and
shocks formation (Suzuki & Inutsuka 2005); a model ranging
from the chromosphere to the corona, which includes the
effects of pressure and acoustic wave gradients (Cranmer
et al. 2007); models where nonlinear effects are modeled by
phenomenological terms (Verdini & Velli 2007), by a simplified
representation of the wavevector space (shell model; Verdini
et al. 2009), or a strong turbulence closure (Verdini et al. 2010).

In these models, the background structure where perturba-
tions propagate contains a unipolar magnetic field possibly vary-
ing on a relatively large spatial scale, at least in the coronal
part of the considered domain. Indeed, coronal holes and solar
wind are both characterized by a mainly unipolar magnetic field
(McComas et al. 2000). However, magnetograms taken in coro-
nal hole regions show a complex structure at low altitudes that
is characterized by areas of both magnetic polarities (Zhang
et al. 2006). Thus, the magnetic field at low altitude in a coro-
nal hole has a complex 3D structure containing open fieldlines
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extending to larger altitudes and closed fieldlines connecting
regions of opposite polarities (Ito et al. 2010). Perturbations
generated by photospheric motions, which cross this complex
structure when propagating upward, couple with gradients of
the background. As a result, small scales are generated in the
perturbations. The present paper focuses on the mechanism of
small-scale formation due to the coupling between perturbation
and background inhomogeneity, which has not been considered
in the previously cited models.

The evolution of hydromagnetic perturbations propagating
in an inhomogeneous background has been widely studied. In
a 2D inhomogeneous background, where the Alfvén velocity
varies in directions perpendicular to the magnetic field, two
mechanisms have been investigated in detail: (1) phase-mixing
(Heyvaerts & Priest 1983), in which differences in group ve-
locity at different locations progressively bend wavefronts; and
(2) resonant absorption that concentrates the wave energy in
a narrow layer where the local wave frequency matches a
characteristic frequency (Alfvén or cusp). These processes have
been studied by investigating normal modes of the inhomoge-
neous structure (Kappraff et al. 1977; Mok & Einaudi 1985;
Steinolfson 1985; Davila 1987; Hollweg 1987; Califano et al.
1990, 1992) and by considering the evolution of an initial dis-
turbance (Lee & Roberts 1986; Malara et al. 1992, 1996). The
effects of density stratification and magnetic line divergence
(Ruderman 1998), as well as nonlinear coupling with compres-
sive modes Nakariakov et al. (1997, 1998), have also been con-
sidered. The propagation of MHD waves in magnetic fields
containing null points has been studied in detail too (Landi et al.
2005) (see also McLaughlin et al. 2010 for a review).

Studying the evolution of MHD perturbations in 3D structures
is more complex. In particular, the evolution of Alfvén waves
has been studied using a simplified approach based on a
Wentzel–Keller–Brillouin (WKB) method first proposed by
Similon & Sudan (1989), and was also studied in detail both
from a general point of view (Petkaki et al. 1998; Malara
et al. 2000, 2003) and in the context of the coronal heating
problem (Malara et al. 2005, 2007). The same method was
used by Malara et al. (2012), and in more detail by Malara
(2013), to study the evolution of Alfvén waves propagating
in a 3D magnetic field that models the magnetic structure in
an open fieldline region with the previously described features
(Ito et al. 2010). The results showed that small scales form
in the Alfvénic perturbation at very low altitudes (∼105 km
above the coronal base) as a consequence of its interactions with
specified equilibrium field inhomogeneities. Such small scales
are located at magnetic separatrices and the resulting spectra
of the perturbation have a power-law dependence, with a large
prevalence of wave vectors perpendicular to the magnetic field.

The main limitations in the model by Malara (2013) are due
to the WKB approximation, which assumes that the perturbation
wavelength λ is much smaller than the scale of variation of the
equilibrium structure, which is of the order of Leq ∼ 3×104 km.
Assuming a typical Alfvén velocity cA ∼ 500 km s−1 and
a timescale of perturbations τ ∼ 500 s, the wavelength in
the direction parallel to the magnetic field is λ|| = cAτ ∼
2.5 × 105 km. Thus, the assumption of small wavelength is
somewhat questionable. Moreover, all compressive effects have
been neglected in this model.

In the present paper, we try to overcome these limitations of
the WKB method by using full compressible MHD simulations
instead. In particular, a simplified 2D version of the equilibrium
magnetic field used in Malara (2013) is considered, in which

both Alfvénic and magnetosonic fluctuations are generated by
transverse motions at the base of the domain. The dynamics of
the system and the generation of small scales in perturbations
after crossing the background inhomogeneity are investigated.
Most of the results obtained by the WKB approach are recov-
ered, along with new effects, which are mainly related to the
compressive component of perturbations. The implications for
the problem of solar wind acceleration and understanding the
presence of density fluctuations in the open fieldline corona are
discussed.

2. THE MODEL

We consider an open-field line region of the solar corona.
The configuration is given by an inhomogeneous MHD equi-
librium with superimposed fluctuations that propagate in the
upward direction. We study the dynamics of the interaction be-
tween fluctuations and the inhomogeneous background using
numerical simulations.

The spatial domain represents a small portion of a coronal
hole that is located just above the coronal base. We indicate
all quantities relating to the equilibrium configuration by the
upper index “(0).” A detailed description of the equilibrium
magnetic field B(0) is available elsewhere (Malara 2013); in
the following, we summarize the assumptions and describe
the derivation. Although a coronal hole is characterized by an
essentially unipolar magnetic field, magnetograms of coronal
hole regions (Zhang et al. 2006; Ito et al. 2010) show that there
are low-lying regions where the photospheric magnetic field has
a polarity opposite to the dominant one. The areas of the two
polarities appear to be intermixed, forming a complex structure
with different spatial scales ranging from ∼109 cm down to
the resolution limit. The area corresponding to the flux with the
dominant polarity represents ∼70% of the total area, whereas the
remaining 30% corresponds to the opposite polarity (Zhang et al.
2006). The coronal magnetic field above such regions should
have a complex structure: well-closed magnetic lines connecting
the regions of opposite polarity should be present, along with
open magnetic lines emanating from dominant polarity regions.
At sufficiently high altitudes, only open magnetic lines should be
found, with the magnetic field structure becoming less complex
(Zhang et al. 2006; Ito et al. 2010). The magnetic field model
considered here tries to represent the above described features
in a very simplified form.

Due to the smallness of the considered spatial domain, we
neglect curvature effects due to the spherical geometry, and
use a Cartesian reference frame XYZ in which the YZ plane
corresponds the coronal base, while the X axis is directed
vertically upward. The spatial domain is D = {(X, Y,Z)} =
[0, L] × [0, RyL] × [0, RzL], where L is of the order of the
characteristic scale of the magnetic field at the coronal base,
while the aspect ratios Ry and Rz are quantities of order 1. The
magnetic field structure is more complex at low altitudes, while
the influence of boundary conditions at the base X = 0 decreases
with increasing altitude X. Then, we assume that the equilibrium
magnetic field B(0)(r) becomes uniform and vertically directed
at large altitudes X:

lim
X→+∞

B(0)(X, Y,Z) = B0ex, (1)

where B0 is a constant and ex is the unit vector in the
X direction. Moreover, we choose B0 > 0 corresponding to a
positive polarity at sufficiently high altitudes. Periodicity in the
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horizontal Y and Z directions is assumed. Because the coronal
plasma has a low β, the equilibrium condition requires that B(0)

is a force-free magnetic field:

∇ × B(0) = αB(0), (2)

where the scalar quantity α is constant along fieldlines. The
condition (1) implies that α is vanishing at large altitudes and
along open fieldlines. Thus, the simplest choice is to assume
that α = 0 in the whole domain. This assumption is expressed
by the condition

B(0) = −∇Φ, (3)

where the scalar potential Φ must satisfy the Laplace equation

∇2Φ = 0, (4)

which follows from the divergence-free condition for B(0). Using
periodicity, Φ can be expanded in a Fourier series along Y
and Z,

Φ (X, Y,Z) =
∑
ky ,kz

Φ̂ky ,kz
(X) ei(kyY+kzZ), (5)

where ky = 2πn/(RyL) and kz = 2πm/(RzL), with n and m
integers. Laplace Equation (4) gives an equation for the Fourier
coefficients Φ̂ky ,kz

(X):

d2Φ̂ky ,kz
(X)

dX2
= − (

k2
y + k2

z

)
Φ̂ky ,kz

(X). (6)

The solution of Equation (6) for ky = kz = 0 is

Φ̂0,0(X) = a + bX (7)

with a and b constants corresponding to a homogeneous mag-
netic field. We can set a = 0 without lack of generality, while
we choose b = −B0. The latter condition is related to the as-
sumption (1). The solution for (ky, kz) �= (0, 0) is

Φ̂ky ,kz
(X) = Aky,kz

e−h(ky ,kz)X + Cky,kz
eh(ky ,kz)X (8)

with
h(ky, kz) =

√
k2
y + k2

z (9)

and Aky,kz
and Cky,kz

constants. The term proportional to Cky,kz

would give a magnetic field that diverges in the limit X → +∞.
For this reason we discard this solution and choose Cky,kz

= 0.
Then, using expressions (7) and (8), we get:

Φ(X, Y,Z) =
∑

ky ,kz �=(0,0)

Aky,kz
e−h(ky ,kz)X+i(kyY+kzZ) −B0X. (10)

The last equation can be simplified because Φ is a real quantity,
which implies that A−ky ,−kz

= A∗
ky ,kz

, where the asterisk indi-
cates complex conjugate. Using this condition, expression (10)
can be written in the following form containing only real
quantities:

Φ(X, Y,X) =
∑

(ky ,kz )�=(0,0)
kz�0

φky,kz
cos (kyY+kzZ+γky,kz

)e−h(ky ,kz)X−B0X,

(11)
where φky,kz

= 2	(Aky,kz
) and the phases γky,kz

can be chosen
in the interval [0, 2π ]. Finally, using expression (11) for the

potential from Equation (3), we can calculate the components
of the equilibrium magnetic field:

B(0)
x (X, Y,Z) =

∑
(ky ,kz )�=(0,0)

kz�0

h(ky, kz) φky,kz
cos (kyY + kzZ + γky,kz

)

× e−h(ky ,kz)X + B0 (12)

B(0)
y (X, Y,Z) =

∑
(ky ,kz )�=(0,0)

kz�0

kyφky,kz
sin (kyY + kzZ + γky,kz

)e−h(ky ,kz)X

(13)

B(0)
z (X, Y,Z) =

∑
(ky ,kz )�=(0,0)

kz�0

kzφky,kz
sin (kyY + kzZ + γky,kz

)e−h(ky ,kz)X.

(14)
Note that the above expressions satisfy condition (1). The equi-
librium magnetic field (12)–(14), which is equivalent to the form
used by Malara (2013), is a superposition of different harmonics
at a given spatial scale determined by the wavevector (ky, kz).
When many harmonics are present, the resulting magnetic field
has a complex structure containing both open and closed field-
lines, with the latter connecting regions of opposite polarity at
the base X = 0. Magnetic null points and separatrices are also
present (Malara 2013). The details of the magnetic structure are
determined by the choice of parameters (B0, φky,kz

, and γky,kz
).

In the present case, the dynamics of the system are studied nu-
merically for a 2D configuration in which all quantities depend
only on X and Z. In order to better exploit the finite resolution al-
lowed by the spatial grid, we use a form for B(0) that is as simple
as possible, where only one single term is retained in the sums
contained in Equations (12)–(14). This term corresponds to the
smallest wave vector (ky, kz) = (0, k1z), with k1z = 2π/(RzL):

B(0)
x (X,Z) = B0[1 + b1 cos(k1zZ)e−k1zX] (15)

B(0)
y = 0 (16)

B(0)
z (X,Z) = B0b1 sin(k1zZ)e−k1zX, (17)

where b1 = k1zφ0,k1z
/B0 and it has been chosen that γ0,k1z

= 0.
The above expressions contain two dimensionless quantities:
the relative amplitude b1 of the inhomogeneous component
and the aspect ratio Rz. They are determined by requiring the
fulfilment of two conditions. (1) The vertical component B(0)

x

must change sign along the base X = 0 of the spatial domain,
which corresponds to the inequality |b1| > 1. In this case there
is a magnetic null point above the coronal base (X > 0) located
at the position (X0, Z0) = (ln b1/k1z, π/k1z) for b1 > 0, or
(X0, Z0) = (ln(−b1)/k1z, 0) for b1 < 0. We also require that
(2) the null point is inside the considered domain (i.e., X0 < L).
Conditions (1) and (2) correspond to

1 < |b1| < e2π/Rz . (18)

In particular, we have chosen b1 = 2 and Rz = π , which
satisfy the inequalities (18). In this case the magnetic null point
is located at the position (X0, Z0) = (L ln 2/2, Lπ/2). The
magnetic field (15)–(17) can be expressed in terms of a vector
potential: B(0) = ∇ × (A(0)ey), where

A(0)(X,Z) = −B0b1

k1z

sin(k1zZ)e−k1zX − B0Z. (19)
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Figure 1. Magnetic lines of the equilibrium magnetic field b(0) in the xz plane.
The symbols “+” and “−” represent the polarity of the field at x = 0.

In Figure 1, magnetic lines of the equilibrium magnetic field
B(0) are represented in the XZ plane. This plot is obtained by
drawing the isolines of the vector potential A(0) (Equation (19)).
It can be seen that B(0)

x changes sign along the base X = 0;
it is positive on the left and the right sides and negative in the
central part. In the lower part of the domain, both open and
closed fieldlines are present, whereas only open fieldlines are
found in the upper part of D. An X-type magnetic null point is
located at the position (X0, Z0). Four separatrices intersect at
the X-point: those starting from the base of D separate the two
regions of closed and open fieldlines, whereas the separatrix
extending above the X-point separates open fieldlines coming
from distant parts of the base. Finally, B(0) tends to become
uniform and vertically directed in the uppermost part of D, as
required by the condition (1). Thus, despite its simple form, B(0)

reproduces all the features we want to model.
A magnetic field similar to that of our model is typically found

at much larger scales in pseudostreamers, which are thin coronal
structures extending radially up to several solar radii (Wang et al.
2007). A pair of loop arcades with an X-neutral line in between
underlay a pseudostreamer, which is supposed to develop along
the vertical separatrix (Wang et al. 2012). Thus the equilibrium
magnetic field of our model can be considered a small-scale
version of the magnetic structures commonly observed in the
corona.

The equilibrium mass density and pressure are assumed to be
uniform

ρ(0)
m (X,Z) = ρm0 = const, P (0)(X,Z) = const, (20)

thus neglecting any stratification generated by gravity, whereas
the equilibrium velocity is vanishing, V(0) = 0.

MHD waves are superposed on the above described equilib-
rium. No waves are present at the initial time τ = 0, but they
are continuously generated by imposing the velocity at the base
X = 0. This boundary condition is intended to represent the
effects of the motion of underlying denser layers on the coronal
plasma, and are specified in the next section.

3. NUMERICAL METHOD

In order to describe the evolution of the model, we numer-
ically solve the nonlinear, compressible, non-ideal, 2D MHD
equations

∂ρm

∂t
+ ∇ · (ρmV) = 0, (21)

∂V
∂t

+ (V · ∇) V = − 1

ρm

∇P +
1

4πρm

(∇ × B) × B +
ν̃

ρm

∇ · �,

(22)

∂B
∂t

= ∇ × (V × B) +
c2η̃

4π
∇2B, (23)

∂P

∂t
+ ∇ · (P V) + (γ − 1) P (∇ · V) = κ̃∇2T + (γ − 1)

×
[

c2η̃

(4π )2 (∇ × B)2 +
ν̃

2
� : �

]
(24)

with

T = μmp

kB

P

ρm

(25)

and the components of the tensor � are

Πij = ∂Vi

∂Xj

+
∂Vj

∂Xi

− 2

3
δij

∂Vk

∂Xk

. (26)

In the above equations ρm, P, T, V, and B are the mass density,
pressure, temperature, velocity, and magnetic field, respectively.
All physical quantities are functions of the spatial variables
X and Z and of the time t. ν̃, η̃, and κ̃ are the dynamic
viscosity, resistivity and, thermal conductivity, respectively, and
are assumed constant. kb is the Boltzmann constant, c is the
speed of light, mp is the proton mass, μ ∼ 1 is the mean
molecular weight.

We introduce dimensionless quantities

x = X

L
; z = Z

L
; τ = cA0

L
t; ρ = ρm

ρm0
; v = V

cA0
;

b = B
B0

; p = P

ρm0c
2
A0

(27)

In these expressions, L = 109 cm is the typical size of structures
in coronal hole magnetograms (Zhang et al. 2006); ρm0 =
5 × 10−16 g cm−3 is a typical density; cA0 = 2.5 × 107 cm s−1

is a typical value of Alfvén velocity in coronal holes (McIntosh
et al. 2011); and B0 = cA0

√
4πρm0. Using the dimensionless

variables, Equations (21)–(24) take the following form:

∂ρ

∂τ
+ ∇ · (ρv) = 0, (28)

∂v
∂τ

+ (v · ∇) v = − 1

ρ
∇p +

1

ρ
(∇ × b) × b +

ν

ρ
∇ · σ , (29)

∂b
∂τ

= ∇ × (v × b) + η∇2b, (30)

∂p

∂τ
+ ∇ · (pv) + (γ − 1) p (∇ · v)

= κ∇2

(
p

ρ

)
+ (γ − 1)

[
η(∇ × b)2 +

ν

2
σ : σ

]
(31)

4



The Astrophysical Journal, 796:43 (17pp), 2014 November 20 Pucci, Onofri, & Malara

with

σij = ∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij

∂vk

∂xk

(32)

and ν = ν̃/(Lρm0cA0), η = η̃c2/(4πcA0L), κ = κ̃μmp/
(κbLρm0cA0).

Using the new variables, the spatial domain D is transformed
into the domain D′ = {(x, z)} = [0, 1] × [0, Rz]. It is worth
noting that for the aspect ratio we used, the value Rz = π ,
corresponds to the horizontal length Lz � 3 × 109 cm. The
initial condition is given by the equilibrium structure specified
in the previous section. The initial dimensionless density and
pressure are ρ = 1 and p = 0.05, respectively, with the latter
corresponding to a plasma beta value:

β = p

[
1

Rz

∫
D′

b2

2
dxdz

]−1

≈ 5 × 10−2. (33)

Concerning boundary conditions, the lower boundary x = 0
represents the border through which perturbations coming from
layers underlying the corona are entering. On this boundary, we
impose the value of the velocity field. In particular, we consider
two cases.

(a) Uniform oscillatory motion at the base directed in the y
direction, v(x = 0, z, τ ) = v1 sin(ωτ )ey , where v1 and ω are the
velocity amplitude and frequency, respectively. This boundary
condition generates fluctuations propagating inside the domain
with a polarization (y), which is perpendicular both to the
equilibrium magnetic field b(0) and the perturbation wavevector
(which is in the xz plane). For this reason we refer to this kind
of fluctuation as Alfvénic.

(b) Uniform oscillatory motion at the base directed in the z-
direction, v(x = 0, z, τ ) = v1 sin(ωτ )ez. In this case generated
fluctuations are polarized in the plane containing both b(0)

and the wavevector. We refer to this kind of fluctuation as
magnetosonic.

In both cases, we used the value ω = π/2 for the frequency,
corresponding to a waveperiod tw = 160 s, and v1 = 0.1
corresponding to the amplitude V1 = 2.5 × 106 cm s−1, in
accordance with observations (McIntosh et al. 2011). The value
of other physical quantities at x = 0 is calculated using a method
of projected characteristics (Nakagawa et al. 1987; Sun et al.
1995; Poinsot & Lele 1993; Grappin et al. 2000; Landi et al.
2005). In our case, we use this method to evaluate ρ, p, and b in
a way that is consistent with the values specified for the velocity
field and with the MHD equations. A detailed description of this
procedure is given in Appendix A.

The upper boundary x = 1 is a free boundary that must allow
perturbations propagating inside the domain to exit without
reflection. Again, the method of projected characteristics has
been implemented on the upper boundary to simulate this
physical condition. The details of boundary conditions at x = 1
are given in Appendix A. Finally, periodic boundary conditions
are imposed in the horizontal z direction.

Equations (28)–(31), with the specified boundary conditions,
are numerically solved by employing a Cartesian 2D version
of a compressible MHD code that was originally written for
3D cylindrical configurations with time-dependent boundary
conditions (Onofri et al. 2007). The uniform spatial grid is
formed by nx×nz points (nx = 1024, nz = 256). A sixth-order
finite difference method in the x direction and a pseudospectral
Fourier method in the z direction are used. Time derivatives are

calculated using a third-order Runge-Kutta scheme. Viscosity,
resistivity, and thermal conductivity are uniform over the domain
and constant: ν = η = κ = 10−3.

Equation (31) can be rewritten in the form of an evolution
equation for the internal energy density u = p/(γ − 1):

∂u

∂τ
+ ∇ · (uv) + (γ − 1) u (∇ · v) = κ∇2

(
p

ρ

)
+ Pη + Pν, (34)

where
Pη = η(∇ × b)2; Pν = ν

2
σ : σ (35)

are the dissipated power per unit volume due to resistivity and
to viscosity, respectively. Other useful quantities are defined by

wη(τ ) =
∫

D′
Pη(x, z, τ ) dxdz; wν(τ ) =

∫
D′

Pν(x, z, τ ) dxdz,

(36)
which represent the dissipated resistive and viscous power
integrated over the domain D′. Using Equations (28)–(30)
and (34), it is possible to write a conservation law for total
energy density in a differential form. Integrating this equation
on the domain D′ and using the divergence theorem gives the
energy conservation equation

dE

dτ
+ Φ = 0, (37)

where

E =
∫

D′

(
1

2
ρ|v|2 +

|b|2
2

+ u

)
dxdz (38)

is the total energy per unit length in the domain D′, and

Φ =
∮

∂D′

[(
1

2
ρ|v|2 + γ u

)
v + S + ν ((v · ∇) v − (∇ · v) v)

−κ∇
(

p

ρ

)]
· n̂dl. (39)

In this expression, S = |b|2v − (v · b)b + η(∇ × b) × b is the
Poynting vector, ∂D′ is the contour of D′, n̂ is the outer-pointing
normal to ∂D′, and dl is an infinitesimal piece of ∂D′. The
quantity (39) represents the energy flux through the boundary
that is due to four different effects: advection of matter, Poynting
vector flux, viscous forces work along the boundaries, and heat
flux. In our particular configuration, the net flux through the
boundaries z = 0 and z = Rz = π is null because of periodicity.
Thus, we can write the total flux in the form Φ = Φ0 +Φ1, where
Φ0 and Φ1 are the fluxes through the boundaries x = 0 and
x = 1, respectively. Taking into account the form of boundary
conditions imposed at these boundaries (see Appendix A), we
find

Φ0 =
∫

x=0

[
−η (b · ∇) bx + η

∂

∂x

( |b|2
2

)
+ (v · b) bx

]
dz

(40)

Φ1 =
∫

x=1

[(
1

2
ρ|v|2 + γ u

)
vx + η

(
(b · ∇) bx− ∂

∂x

( |b|2
2

))
+ |b|2vx − (v · b) bx + ν

×
(

2vx

∂vx

∂x
+ vy

∂vx

∂y
+ vz

∂vx

∂z
+ vx

∂vy

∂y
+ vx

∂vz

∂z

)]
dz.

(41)
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Figure 2. Components vy and by at time τ = 10 in the case of Alfvénic perturbations, with isolines.

4. NUMERICAL RESULTS

In the following, we describe the results obtained in numerical
simulations. We first consider the case of the Alfvénic pertur-
bation.

4.1. Alfvénic Perturbation

In this case, the velocity component directed perpendicularly
to the plane of the simulation, vy , is directly excited by boundary
conditions at the lower boundary. Magnetic lines are locally
bent in the y direction and a non-vanishing by magnetic field
component is generated at x = 0. The y components of
the velocity and magnetic field represent the main Alfvénic
wave component of the fluctuation generated at the lower
boundary. Such a wave propagates inside the domain following
magnetic lines. In Figure 2 the velocity vy and magnetic field
by components are plotted at the time τ = 10. At that time,
the perturbation continuously produced at x = 0 has filled
the whole spatial domain. We can discriminate two different
behaviors of fluctuations in open or closed fieldline regions. In
the former regions, fluctuations cross the domain in the upward
direction and eventually exit from the top. We verified that no
significant reflection takes place at the upper boundary; this
shows that an open boundary is well reproduced by the method
of characteristics. Open fieldline regions are separated in the
lower part of the domain, but they come in contact in the upper
part through the vertical separatrix, which is above the X-point
(see Figure 1); thus, upward-propagating waves completely fill
the upper part of the domain. In this region, vy and by appear
to be anticorrelated (Figure 2), as required for Alfvén waves
propagating in the direction of the background magnetic field.
Since the Alfvén speed is not uniform, the wave propagates
faster at the flanks than in the middle of the domain, thus
producing phase-mixing (Heyvaerts & Priest 1983). This can
be seen in Figure 2, where wavefronts (indicated by the isolines
of vy and by), which are nearly horizontal in the lower domain,
approach one another and become nearly vertical in the upper
central part. This effect increases the wavevector component
perpendicular to the background magnetic field; b(0) is nearly
vertical at large x, so small scales in the horizontal z direction
are produced in the upper part of the domain. This effect is more
significant around the vertical separatrix, because fluctuations
traveling in this region have passed near the X-point, where the
Alfvén velocity vanishes. As a result, small scales in the upper
part of the domain are concentrated in the central region around
the separatrix.

In closed fieldline regions, the perturbation generated at the
lower boundary remains confined beneath the separatrices and

cannot propagate higher. In this region, waves coming from dif-
ferent parts of the lower boundary propagate along magnetic
lines in opposite directions. In these waves vy and by can be
either positively correlated or anticorrelated, according to the
sense of propagation. As a consequence, no particular corre-
lation between vy and by is observed in the closed fieldline re-
gions, where these two kinds of waves are superposed (Figure 2).
However, all waves propagating close to the curved separatrices
pass close to the X-point where the Alfvén velocity vanishes
and undergo an intense phase-mixing. Then, small scales form
around the separatrices that are also in closed fieldline regions.
This phenomenon had been previously reported by McLaughlin
et al. (2010).

The formation of small scales can be visualized by plotting
the spatial distribution of the heat-source terms Pη and Pν due
to resistive and viscous dissipation, as defined in Equation (35).
In fact, dissipation becomes stronger at locations where small
scales are present. In Figure 3, Pη(x, z, τ ) and Pν(x, z, τ ) are
plotted at the time τ = 10. As expected, most of the dissipated
power is concentrated around the four separatrices. Around the
upper separatrix we found that Pη � Pν , which is a consequence
of the velocity–magnetic field correlation (vy � −by) found in
that region, along with the choice that viscosity ν and resistivity
η are equal. On the contrary, around the other separatrices vy

and by are no longer correlated, so Pη and Pν can be different.
In particular, we found that Pη is slightly larger than Pν .

To obtain a quantitative evaluation of the dissipated power,
we calculated the integrated dissipated power wη(τ ), wν(τ )
defined in Equation (36), and their sum w(τ ) = wη(τ ) + wν(τ ).
These quantities are plotted in Figure 4 as functions of time
τ . The dissipated power is initially null and grows until the
time τ ∼ 3, when it reaches a quasi-stationary state where it
oscillates around a mean value 〈w〉 � 0.0017. Comparing this
value with the mean input energy flux 〈Φ0〉 calculated at the
lower boundary x = 0, we found that 〈w〉/〈Φ0〉 ∼ 0.15 for
ν = η = 10−2, whereas 〈w〉/〈Φ0〉 ∼ 0.1 for ν = η = 10−3.
Then, for the considered values of the dissipative coefficient,
about 10% of the power that enters the domain in form of
Alfvén waves is dissipated inside the domain (i.e., at very
low levels in the corona). However, the above results do not
allow us to obtain an evaluation of the ratio 〈w〉/〈Φ0〉 for more
realistic values of dissipative coefficient, which are much lower
in the coronal plasma than the values we used in the simulation.
Comparing resistive and viscous dissipated power, we see that
wη(τ ) > wν(τ ) (i.e., more magnetic energy is dissipated than
kinetic energy). Within the linear approximation we can assume
that velocity and magnetic field perturbations are polarized
along the y direction. Since the equilibrium magnetic field b(0)
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Figure 3. Dissipated power per unit volume due to viscosity Pν (left panel) and resistivity Pη (right panel) in the xz plane at the time τ = 10 for the Alfvénic
perturbation.

(A color version of this figure is available in the online journal.)

is a current-free field, dissipated powers in the region around
separatrices can be estimated by

Pη � η(∇by)2 ∼ η
(δby)2

�2
, Pν � ν(∇vy)2 ∼ ν

(δvy)2

�2
,

(42)
where � is the dissipative scale and δby and δvy are local ampli-
tudes of magnetic field and velocity fluctuations, respectively.
Around the upper separatrix, only upward-propagating waves
are present with δby � δvy . In contrast, around the lower sepa-
ratrices where waves propagate in both senses, we observe that
δby > δvy . Thus, the slight unbalance between wη(τ ) and wν(τ )
could be due to lack of fluctuating magnetic and kinetic energy
equipartition in the region of closed magnetic fieldlines.

In order to illustrate the presence of small scales in the
fluctuations leaving the domain from the upper boundary, we
calculated the spectrum of the velocity component vy . As
explained previously, we expect that small-scale formation due
to phase-mixing takes place only in the direction perpendicular
to b(0) (i.e., mainly in the horizontal direction). Thus, we
calculated a 1D spectrum giving the energy distribution at the
various scales in the z direction. The velocity y component
calculated at the upper boundary x = 1 is expanded in the
Fourier series

vy(1, z, τ ) =
∑
kz

v̂y(kz, τ )eikzz. (43)

The time-dependent spectrum is given by |v̂y(kz, τ )|2. We found
that the shape of such a spectrum varies quasi-periodically in
time according to the instantaneous value of the wave phase.
For this reason it is suitable to consider a spectrum averaged in
time over a wave period T = 2π/ω:

evy
(kz) = 1

T

∫
T

|v̂y(kz, τ )|2dτ. (44)

The time-averaged velocity spectrum is plotted in Figure 5 in
logarithmic scale. It can be seen that evy

(kz) follows a power
law remarkably well, up to wavevectors kz ∼ 30. For larger
wavevectors the spectrum becomes curved, which is probably
due to dissipation. In the power-law range, the spectrum is well
fitted by a law ∝ kz

−2.3. A very similar spectrum has also
been found for the magnetic fluctuation by. Thus, the effect
of the inhomogeneous magnetic field b(0) where the Alfvénic
fluctuation propagates is to create a power-law spectrum in the
initially uniform perturbation. We point out that the power-law
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Figure 4. Integrated dissipated power due to viscosity wν (dashed line), to
resistivity wη (dash-dotted line), and total w (solid line), plotted as functions of
time for the Alfvénic perturbation.
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Figure 5. Time-averaged velocity y-component spectrum evy (kz) calculated at
x = 1 for the Alfvénic perturbation (crosses), and a power-law function that
fits the spectrum in the low-wavenumber range (dashed line) are plotted in
logarithmic scale.

spectrum we found is steeper than the Kolmogorov spectrum.
We note that the same result, with a similar value for the spectral
slope, has also been found by Malara (2013) in a model based
on the WKB approximation, in which small-wavelength Alfvén
waves propagate along magnetic lines at the local Alfvén speed.
McLaughlin et al. (2010) showed that a small-amplitude Alfvén
wave in a 2D equilibrium magnetic field with a uniform density
follows magnetic lines with the local Alfvén speed, regardless
of its wavelength. Thus, the formation in our simulation of a
spectrum similar to that found in the WKB limit was expected.
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Figure 6. Magnetic pressure pM associated with the Alfvénic perturbation (left panel) and density ρ (right panel) calculated at the time τ = 8.5

The wave amplitude is small with respect to the background
magnetic field, being by/b

(0) ∼ 0.1. Thus, it could be expected
that nonlinear effects depending on the square of the wave ampli-
tude, such as the generation of compressive fluctuations, should
be negligible when compared with the Alfvénic fluctuation.
However, magnetic pressure gradients could locally be large
enough to drive significant compressible fluctuations. This hap-
pens around separatrices, because of the presence of small-scale
structures in the wave profile. The Laplace force associated with
the total magnetic field b = [b(0) + byey] is f = (∇ × b) × b.
Taking into account the condition ∇ × b(0) = 0, f has the form

f = − ∂

∂x

(
b2

y

2

)
ex +

(
b(0)

x

∂by

∂x
+ b(0)

z

∂by

∂z

)
ey − ∂

∂z

(
b2

y

2

)
ez.

(45)
Thus, the components of f in the xz plane are opposite to the
magnetic pressure gradient associated with the perturbation
field by. These components can reach significant values at
locations where small scales form (i.e., around the separatrices).
In Figure 6 the magnetic pressure pM = b2

y/2 due to the
perturbation of the magnetic field component by, and the density
ρ are plotted at time τ = 8.5 in the left and right panels,
respectively. We observe an increase of magnetic pressure on
both sides of the vertical separatrix above the X-point, with
lower values of pM in between. This is due to the accumulation
of wavefronts of the Alfvén wave caused by phase-mixing.
This results in strong localized gradients of pM that push the
fluid toward the separatrix from both sides. The result is the
formation of a dense, vertically elongated “bubble” localized on
the separatrix, where the density reaches values up to ∼10–15%
larger than the unperturbed value. This compressive structure
can be seen in the right panel of Figure 6. The compressive
perturbation evolves in time, propagating upward, pushed by
the magnetic pressure of the Alfvén wave. This time evolution
is represented in Figure 7, where the density profile is plotted
as a function of x along the separatrix at z = π/2 for
different times. At the time τ = 8 a maximum of density,
where ρ reaches the value �1.12 is located above the X-
point, at x � 0.59. This fluctuation propagates upward with
a speed ∼0.3–0.4 (in dimensionless units), which increases
with increasing x, whereas the fluctuation amplitude slightly
decreases. The Alfvén velocity on the separatrix at x = 1 is
cA � 0.26, even if it increases on the two sides of the separatrix.
Eventually, the density perturbation exits the domain through
the boundary x = 1, while a new compression forms above
the X-point (time τ = 9.5). We verified that the period of the
compressive fluctuations is around two, which is one half the
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Figure 7. Density profiles as functions of x along the vertical separatrix z = π/2
at different times.

period of the Alfvénic perturbation. Summarizing, in the vicinity
of the separatrix nonlinear effects generate density fluctuations
with an amplitude δρ/ρ of the same order as the amplitude of the
Alfvén wave. Such fluctuations are driven by the Alfvén wave
magnetic pressure gradient and propagate along the magnetic
field at a speed comparable with the Alfvén velocity.

4.2. Magnetosonic Perturbation

In this case a velocity perturbation polarized in the z direction
is imposed at the lower boundary. This motion locally distorts
the equilibrium field magnetic lines, generating a perturbation
of both x and z magnetic field components. At variance with
the previous case, no perturbation y components are generated.
Thus, the perturbation produced at the boundary belongs to the
magnetosonic mode. We shall see that the behavior of the system
is different from the previous case, with a more important role
played by the X-point.

In Figure 8 the velocity components vy and vz are plotted
at the time τ = 2. It can be seen that the distribution of the
velocity field is no longer symmetric. Moreover, the spatial dis-
tribution of v is smoother and more isotropic than in the Alfvénic
case. No small scales appear to be present in the upper part of
the domain (i.e., in the region where the perturbation leaves
the domain). We then calculated the time-averaged spectra of
the x and z components of the velocity and magnetic field. In
the same way as the Alfvénic perturbation case, these spectra
are calculated using the profiles of the above quantities taken
along the upper boundary x = 1. The averaged spectra evx

, evz
,

ebx
, and ebz

are plotted in Figure 9. All such spectra are much
steeper than those found for the Alfvénic perturbation. We can
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conclude that no relevant small scales are present in the magne-
tosonic perturbations that leave the domain through the upper
boundary.

Indeed, small scales are present in the domain, but only in
a limited region around the X-point. This confirms a finding
by McLaughlin et al. (2010), who reported that magnetosonic
perturbations are diffracted by the background inhomogeneities
and, in the presence of an X-point, wrap around it locally gen-
erating small scales. Because of the imposed vz at the lower
boundary and the frozen-in law, magnetic fieldlines at the lower
boundary are forced to follow the oscillatory motion at the base.
We remember that the magnetic field is not imposed at the
boundary, but is calculated using a method of projected charac-
teristics that takes into account physical conditions imposed for
the velocity. The oscillation of the value of vz along the lower
boundary causes a distortion of the magnetic structure, which
is also oscillatory. In Figure 10 magnetic field lines are plotted
at two different times. Each plot is obtained by drawing the iso-
lines of the vector potential A(x, z). In Appendix B we describe
the method we used to calculate A(x, z). By comparing Figure 1
we can see the distortion of the magnetic lines generated by
the perturbation. In particular, the separatrices crossing at the
X-point have collapsed—they no longer form right angles in the
distorted configuration of Figure 10. This implies that a current
directed along the y direction is localized at the X-point. The
current density component jy = ∂bx/∂z − ∂bz/∂x is plotted in
Figure 11 at the time τ = 2 (corresponding to the left panel
of Figure 10). This figure represents a zoom of the region

around the X-point. We can see that jy has a maximum at the
X-point and it is flattened along an oblique direction, which
is between separatrices. Such an elongated X-point becomes a
site of magnetic reconnection. The presence of magnetic recon-
nection can be revealed by plotting the vorticity y component
ωy = ∂vx/∂z − ∂vz/∂x (Figure 11, right panel); ωy displays a
quadrupolar structure that is typical of magnetic reconnection
(Matthaeus 1982): two opposite inflows carry magnetic flux
that reconnects at the X-point and is carried away by two op-
posite outflows. Thus, the magnetic field distortion produced
by the perturbation works as a trigger for the magnetic re-
connection. This goes on until the change of sign in the ve-
locity vz at the base pulls fieldlines in the opposite direction,
causing the X-point to become currentless and stopping the
reconnection for a moment. The distortion continues until the
configuration shown in the right panel of Figure 10 is formed,
which is specular to the previous one. In this new configura-
tion reconnection starts again, but is opposite to the previous
case—previous inflows turn into outflows, and vice versa. This
cycle of reconnection reversals continues periodically. In our
simulation reconnection is oscillatory in time, which is a conse-
quence of the periodic motion imposed at the lower boundary.
The presence of oscillatory reconnection in a magnetic X-point
perturbed by a magnetosonic wave was previously reported by
McLaughlin et al. (2009). These authors considered an X-point
at the center of a cylindrical domain, where a single δ-like
magnetosonic pulse coming from the boundary converges to
the X-point. The pulse generates a sequence of alternate re-
connections decaying in time that are caused by the increase
of kinetic pressure in the outflow regions of the reconnection.
In our simulation, we considered magnetosonic waves with a
well-defined frequency, so that oscillatory reconnection goes on
indefinitely without decaying. Moreover, our results show that
this phenomenon can also act in more general (less symmetri-
cal) configurations, provided that an initially potential X-point
is solicited by some perturbation polarized in the same plane as
the background magnetic field.

5. CONCLUSIONS

In this paper we studied the propagation of MHD waves in
the lower layers of a coronal hole, through 2D MHD numeri-
cal simulations. Such waves are supposed to be generated by
photospheric motions and propagate upward reaching higher
regions of the corona and the solar wind. The main motivation
is to study the formation of small scales in fluctuations, as a
consequence of their interaction with features of the inhomo-
geneous background magnetic field, such as separatrices and
X-points. Indeed, although a coronal hole is characterized by
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Figure 11. Current component jy (left panel) and vorticity component ωy (right panel) in the xz plane around the X-point at the time τ = 2.

a dominant magnetic polarity, magnetograms have revealed the
presence of several regions of opposite polarity (Zhang et al.
2006; Ito et al. 2010), with a typical size of the order of 104 km.
This suggests that at low altitudes the magnetic field has a com-
plex structure containing both open and closed fieldlines, the
latter connecting regions of opposite polarity at the base. When
a fluctuation crosses such a complex structure, small scales are
generated. These effects have been neglected in the models of
solar wind acceleration, where only large-scale inhomogeneities
due to vertical stratification and spherical expansion have been
included.

We considered magnetic structures with a typical size L =
104 km � 1R�. Then, in our model we neglected curvature
effects due to the spherical geometry, instead using a simpler
Cartesian geometry. The equilibrium magnetic field we consid-
ered tries to reproduce the above observational features—it is
a simple inhomogeneous 2D current-free field, whose vertical
component bx changes sign when moving along the base x = 0.
In the model there are both open and closed fieldlines at small
x, while only open fieldlines with a single polarity are present at
large x. The magnetic structure contains separatrices that inter-
sect at an X-point; the separatrices and the X-point play a key
role in the dynamics of perturbations. The equilibrium density
is supposed to be uniform. The scale height Hρ of the density in
the corona can be estimated by assuming a uniform temperature
and an equilibrium between gravity, a pressure gradient, and
a uniform temperature, Hρ � κBT (0)/(mpg), where κB is the
Boltzmann constant, mp the proton mass, g � 2.74×104 cm s−2

the surface gravity of the Sun, and T (0) � 106 K. Using these
values, we find Hρ � 3×104 km, which is larger than the verti-

cal size L of our domain. Thus, a uniform density is a reasonable
approximation.

Fluctuations are produced by imposing a velocity vy or vz

at the base x = 0 of the domain. This is intended to represent
movements of lower denser layers of the solar atmosphere. In
consequence of the frozen-in condition, magnetic fieldlines are
carried by these motions, thus generating MHD waves that prop-
agate from the base into the domain. The time evolution of mag-
netic field, density, and pressure at the base has been calculated
consistently with MHD equations using a method of projected
characteristics. The same method allows perturbations to exit
without reflection through the upper boundary x = 1. Since the
background magnetic field is 2D, it is possible to distinguish
between Alfvénic and magnetosonic perturbations, according
to the polarization (y or xz) of the generated fluctuations.

In the case of Alfvénic perturbation, we found that the
formation of small- scale structures mainly takes place along the
separatrices. This holds for both the lower separatrices, where
trapped perturbations propagate back and forth, and for the
upper separatrix in the open fieldline region, where fluctuations
leave the domain propagating upward. Small scales form both
in the magnetic field and in the velocity perturbation. The
generation of small scales along the separatrices confirms the
results of previous studies, which were carried out using various
approaches (analytical, WKB, simulation) concerning Alfvén
wave propagation around an X-point (see, e.g., McLaughlin
et al. 2010 for a review). The separatrices are also the places
where the energy carried by the waves is transformed into
heat through dissipative effects. During the time evolution the
dissipated power reaches a quasi-stationary state after an initial
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transient. In this quasi-stationary situation we estimated that
∼10% of the energy flux entering from the base is dissipated
in the domain and the rest is carried out with the waves. This
percentage decreases with decreasing dissipative coefficients,
which in our simulations are necessarily much higher than in the
coronal plasma. A more detailed analysis of this point is left for a
future work. On the other hand, we can expect that if the domain
had a larger extension in the x direction, the ratio of dissipated to
incoming power would be larger. In our simulation more power
is dissipated by resistivity than by viscosity; this difference is
due to the behavior of waves trapped in the region of closed
fieldlines, where magnetic perturbations are larger than velocity
perturbations. The dominance of magnetic perturbations has
been observed for low-frequency perturbations in models of
turbulence in coronal loops (Nigro et al. 2004; Buchlin et al.
2007). As in our case, in these models a fluctuating velocity is
imposed at the boundaries, while outgoing perturbations are free
to leave the spatial domain. The observed unbalance between
velocity and magnetic field perturbations in closed fieldline
regions of our model could be ascribed to a mechanism similar
to that found in the models by Nigro et al. (2004) and Buchlin
et al. (2007), although the excitation of “in phase” fluctuations
at the footpoints of closed fieldlines could also play a role in
determining the excess of magnetic fluctuations.

In analyzing the spectrum of the perturbation exiting from
the top, we found that the energy is distributed as a power law
∝ kz

−2.3, at least at scales sufficiently large to neglect dissipative
effects. kz represents the main component of the wavevector,
which is essentially perpendicular to b(0). Then, the interaction
of an initially spatially uniform Alfvénic perturbation with the
background inhomogeneity produces an anisotropic power-law
spectrum that mainly extends in the direction perpendicular
to the magnetic field. This spectrum forms at low altitudes in
the corona—at X = L = 104 km above the coronal base the
spectrum is completely formed. These results largely confirm
what has been found by Malara et al. (2012) and Malara (2013).
However, while these authors employed a WKB approximation
in a 3D configuration, our results are based on a direct MHD
simulation in a 2D equilibrium. The above features of the
spectrum are reminiscent of what happens in MHD turbulence,
where nonlinear couplings generate power-law spectra with an
energy cascade that mainly flows in the direction perpendicular
to the mean magnetic field (e.g., Shebalin et al. 1983; Carbone &
Veltri 1990). In the present model this anisotropy is generated by
the coupling between the perturbation and the inhomogeneous
background, instead of nonlinear effects. However, the slope
α � 2.3 of the pertubation spectrum that we find is definitely
larger than what is typically found in turbulence (e.g., 1.5 or
1.66 for a Kraichnan or a Kolmogorov spectrum, respectively).
Thus, the present model cannot account for the formation of
a fully developed spectrum. However, models studying the
evolution of fluctuations from the corona to the solar wind,
or the solar wind acceleration by dissipation of wave energy
should take the phenomenon we studied here into account. For
instance, Verdini et al. (2009) presented a model of turbulence
formation in the sub-Alfvénic solar wind, where Alfvén waves
on large scales are injected at the base and partially reflected
by the vertical stratification. Although a turbulence spectrum
forms as a consequence of nonlinear wave–wave interactions,
the produced heat seems to be deposited at greater distances
than what is needed to sustain the background wind. Our model
suggests that upward-propagating waves start forming small
scales at very low altitudes. Such a phenomenon can decrease

the altitude of heat deposition, thus leading to a better agreement
between the results of the turbulence model and the background
wind structure.

The relative amplitude of perturbations we considered is low
(δv/cA ∼ 10−1), so that nonlinear effects should be mostly neg-
ligible. Nevertheless, the magnetic pressure gradient associated
with the perturbation can locally reach larger values at loca-
tions where small scales form. As a consequence, in the vicinity
of the vertical separatrix we observed the formation of density
fluctuations with a relative amplitude (δρ/ρ ∼ 10−1) compa-
rable with that of the Alfvén wave. These fluctuations are sort
of localized “bubbles” that propagate upward along the separa-
trix at a speed (∼100 km s−1) comparable with the local Alvén
velocity pushed by the magnetic pressure of the Alfvén wave.
The presence of density fluctuations in coronal holes with a pe-
riod of approximately six minutes has been revealed by Ofman
et al. (1997). DeForest & Gurman (1998) found compressive
waves in polar plumes with waveperiods of ∼10 minutes, prop-
agating upward at a speed ∼75–150 km s−1, where the density
fluctuation is 5%–10% of the background value, interpreted as
slow magnetosonic fluctuations (Ofman et al. 1999). On the
other hand, magnetograms reveal the presence of small regions
of magnetic polarity opposite the dominant plume polarity lo-
cated all around the plume footpoint (DeForest et al. 1997). This
could give rise to magnetic separatrix surfaces associated with
the plume boundary. Our model suggests an alternative interpre-
tation of the observed density fluctuations—namely, compres-
sive waves, nonlinearly driven by Alfvénic fluctuations, which
propagate upward along such magnetic separatrices. Finally,
we noted an analogy between our magnetic structure and that of
pseudostreamers (Wang et al. 2012). A certain activity has been
observed in the form of faint density structures radially propa-
gating along pseudostreamers up to distances ∼3R� (Wang et al.
2007). The similarity with our model would suggest that such
structures could be generated by steep magnetic pressure gradi-
ents of Alfvén waves that concentrate around the magnetic sep-
aratrix. However, since pseudostreamers can extend up to about
few solar radii density, stratification and spherical geometry are
no longer negligible. These effects could somehow modify the
wave dynamics with respect to that found in our model.

The phenomenology of magnetosonic fluctuations is com-
pletely different. First, no relevant small-scale formation is ob-
served in the waves that leave the domain through the upper
boundary: spectra of velocity and magnetic field components
at x = 1 are much steeper than for Alfvénic fluctuations, with
slopes ranging from �−3.0 to �−5.2. We can conclude that
only Alfvénic fluctuations contribute to the small-scale forma-
tion in waves that leave the domain, at least in the considered 2D
configuration. However, in the magnetosonic case, small scales
do actually form and dissipation takes place, but only around the
X-point. The magnetic field is perturbed by the magnetosonic
fluctuation so that an elongated current jy forms at the initially
potential X-point; the separatrices collapse and reconnection
starts. In this scenario, fluctuations work as a trigger for recon-
nection. With increasing time, the motion at the base is reversed
until magnetic lines at the X-point reach a configuration spec-
ular to the previous one: the reconnection pattern is reversed,
with outflows turned into inflows, and vice versa. The oscillatory
motion imposed at the base gives rise to an oscillatory recon-
nection. The phenomenon of oscillatory reconnection has been
observed by Murray et al. (2009) in simulations of an emerging
flux tube within a coronal hole. McLaughlin et al. (2009) studied
oscillatory reconnection when a magnetosonic pulse propagates
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on a potential X-point. However, while these authors considered
a single δ-like pulse generating a self-sustained time-decaying
sequence of reconnections, in our simulation alternate recon-
nection indefinitely goes on, driven by a continuous wave injec-
tion. Moreover, the configuration studied by McLaughlin et al.
(2009) is more particular than ours, since these authors con-
sidered a cylindrically symmetric pulse converging toward the
X-point. In this respect, we can say that our results extend the
findings by McLaughlin et al. (2009) to more general configu-
rations that are not necessarily constrained by cylindrical sym-
metry assumptions. Oscillatory reconnection has been invoked
(Murray et al. 2009) to explain oscillatory emission observed
during flares (e.g., Mitra-Kraev et al. 2005; McAteer et al.
2005; Inglis et al. 2008), as well as swaying outflow jets ob-
served above emitting loops (Cirtain et al. 2007; Shibata et al.
2007). Our results indicate that oscillatory reconnection should
be a general phenomenon taking place every time a current-free
X-point is stressed by a quasi-periodic perturbation.

Despite its simplicity, we believe that the present model has
allowed us to gain some insight in the mechanism of small-scale
formation into perturbations that propagate in the lower layers
of a coronal hole. Possible improvements that we are planning
for future work include both the extension to a more complex 3D
structure and a more realistic representation of motions at the
coronal base, which takes into account the observed temporal
spectrum of photospheric motions.
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for many stimulating discussions on the subject of the paper.
This research has been partially supported by EU Marie Curie
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APPENDIX A

THE METHOD OF PROJECTED CHARACTERISTICS

The method of characteristics can be used to build boundary conditions that are consistent with the hyperbolic structure of fluid
or MHD equations. It is based on the decomposition of solutions of the Equations (28)–(31) into characteristic modes that cross the
domain boundary propagating from inside to outside, or the reverse. We employed a version of the method that has been formulated
by Sun et al. (1995) and was used to simulate the entrance and exit of Alfvénic perturbations both in a large-scale coronal model
(Grappin et al. 2000) and in an equilibrium structure with an X-point (Landi et al. 2005). In these cases, the entrance of Alfvén
waves was obtained by imposing the amplitude of incoming perturbations at the boundary. In the present case we follow a different
approach (i.e., the input of perturbations is obtained by imposing a time-dependent velocity field on the lower boundary x = 0).
We use the method of projected characteristics to deduce the time evolution of the other physical quantities (density, pressure, and
magnetic field) at the same boundary in a way that is consistent with the MHD equations. At the upper boundary x = 1, the method
is used to simulate the free exit of perturbations by imposing that no perturbation enters the domain through that boundary (Grappin
et al. 2000; Landi et al. 2005).

We write the compressible, non-ideal, MHD Equations (28)–(31) separating the terms containing first-order derivatives with respect
to x from the other terms:

∂Ui

∂τ
+ Aij

∂Uj

∂x
+ Ti = 0, i = 1, . . . , 7, (A1)

where Ut = (
ρ, vx, vy, vz, by, bz, p

)
and the vector T contain all the terms with derivatives with respect to y and z and the non-ideal

terms. Hereafter, summation over dummy indices is understood. We eliminated the equation for bx in the system (A1) because we
calculate its value at the boundaries x = 0 and x = 1 by using the divergence free condition. The matrix A has the following form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx ρ 0 0 0 0 0
0 vx 0 0 by

ρ

bz

ρ
1
ρ

0 0 vx 0 − bx

ρ
0 0

0 0 0 vx 0 − bx

ρ
0

0 by −bx 0 vx 0 0
0 bz 0 −bx 0 vx 0
0 γp 0 0 0 0 vx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of the matrix A are: λ(1) = vx , λ(2) = vx + cax , λ(3) = vx + cf , λ(4) = vx + cs , λ(5) = vx − cax , λ(6) = vx − cf ,

λ(7) = vx − cs , where cax = bx/
√

ρ is the Alfvén speed along the x direction, cf = 1/
√

2(
√

(ca
2 + a2) + 1/2

√
(ca

2 + a2) − 4cax
2a2)

and cs = 1/
√

2(
√

(ca
2 + a2) − 1/2

√
(ca

2 + a2) − 4cax
2a2) are the fast and slow magnetosonic speeds, with a2 = √

γP/ρ and

ca
2 = b2/ρ. The eigenvalues λ(k) represent the propagation velocities of the seven different waves (Alfvén, fast and slow magnetosonic,

and entropy waves) crossing the boundary in both senses. For each of the two boundaries we distinguish between incoming
perturbations (corresponding to positive λ(k) at x = 0, or negative λ(k) at x = 1) and outgoing perturbations (corresponding to
negative λ(k) at x = 0, or positive λ(k) at x = 1).
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We indicate by ξ (k) and η(k) the right and left eigenvector of the matrix A corresponding to the kth eigenvalue λ(k):

Aij ξj
(k) = λ(k)ξi

(k) ηi
(k)Aij = λ(k)ηj

(k) k = 1, . . . , 7, (A2)

where no summation is to be intended over the upper index in parenthesis (k). A right (left) eigenvector and a left (right) eigenvector
corresponding to different eigenvalues are mutually orthogonal. Moreover, we choose to normalize eigenvectors so that:

ξi
(k)ηi

(l) = δkl . (A3)

In the following we illustrate the procedure in the most general case, in which all magnetic field components are nonvanishing at the
given grid point on the boundary. The two particular cases in which bx = 0 or b⊥ = (

b2
y + b2

z

)1/2 = 0 have been treated in a similar
way. The explicit expressions of left eigenvectors are:

η(1) =
(

1

ρ
, 0, 0, 0, 0, 0,− 1

γp

)
(A4)

η(2) =
(

0, 0,−σ

√
ρbz

2b2
⊥

, σ

√
ρby

2b2
⊥

,
bz

2b2
⊥

,− by

2b2
⊥

, 0

)
(A5)

η(3) =
(

0, 0, σ

√
ρbz

2b2
⊥

,−σ

√
ρby

2b2
⊥

,
bz

2b2
⊥

,− by

2b2
⊥

, 0

)
(A6)

η(4) =
(

0,
1

2γf cf

,− by

2bxαf γf cf

,− bz

2bxαf γf cf

,
by

2b2
xαf γf

,
bz

2b2
xαf γf

,
1

2ργf c2
f

)
(A7)

η(5) =
(

0,− 1

2γf cf

,
by

2bxαf γf cf

,
bz

2bxαf γf cf

,
by

2b2
xαf γf

,
bz

2b2
xαf γf

,
1

2ργf c2
f

)
(A8)

η(6) =
(

0,
1

2γscs

,− by

2bxαsγscs

,− bz

2bxαsγscs

,
by

2b2
xαsγs

,
bz

2b2
xαsγs

,
1

2ργsc2
s

)
(A9)

η(7) =
(

0,− 1

2γscs

,
by

2bxαsγscs

,
bz

2bxαsγscs

,
by

2b2
xαsγs

,
bz

2b2
xαsγs

,
1

2ργsc2
s

)
, (A10)

while the right eigenvectors are:
ξ (1) = (ρ, 0, 0, 0, 0, 0, 0) (A11)

ξ (2) =
(

0, 0,−σ
bz√
ρ

, σ
by√
ρ

, bz,−by, 0

)
(A12)

ξ (3) =
(

0, 0, σ
bz√
ρ

,−σ
by√
ρ

, bz,−by, 0

)
(A13)

ξ (4) =
(

ρ
c2
ax

c2
f

αf , cf

c2
ax

c2
f

αf ,−bxby

ρcf

,−bxbz

ρcf

, by, bz,
c2
ax

c2
f

γpαf

)
(A14)

ξ (5) =
(

ρ
c2
ax

c2
f

αf ,−cf

c2
ax

c2
f

αf ,
bxby

ρcf

,
bxbz

ρcf

, by, bz,
c2
ax

c2
f

γpαf

)
(A15)

ξ (6) =
(

ρ
c2
ax

c2
s

αs, cs

c2
ax

c2
s

αs,−bxby

ρcs

,−bxbz

ρcs

, by, bz,
c2
ax

c2
s

γpαs

)
(A16)

ξ (7) =
(

ρ
c2
ax

c2
s

αs,−cs

c2
ax

c2
s

αs,
bxby

ρcs

,
bxbz

ρcs

, by, bz,
c2
ax

c2
s

γpαs

)
. (A17)

The symbols used in the above expressions are defined as

b⊥ =
√

b2
y + b2

z , αf =
(

c2
f

c2
ax

− 1

)
, γf =

(
1 − c2

axa
2

c4
f

)
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σ = bx

|bx | , αs =
(

c2
s

c2
ax

− 1

)
, γs =

(
1 − c2

axa
2

c4
s

)
.

The right eigenvectors (A11)–(A17) (as the left eigenvectors) are linearly independent, so they form a complete set of vectors in a
seven dimensional space. This allows us to write the second term in the MHD Equation (A1) as a linear combination of the ξi

(k):

Aij

∂Uj

∂x
=

∑
k

L(k)ξi
(k). (A18)

The left-hand side of Equation (A18) contains the advective terms representing the propagation of perturbations in the x direction
(i.e., across the boundary). In this equation the contribution of the different modes to the propagation is singled out as the coefficients
L(k) representing the weight of each mode. Using expression (A18), we re-write the Equation (A1) in the form

∂Ui

∂τ
= −

∑
k

L(k)ξi
(k) − Ti, (A19)

where the time derivatives of the fields Ui are expressed in terms of the coefficients L(k). Multiplying Equation (A19) by η
(k)
i and

using the condition (A3), we obtain the projected equation

L(k) = −ηi
(k) ∂Ui

∂τ
− ηi

(k)Ti, (A20)

in which the coefficients L(k) are expressed as functions of the time derivatives ∂Ui/∂τ . Finally, another expression for L(k) is obtained
by multiplying Equation (A18) by η

(k)
i :

L(k) = λ(k)ηi
(k) ∂Ui

∂x
, (A21)

where we used Equation (A2) and the condition (A3). In Equation (A21) the coefficients L(k) are expressed in terms of the normal
derivatives of the fields. Boundary conditions are determined using Equations (A19)–(A21) evaluated at the boundaries. In particular,
Equation (A19) allows us to calculate the time evolution of the fields Ui at the boundaries once the coefficients L(k) have been
determined.

Concerning the determination of L(k), we observe that boundary conditions can influence only incoming perturbations, whereas
outgoing perturbations are entirely determined by the field configuration inside the domain. Therefore, the number of boundary
conditions we can impose is equal to number of incoming modes. The first step of the procedure consists of calculating the sign
of each eigenvalue λ(k) at the given gridpoint on the boundary, in order to distinguish between the L(k) corresponding to incoming
perturbations and those corresponding to outgoing perturbations. Since the former coefficients are determined by boundary conditions,
we must distinguish between the lower and the upper boundary.

A.1. Lower Boundary

On the lower boundary x = 0 we impose the value of the three components of the velocity field. In particular, we choose
vx(x = 0, z, τ ) = 0. In that case we have only three positive eigenvalues (λ(2), λ(3), and λ(4)) corresponding to incoming Alfvén,
fast and slow magnetosonic perturbations, three negative eigenvalues (λ(5), λ(6), and λ(7)), while λ(1) = 0. Since λ(1) = 0, we can
look at the entropy mode as an outgoing mode with null speed. The coefficients L(1), L(5), L(6), and L(7) corresponding to outgoing
perturbations are calculated using Equation (A21). The explicit expressions are the following:

L(1) = 0 (A22)

L(5) = −σ
bx√
ρ

[
σ

√
ρbz

2b⊥2

(
∂vy

∂x

)
+

− σ

√
ρby

2b⊥2

(
∂vz

∂x

)
+

+
bz

2b⊥2

(
∂by

∂x

)
+

− by

2b⊥2

(
∂bz

∂x

)
+

]
(A23)

L(6) = − cf

[
− 1

2γf cf

(
∂vx

∂x

)
+

+
by

2bxαf γf cf

(
∂vy

∂x

)
+

+
bz

2bxαf γf cf

(
∂vz

∂x

)
+

+
by

2bx
2αf γf

(
∂by

∂x

)
+

+
bz

2bx
2αf γf

(
∂bz

∂x

)
+

+
1

2ργf cf
2

(
∂p

∂x

)
+

]
(A24)

L(7) = − cs

[
− 1

2γscs

(
∂vx

∂x

)
+

+
by

2bxαsγscs

(
∂vy

∂x

)
+

+
bz

2bxαsγscs

(
∂vz

∂x

)
+

+
by

2bx
2αsγs

(
∂by

∂x

)
+

+
bz

2bx
2αsγs

(
∂bz

∂x

)
+

+
1

2ργscs
2

(
∂p

∂x

)
+

]
. (A25)
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In these equations the lower symbol “+” indicates right x derivatives, which are calculated using boundary and internal gridpoints
by a forward finite difference method. Thus, the internal configuration determines the coefficients L(5), L(6), and L(7) through these
derivatives. The coefficients L(2), L(3), and L(4), corresponding to incoming perturbations, are determined by the velocity field imposed
at the boundary by means of Equations (A19)–(A20), with i = 2, 3, 4, where L(2), L(3), and L(4) are treated as unknown. Solving
these three equations, we find the explicit expressions for L(2), L(3), and L(4):

L(2) = σ
√

ρbz

b⊥2

(
∂vy

∂τ
+ T3

)
− σ

√
ρby

b⊥2

(
∂vz

∂τ
+ T4

)
+ L(5) (A26)

L(3) = − 1

γf cf

T2 +
by

bxαf γf cf

(
∂vy

∂τ
+ T3

)
+

bz

bxαf γf cf

(
∂vz

∂τ
+ T4

)
+ L(6) (A27)

L(4) = − 1

γscs

T2 +
by

bxαsγscs

(
∂vy

∂τ
+ T3

)
+

bz

bxαsγscs

(
∂vz

∂τ
+ T4

)
+ L(7). (A28)

The quantities in the right-hand side of Equations (A26)–(A28) (velocity component time derivatives ∂vy/∂τ , ∂vz/∂τ ; outgoing
perturbation coefficients L(5), L(6), and L(7); and the quantities T2, T3, and T4) are determined by the velocity field imposed at the
boundary or by the configuration of fields in the interior of the domain. Thus, Equations (A26)–(A28) represent the compatibility
conditions. Finally, the coefficients L(k) calculated by Equations (A22)–(A28) at a given time are used in Equation (A19) with
i = 1, 5, 6, 7 to calculate the time advance of ρ, by, bz, and p at the boundary x = 0.

A.2. Upper Boundary

The upper boundary x = 1 represents an open boundary that can be freely crossed by matter and/or outgoing perturbations. No
velocity field is imposed on that boundary. Instead, boundary conditions correspond to the requirement that no incoming perturbations
cross that boundary. In this case, since vx can have any sign, the number of incoming or outgoing waves on a given gridpoint cannot
be determined a priori. As for the lower boundary, coefficients L(k) corresponding to outgoing perturbations are determined by
Equation (A21) that we write in the form

L
(k)
out = λ(k)ηi

(k)

(
∂Ui

∂x

)
−

, for (k) such that λ(k) � 0. (A29)

The lower symbol “−” indicates left x-derivatives, which are calculated using boundary and internal gridpoints by a backward finite
difference method. Coefficients L(k) corresponding to incoming perturbations are calculated using the projected MHD Equation (A20).
In this equation we set

η
(k)
i

∂Ui

∂τ
= 0, for (k) such that λ(k) < 0, (A30)

where only values of the index (k) corresponding to a negative eigenvalue λ(k) are considered. Equation (A30) represents the boundary
conditions and corresponds to the requirement that incoming perturbations alone do not generate any time evolution of the fields Ui.
Note that the number of boundary conditions (A30) is equal to the number of incoming perturbations at the given gridpoint. Using
Equation (A30) into Equation (A20) we get the expression for the coefficients L(k) corresponding to incoming perturbations:

L(k)
in = −η

(k)
i Ti, for (k) such that λ(k) < 0. (A31)

Finally, by inserting the coefficients L(k) (Equations (A29) and (A31)) into the Equation (A19), the time advance of all the fields Ui
at the boundary x = 1 is calculated.

As claimed by Poinsot & Lele (1993), who applied this method for a fluid case in order to guarantee stability and/or well-
posedness, it is necessary to add further boundary conditions. In our case, we impose that some diffusive terms in Equations (28)–(31)
(κ[∂2(p/ρ)/∂x2], η ∇2by , η ∇2bz) are vanishing at x = 0 and x = 1.

APPENDIX B

ANALYTICAL EXPRESSION OF THE VECTOR POTENTIAL

The magnetic field of our model can be expressed in terms of a vector potential A(x, z) = A(x, z)ey :

b(x, z) = ∇ × (A(x, z)ey), (B1)

where the following equations hold for the magnetic field components:

bx(x, z) = − ∂A(x, z)

∂z
(B2)
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bz(x, z) = ∂A(x, z)

∂x
. (B3)

We derive an analytical expression for A(x, z) as a function of the magnetic field components using the periodicity of bx and bz along
the z direction. The magnetic field components can be written as

bx(x, z) =
∑
kz

b̂x(x, kz)e
ikzz (B4)

bz(x, z) =
∑
kz

b̂z(x, kz)e
ikzz. (B5)

Equations (B2)–(B5) establish that the partial derivatives of A(x, z) have to be periodical functions of the variable z. The most general
form of A(x,z) that fulfills this condition is

A(x, z) =
∑
kz

Â(x, kz)e
ikzz + cz + A0, (B6)

where c and A0 are both constants. The value of c and of the coefficients Â(x, kz) define A univocally. We can calculate them by
substituting expression (B6) and Equations (B4) and (B5) in Equations (B2) and (B3):

∑
kz

b̂x(x, kz)e
ikzz = −

∑
kz

ikzÂ(x, kz)e
ikzz − c (B7)

∑
kz

b̂z(x, kz)e
ikzz =

∑
kz

∂Â(x, kz)

∂x
eikzz. (B8)

From Equation (B7) we get

Â(x, kz) = b̂x(x, kz)

−ikz

∀kz �= 0 (B9)

c = − b̂x(x, 0), (B10)

and from Equation (B8) we obtain the expression for Â(x, 0):

Â(x, 0) =
∫ x

0
b̂z(x

′, 0) dx ′. (B11)

Using Equations (B9), (B10), and (B11) we have the analytical solution for A(x,z):

A(x, z) =
∫ x

0
b̂z(x

′, 0) dx ′ +
∑
kz �=0

b̂x(x, kz)

−ikz

eikzz − b̂x(x, 0)z + A0, (B12)

where the constant A0 is completely arbitrary. The vector potential A(x,z) at any given time τ is numerically calculated using
Equation (B12) where the Fourier coefficients b̂x(x, 0) and b̂z(x, kz) are obtained by an FFT algorithm and the integral is computed
with the Simpson’s rule.

16



The Astrophysical Journal, 796:43 (17pp), 2014 November 20 Pucci, Onofri, & Malara

REFERENCES

Acton, L. W., Culhane, J. L., Wolfson, C. J., et al. 1981, ApJL, 224, L137
Banerjee, D., Gupta, G. R., & Teriaca, L. 2011, SSRv, 158, 267
Belcher, J. W., & Davis, L. 1971, JGR, 76, 3534
Buchlin, E., Cargill, P. J., Bradshaw, S. J., & Velli, M. 2007, A&A, 469, 347
Califano, F., Chiuderi, C., & Einaudi, G. 1990, ApJ, 365, 757
Califano, F., Chiuderi, C., & Einaudi, G. 1992, ApJ, 390, 560
Carbone, V., & Veltri, P. 1990, GApFD, 52, 153
Chae, J., Schühle, U., & Lemaire, P. 1998, ApJ, 505, 957
Cirtain, J. W., Golub, L., Lundquist, L., et al. 2007, Sci, 318, 1580
Cranmer, S. R., van Ballegooijen, A. A., & Edgar, R. J. 2007, ApJS, 171, 520
Davila, J. M. 1987, ApJ, 317, 514
DeForest, C. E., & Gurman, J. B. 1998, ApJL, 501, L217
DeForest, C. E., Hoeksema, J. T., Gurman, J. B., et al. 1997, SoPh, 175, 393
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