IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Finite-time singularities and flow regularization in a hydromagnetic shell model at extreme

magnetic Prandtl numbers

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 New J. Phys. 17 073038
(http://iopscience.iop.org/1367-2630/17/7/073038)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 150.135.239.97
This content was downloaded on 05/09/2015 at 04:04

Please note that terms and conditions apply.



iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/7
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
21 March 2015

REVISED
15June 2015

ACCEPTED FOR PUBLICATION
22]June 2015

PUBLISHED
3 August 2015

Content from this work
may be used under the
terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 17 (2015) 073038 doi:10.1088/1367-2630/17/7/073038

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Finite-time singularities and flow regularization in a hydromagnetic
shell model at extreme magnetic Prandtl numbers

G Nigro' and V Carbone™’

! Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
*> Dipartimento di Fisica, Universitd della Calabria, 87036 Rende (CS), Italy
> CNR-IPCF—U.O.S. di Cosenza, 87036 Rende (CS), Italy

E-mail: giusy.nigro@gmail.com

Keywords: magnetohydrodynamics, shell model, singularities

Abstract

Conventional surveys on the existence of singularities in fluid systems for vanishing dissipation have
hitherto tried to infer some insight by searching for spatial features developing in asymptotic regimes.
This approach has not yet produced a conclusive answer. One of the difficulties preventing us from
getting a definitive answer is the limitations of direct numerical simulations which do not yet have a
high enough resolution so far as to properly describe spatial fine structures in asymptotic regimes. In
this paper, instead of searching for spatial details, we suggest seeking a principle, that would be able to
discriminate between singular or not-singular behavior, among the integral and purely dynamical
properties of a fluid system. We investigate the singularities developed by a hydromagnetic shell model
during the magnetohydrodynamic turbulent cascade. Our results show that when the viscosity is equal
to the magnetic diffusivity (unit magnetic Prandtl number) singularities appear in a finite time. A
complex behavior is observed at extreme magnetic Prandtl numbers. In particular, the singularities
persist in the limit of vanishing viscosity, while a complete regularization is observed in the limit of
vanishing diffusivity. This dynamics is related to differences between the magnetic and the kinetic
energy cascades towards small scales. Finally a comparison between the three-dimensional and the
two-dimensional cases leads to conjecture that the existence of singularities may be related to the
conservation of different ideal invariants.

1. Introduction

Turbulence is a complex and ubiquitous phenomenon, observed both in ordinary and electrically conducting
fluids [1, 2]. Its complexity is due to the nonlinear cascade mechanism, the basic process of which involves a
transfer of energy from the large injection scale ¢ to smaller scales down to dissipative scales, exhibiting
nontrivial scaling behavior [3]. Experiments suggest that the energy transfer is not steady but intermittent, hence
fluctuations are amplified when the energy reaches smaller scales [4, 5]. This has been interpreted as a
consequence of the spontaneous generation of isolated bursts of fluctuations at all scales [6—9] due to phase-
synchronization [10]. Also it has been conjectured that bursts of activity in fluids seem to be related to
development of singularities in a finite time, even for smooth forcing or smooth initial conditions [6, 7]. The
hypothetical existence of singularities is the signature of a transfer of energy towards infinitesimal length scales in
the limit of zero-viscosity in a finite time [1, 6, 7, 11]. The existence of these singularities is the subject of
considerable debate; at present no definitive answer is available for ether ordinary or magnetohydrodynamic
(MHD) flows. The lack of a conclusive answer, in part, is because the numerical experiments cannot reach high
enough resolution to confirm or rule out their existence. In particular, while a two-dimentional (2D) non-
magnetic incompressible ideal flow, with sufficiently regular initial data, stays regular for all times [12, 13], in the
corresponding three-dimentional (3D) case it is not known [14, 15]. It has been conjectured that what may
prevent, or at least slow down, a singularity is the depletion of nonlinearities: the phenomenon by which inviscid
incompressible flows tend to organize themselves into structures having greatly reduced nonlinearities [16]. The
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tendency in MHD to form 2D structures, through current sheet formation, can be seen as a possible way to
produce depletion of nonlinearities [ 17—19]. However the depletion may not be enough to prevent a blowup: in
factit depends on how strong this depletion is and also on how persistent it is. It is worth noting that most of the
depletion mechanisms described in the literature are geometrical in origin [20].

Here we address the issue of the existence of finite time singularities from the purely dynamical point of view,
i.e. not directly due to geometrical features. Accordingly, we adopt a simplified description of the dynamics that
neglects spatial information but that can, on the other hand, reach an asymptotic regimes where the dissipation
is vanishingly small. A suitable tool could be afforded by shell models [21], which provide a simplified
description of the MHD turbulent cascade [22—30] while keeping the main dynamical properties even for
extremely small or extremely large magnetic Prandtl numbers. Our strategy is to investigate if shell models,
despite their simplified description, are able to capture the fundamental dynamic elements taking place in a
turbulent cascade, which may lead to the formation of the avoidance of singularities. If a shell model is able to
discriminate between singular and not-singular behavior, one possibility is that the mechanism controlling the
formation of singularities is captured by the basic principles assumed in the derivation of shell models.

2. Magnetohydrodynamic shell model for a turbulent cascade

In MHD two different dissipation mechanisms are operative, the usual viscosity v and the magnetic diffusivity p.
Their role can be made apparent by writing the MHD equations in terms of Elsdsser variables

Z* = v + B/ [4np,where p is the constant mass density, v and B are the velocity and magnetic intensity,
respectively,

= 4 (z¢- v)zr = —VP+f*
+(—U§M)VZZ++(—1/§”)V2Z‘; (1)

here Pis the pressure and f are the forcing terms and Z¥ describe the Alfvénic fluctuations propagating in
opposite directions with respect to the large-scale magnetic field [31]. It is evident that for magnetic Prandtl
numbers Pm = v/u>1, anonlinear coupling is at work between Z* and Z ™ in the dissipative range. In
numerical work, to avoid complications, it is often chosen Pm = 1. However in most cases Pm is either
extremely large, as in the dilute plasma forming the interstellar and intracluster medium, or extremely small, as
in the dense plasma forming stellar interiors and in liquid metals [32]; this should have a deep influence on the
energy cascade. While the extreme values of Pm prevalent in nature are still beyond the power of today’s
supercomputers for direct numerical simulations (DNS), shell models are able to describe the main dynamical
features of MHD turbulence even in those cases. In fact shell models maintain one of the fundamental properties
of the nonlinearities, i.e. the conservation of quadratic invariants. Shell models have already been used to study
the occurrence of singularities in non-conducting fluids [33—36] and the development of time intermittency
(8,37,38].

An MHD shell model consists of a set of coupled ordinary differential equations for the dimensionless
dynamical variables ZF(t) describing the time evolution of discrete Fourier modes of equation (1) with wave-
vectors k, = 2"kg (n = 0, 1, 2,...,N — land ko ~ £;"), within a certain shell of wave-vectors
2" < k/ky < 2711 [23,24]. Here we use a modified version of the 3D MHD shell model, introduced for
hydrodynamic flows by L'vov et al [39]. It is given by the dimensionless equations

dzx | vt UFu -
= - (S ez - (S5 ez g, @
where the nonlinear terms are
5 = 7 - 1 _
Tni = Ezni:l r:—+2 + E 1;_'—+2 ;+*1 - a r:_r+1 ;—*1
g p L gw T e gw (3)
24 n—1<n+1 48 n—14-n-2 48 n—2~n—1

and % denotes complex conjugation. The pseudo-energies related to Elsisser fields, which in the shell model are
defined by

2
>

RET
Ex(t) = — 3| 22 (4)
2 n=0
are ideal invariants (2), i.e. both are subject to a simultaneous cascade [31]. From equation (2), by multiplying
by Z#* and summing over all shells, one can immediately obtain an equations describing the time evolution of
E*(t), namely
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dE*
dt

=—(U+ pu)* — (v —u). + F*, (5)

which involves the enstrophies £2* (in the following pseudo-enstrophies) related to the pseudo-energies, and
the enstrophy €, (hereafter cross-enstrophy) related to the cross-helicity

1S 2
Q== ) k| Z¥|",
(=1 ZO
1 +00
_ 2[ 7=rptk —% o+
Q=" nz::')kn [z + 27727, (6)
as well as the externally injected total powers
+o00
Fe(t) = Y [frzE + 27 z¢] - (7)
n=0

In non-conducting fluids equation (5) simplifies to an equation for the kinetic energy, which involves a
balance between the injected energy and a dissipative term proportional to the kinetic enstrophy (i.e. the mean
square vorticity). In MHD when Pm = 1 the situation is similar to non-conducting fluids, even if in MHD two
pseudo-energies and two estrophies are involved. In these cases, the cascade is realized in a time 7 which is the
sum of the eddy turnover times associated with all the intermediate scales of the cascade

+00 k -2/3
- z(k—) , (®)
n=0 0

which is a convergent geometric series, while the dissipative wavevector scales as kp ~ kor~*/3. In the limit

v — 0 the energy should reach infinitesimal scales k5! in a finite time [11] in order to generate a full turbulent
spectrum. Since in a stationary situation the injection energy rates must be equal to the dissipated energy rates
€* = 208*, according to our description the pseudo-enstrophies should diverge as v — 0 to ensure finite non-
vanishing energy dissipation rates [1].

When only one of the dissipations goes to zero or one of the dissipations goes to zero faster than the other
one, sothat Pm — 0or Pm — o0, the development of a singularity is not guaranteed. In these cases the cross-
enstrophy £2. is now involved in the dynamics (v=u), together with the pseudo-enstrophies, and this could lead
to differences compared with the case Pm = 1. Itis worth noting that the cross-enstrophy in equation (5) can
play both the role of dissipation or injection rate for the pseudo-energies depending on the sign of the term
(v — p). Therefore the turbulent cascade may have a different kind of behavior in the limit v — 0 as opposed to
u— 0.

3. Dynamical runs

The shell model (2) has been numerically integrated with a fourth-order Runge—Kutta scheme with a time-step
of 107, using N = 33 shells for different values of v and y. The forcing terms are set to

f: = f~ = (1 4+ i) x 107 (for n < 2), and initial conditions are given by Zt =7 = 0forn > 2andsmall
values otherwise. This corresponds to an injection of kinetic energy, while the increase of magnetic energy
results from a dynamo effect [26—29]. Together with the enstrophies in equation (6), we consider also the kinetic
enstrophy 2, = Q% + Q7 + 20, which represents the mean square vorticity, and the magnetic enstrophy

Q, = Q% + Q= — 2Q,, which is strictly related to the mean square current density.

First, as reference, we investigate the case Pm = 1. The zero-dissipation limit is achieved by a set of
simulations with decreasing values of v = y down to 10~'°. When the energy is injected at large scales, a cascade
towards small scales is observed, whereby the energy fills larger and larger shells, up to k, ~ kp whereitis
strongly dissipated. As the dissipation decreases, the energy has to reach larger kp, in a finite time in order to
guarantee not vanishing constant dissipation. During the dissipation decrease, 2% shows a divergent behavior as
the time is approaching to a given instant 7, = 9.054 in the dimensionless unit (figure 1). The other enstrophies
show a similar divergent behavior. A well-known criterion to establish whether a singularity might develop ina
finite-time T, is given by the BKM theorem [40] which for an MHD fluid requires that the magnitude of the
vorticity and of the current density become infinite at least as fastas 1/(T, — t). A corresponding criterion for
the loss of regularity in a hydrodynamic (HD) shell model is derived in [41], which implies that the maximum
shell vorticity must grow atleast as k,u,, ~ 1/(T,, — t)ast — T, [45]. Therefore in order to establish the
existence of singularities in shell models it is important to check the behavior of:

3
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time

Figure 1. The catastrophic increase of the pseudo-enstrophy Q+ for decreasing dissipation (v = y — 0) around the divergence time
Ty = 9.054 is an argument in favor of the existence of a finite-time singularity. The physical quantities are in dimensionless units and
are depicted in semi-log scale. Magnification is in the inset.
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Figure 2. Semi-log scale. The BKM criterion of singularities in the shell model description is fulfilled. In fact, the growth of the shell

vorticity becomes more severe for increasing shell number 7 when the time is approaching to T.. This simulation is realized by
considering v = u = 10713 The physical quantities are in dimensionless units.

by. )

and lim sup k,

lim sup k,
t— Ty ogngN

t— Ty ogngN

Uy

The time behavior of sup, ., k» |1, | fulfills the shell model criterion for singularities as derived in [41] (see
figure 2); sup ¢, < ykn |6, | has exactly the same time behavior of sup ., K |14 Itis evident the strong
exponential increase of the shell vorticity becomes more severe for increasing shell number n. Argument in favor
of development of singularities is the shape of the fitting functions for the enstrophies, which turn out to be

f(x) = N/(T, — t)' with T, ~ 9.054 and y > 1 (see figure 3). This can be taken as evidence of finite-time
singularities in the MHD shell models when Pm = 1. Itis worth noting that the same kind of behavior is
observed for vanishing v and y but with a ratio such that Pm = 10 or Pm = 100 (not shown).

Since we can easily reach very small values of v and y, we can investigate the existence of singularities when
Pm vanishes or diverges. Keeping y constant, e.g. we choose ¢ = 107>, and decreasing the viscosity (Pm — 0)
we find the same kind of behavior as observed for the case Pm = 1 (shown in figure 1), except that the magnetic
enstrophy £2;, reaches a finite limit. This is due to the fact that, when Pm = 1, the cross-enstrophy enters into
play, so that even though 2%, 2~ and Q. have a blowup their difference remains finite, thus representing a kind
of self-renormalization process. The energy cascade in this case proceeds through the kinetic energy channel and
the magnetic variable acts like a passive field.

In the zero-diffusivity limit (Pm — oo keeping constant the viscosity, e.g. v = 107>) we find a completely
different situation, namely a regularization of the system is observed. In fact, singularities disappear for every
enstrophy and only a run-up of enstrophies is found up to a finite value at around the same time T, 2 9
(figure 4). The asymptotic behaviors for the different enstrophies are summarized in table 1.

4
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Figure 3. Semi-log scale. The time behavior of the enstrophies £2, (¢) and £2; (¢) fulfill the BKM criterion: the corresponding fitting

functionsare f, (r) = 7.36/(Ty — t)**'and f, (1) = 1.61/(T, — 1)>', respectively, where T, = 9.054. In this simulation
v = pu = 10713, The physical quantities are in dimensionless units.

7000
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4000

Q+,-,v,b,c

3000
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time

Figure 4. A regularization of the fluid is observed for vanishing diffusivity (in this simulation v = 107>, y = 107'%).

Table 1. Enstrophy behavior for the zero-viscosity limit (v — 0 keeping finite )
and zero-diffusivity limit (4 — 0 keeping finitev).

limit Q, Q Q. Qo+ @
v—=0 +00 Q20 (1) +00 +00 +00
u—=0 Q0(t) Q2 (1) Q0(1) Q) Q°(1)

Itis worth noting that our shell model considers local interactions between shells, namely, each shell
interacts only with the first two neighbor shells on each side. Atlarge Pm it is known that non-local interactions
give an important contribution in the magnetic energy spectrum at small-scales [42—44]. This contribution, due
to non-local interactions, was estimated by Plunian and Stepanov using a non-local shell model [43]. At large
Pm they found that the non-local interactions play an important role in the transfer of energy from the kinetic
scales with largest shear (near the viscosity range) to smaller sub-viscosity magnetic scales. In the same time this
energy, or at least some part of it, is transferred back locally to kinetic scales belonging to the kinetic viscous
range. This energy is then lost by viscous dissipation [43]. Therefore, considering the non-local interactions, the
magnetic spectrum extending to scales smaller than the Kolmogorov scale will be different than what we obtain
here, where only the local interactions have been considered. The importance of the contribution due to the
non-local interactions on the development of a singularity in the magnetic energy channel depends on how fast
the magnetic energy reaches the diffusivity scale and how much magnetic energy can reach this diffusivity scale
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Figure 5. A finite limit for the energy dissipation rate versus v~ in the case of zero-viscosity limit (blue squares), versus 4! in the case
of zero-diffusivity limit (black triangles) or vs both when v = y (magenta circles).

(which is in sub-viscosity range) in a finite time. We think that it could be very interesting to investigate the
existence of finite-time singularities by using a non-local shell model.

One of the basic consequences of the possible presence of the singularities in fluids is the non-vanishing
energy dissipation rate for vanishing dissipation. This is still under debate in ordinary fluids [1], and some
contradictory evidence is reported for MHD flows in DNS at Pm = 1[17,46]. The energy dissipation rate can be
written as function of the hydrodynamic Reynolds number v~! and the magnetic Reynolds number y~! as
follows:

e=(”;”)(9++9—)+(y—ﬂ)gc. (10)

The energy dissipation rate approaches a finite limit as the Reynolds numbers diverge for all those values of Pm
investigated, both in the the zero-viscosity limit, i.e. huge hydrodynamic Reynolds number, and in the zero-
diffusivity limit, i.e. huge magnetic Reynolds number (see figure 5).

4. Comparison with the two-dimensional case

An other set of simulations for the 2D MHD case turns out to be worthwhile in order to compare the 2D case
with the 3D case. From this comparison, we can deduce useful information and gain some insight for the
existence of singularities in hydromagnetic fluids. Therefore we integrate the equations of the 2D MHD shell
model. This 2D model differs from the 3D version only by one of the conserved quadratic quantities, namely the
square of the vector potential in the 2D MHD case as opposed to the magnetic helicity in the 3D case. This
difference results in the same functional shape as in equation (3) with different numerical coefficients [21, 25—
29]. Solutions of the 2D model reveal a tamer behavior, in which a finite-time blowup is completely absent. This
result remains the same for every values of the magnetic Prandtl number we considered (see figures 6 and 7).
Since in the shell model description the only difference between the 2D case and the 3D case is in the
conservation of different ideal invariants, the comparison between the two aforementioned cases can suggest
that the occurrence of singularities might depend on the above-given difference in the ideal invariants
conservation. This statement does not mean that the phenomenon of depletion of nonlinearity due to the
formation of 2D structures has nothing to do with preventing or slowing down the blowup. Probably the
tendency to develop small-scale structures of the flow, which arrange themselves in such a way that locally the
solution has an almost vanishing nonlinearity, may be a consequence of ideal invariants conservation. Hencein a
3D MHD fluid, the tendency to generate 2D current sheets may be a consequence of the magnetic helicity
conservation. Therefore there may be a deep linkage between the conservation of some ideal invariants, instead
of other invariants, and the depletion of nonlinearity due to the generations of 2D structures. This linkage could
be a subject of further investigations. In addition to the theoretical importance of this linkage, it has useful
implications for the existence of singularities. Indeed reaching a definitive answer to the existence of singularities
through only searching for spatial features at small scales currently requires a computational effort too high for
modern supercomputers.
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Figure 6. . Regularization of a 2D MHD fluid in the shell model description. Case with Pm = 1in semi-log scale. The pseudo-
enstrophy Q7 increases up to a finite value at around 20.9 dimensionless unit time for each considered value of dissipation (v = ).
This growth does not correspond to a singularity: the function 10/(20.9 — f), representing a singular time behavior, increases much
faster than the enstrophies in the 2D MHD shell model. After 22 dimensionless units time, 2% keeps on increasing for small
dissipation because of the forcing.
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Figure 7. In the MHD 2D case a regularization of the system is observed for any values of Pm. Left panel: the magnetic enstrophy

£, (t, p) approaches to the limit function Q! (¢) as the diffusivity approaches zero (Pm — o0) ina neighborhood of the finite time
= 19.5 (dimensionless unit). The solid black line (case u = 10~'%) corresponds to the limit function Ql?'l (¢). Right panel: the

magnetic enstrophy £2; (, v) approaches very rapidly to the limit function ©.>* (¢) as the viscosity approaches zero (Pm — 0)ina

neighborhood of the finite time #, = 17.4 (dimensionless unit). The solid black line (case v = 1071%) corresponds to the limit

function 22 (). The functions 1/(18 — £)and 0.1/(17 — t), in the left and right panel respectively, are in the figure in order to make

a comparison with singular time behaviors.

5. Discussion and conclusions

The appearance of singularities in an MHD shell model is investigated in the present paper. Finite-time
singularities exist when Pm = 1ina 3D MHD shell model. Due to the flexibility of the shell model, we
investigated the occurrence of singularities in the case of asymptotic value of the magnetic Prandtl number; this
being a situation closer to what is expected in naturally occurring turbulent plasmas. In the 3D case, both the
zero-viscosity limit and the zero-diffusivity limit are considered, showing an asymmetrical behavior with respect
to the appear of singularities for the two different limits. One of the most important implications of this
asymmetrical behavior is related to an intrinsically different nature within the turbulent cascade for kinetic and
magnetic energy channels. In fact, this is a clear indication of different mechanisms that can be used to generate
small scales in the two energy channels, showing how, under certain conditions, the magnetic field fluctuations
cascade towards smaller scales as a passive field. This is what is suggested by the lack of singularities in £2;, while
the other pseudo-enstrophies blow up when v — 0 and Pm < 1.In this case the magnetic field fluctuations do
not make a cascade by themselves but they reach the smaller scales because they are dragged there by the velocity
field fluctuations. As a consequence, different modes of dissipation for the velocity and the magnetic field
fluctuations can generally be at work in the turbulent cascade.

We demonstrated the absence of singularities only in the magnetic enstrophy at small Pm and the absence of
singularities for all enstrophies at large Pm. This may be due to the fact that while at small Pm the kinetic energy

7
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still maintains a Komogorov-like cascade at small (subresistive) scales, at large Pm the magnetic spectrum is
suppressed at small (subviscous) scales. The last point seems to suggest that the full MHD turbulent cascade up
to the smaller scales, when Pm # 1, is more efficient for small viscosity and finite magnetic diffusivity than the
opposite case, namely small magnetic diffusivity and finite viscosity. This consideration can allow us to think
that in the dissipation mechanism for an MHD system, the viscosity has a more important role than the
magnetic diffusivity. Even if different cascades for kinetic and magnetic energies [47] seem to be present, at least
at small scales, in MHD turbulence, we cannot rule out that in the shell model the difference may be due to alack
of spatial structures such as current sheets. These can eventually dissipate magnetic energy and produce
accelerations in the development of small scales [15].

Finally, considering also the comparison between the 3D case and the 2D case for an MHD shell model, we
can suggest that the different way of transferring ideal invariants throughout the turbulent range of scales is
critical in the development of singularities. In other words, the tendency to conserve some quadratic invariants
instead of other invariants can make a difference in the existence of singularities. For instance, in the 3D case
when Pm < 1 the system has the tendency to conserve the hydrodynamic invariants because of maintaining a
Komogorov-like cascade at small (subresistive) scales and singularities are found for every pseudo-enstrophies
except for £2;,. Moreover we think there is alinkage between the purely dynamical properties of an MHD system,
such as the conservation of the ideal invariants, and the depletion mechanisms as due to the formation of 2D
structures. These results and conclusions need more in-depth work and validations possibly even through direct
numerical simulations. This paper provides an innovative way to look at this issue by using a simplified model.
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