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Abstract
Conventional surveys on the existence of singularities influid systems for vanishing dissipation have
hitherto tried to infer some insight by searching for spatial features developing in asymptotic regimes.
This approach has not yet produced a conclusive answer. One of the difficulties preventing us from
getting a definitive answer is the limitations of direct numerical simulations which do not yet have a
high enough resolution so far as to properly describe spatialfine structures in asymptotic regimes. In
this paper, instead of searching for spatial details, we suggest seeking a principle, that would be able to
discriminate between singular or not-singular behavior, among the integral and purely dynamical
properties of afluid system.We investigate the singularities developed by a hydromagnetic shellmodel
during themagnetohydrodynamic turbulent cascade. Our results show that when the viscosity is equal
to themagnetic diffusivity (unitmagnetic Prandtl number) singularities appear in afinite time. A
complex behavior is observed at extrememagnetic Prandtl numbers. In particular, the singularities
persist in the limit of vanishing viscosity, while a complete regularization is observed in the limit of
vanishing diffusivity. This dynamics is related to differences between themagnetic and the kinetic
energy cascades towards small scales. Finally a comparison between the three-dimensional and the
two-dimensional cases leads to conjecture that the existence of singularitiesmay be related to the
conservation of different ideal invariants.

1. Introduction

Turbulence is a complex and ubiquitous phenomenon, observed both in ordinary and electrically conducting
fluids [1, 2]. Its complexity is due to the nonlinear cascademechanism, the basic process of which involves a
transfer of energy from the large injection scaleℓ0 to smaller scales down to dissipative scales, exhibiting
nontrivial scaling behavior [3]. Experiments suggest that the energy transfer is not steady but intermittent, hence
fluctuations are amplifiedwhen the energy reaches smaller scales [4, 5]. This has been interpreted as a
consequence of the spontaneous generation of isolated bursts offluctuations at all scales [6–9] due to phase-
synchronization [10]. Also it has been conjectured that bursts of activity influids seem to be related to
development of singularities in a finite time, even for smooth forcing or smooth initial conditions [6, 7]. The
hypothetical existence of singularities is the signature of a transfer of energy towards infinitesimal length scales in
the limit of zero-viscosity in afinite time [1, 6, 7, 11]. The existence of these singularities is the subject of
considerable debate; at present no definitive answer is available for ether ordinary ormagnetohydrodynamic
(MHD) flows. The lack of a conclusive answer, in part, is because the numerical experiments cannot reach high
enough resolution to confirmor rule out their existence. In particular, while a two-dimentional (2D) non-
magnetic incompressible ideal flow,with sufficiently regular initial data, stays regular for all times [12, 13], in the
corresponding three-dimentional (3D) case it is not known [14, 15]. It has been conjectured that whatmay
prevent, or at least slow down, a singularity is the depletion of nonlinearities: the phenomenon bywhich inviscid
incompressible flows tend to organize themselves into structures having greatly reduced nonlinearities [16]. The
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tendency inMHD to form2D structures, through current sheet formation, can be seen as a possible way to
produce depletion of nonlinearities [17–19].However the depletionmay not be enough to prevent a blowup: in
fact it depends on how strong this depletion is and also on howpersistent it is. It is worth noting thatmost of the
depletionmechanisms described in the literature are geometrical in origin [20].

Here we address the issue of the existence offinite time singularities from the purely dynamical point of view,
i.e. not directly due to geometrical features. Accordingly, we adopt a simplified description of the dynamics that
neglects spatial information but that can, on the other hand, reach an asymptotic regimeswhere the dissipation
is vanishingly small. A suitable tool could be afforded by shellmodels [21], which provide a simplified
description of theMHD turbulent cascade [22–30]while keeping themain dynamical properties even for
extremely small or extremely largemagnetic Prandtl numbers. Our strategy is to investigate if shellmodels,
despite their simplified description, are able to capture the fundamental dynamic elements taking place in a
turbulent cascade, whichmay lead to the formation of the avoidance of singularities. If a shellmodel is able to
discriminate between singular and not-singular behavior, one possibility is that themechanism controlling the
formation of singularities is captured by the basic principles assumed in the derivation of shellmodels.

2.Magnetohydrodynamic shellmodel for a turbulent cascade

InMHD two different dissipationmechanisms are operative, the usual viscosity ν and themagnetic diffusivity μ.
Their role can bemade apparent bywriting theMHDequations in terms of Elsässer variables
Z v B 4πρ= ±± , where ρ is the constantmass density, v and B are the velocity andmagnetic intensity,
respectively,
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hereP is the pressure and f ± are the forcing terms and Z∓ describe the Alfvénic fluctuations propagating in
opposite directionswith respect to the large-scalemagnetic field [31]. It is evident that formagnetic Prandtl
numbers Pm 1ν μ≡ = , a nonlinear coupling is at work between Z+ and Z− in the dissipative range. In
numerical work, to avoid complications, it is often chosen Pm 1= . However inmost cases Pm is either
extremely large, as in the dilute plasma forming the interstellar and intraclustermedium, or extremely small, as
in the dense plasma forming stellar interiors and in liquidmetals [32]; this should have a deep influence on the
energy cascade.While the extreme values of Pm prevalent in nature are still beyond the power of todayʼs
supercomputers for direct numerical simulations (DNS), shellmodels are able to describe themain dynamical
features ofMHD turbulence even in those cases. In fact shellmodelsmaintain one of the fundamental properties
of the nonlinearities, i.e. the conservation of quadratic invariants. Shellmodels have already been used to study
the occurrence of singularities in non-conducting fluids [33–36] and the development of time intermittency
[8, 37, 38].

AnMHD shellmodel consists of a set of coupled ordinary differential equations for the dimensionless
dynamical variables Z t( )n

± describing the time evolution of discrete Fouriermodes of equation (1)withwave-
vectors k k2n

n
0= (n N0, 1, 2 ,..., 1= − and k0 0

1ℓ∼ − ), within a certain shell of wave-vectors
k k2 2n n

0
1⩽ ⩽ + [23, 24]. Herewe use amodified version of the 3DMHD shellmodel, introduced for

hydrodynamic flows by L’vov et al [39]. It is given by the dimensionless equations
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where the nonlinear terms are
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and⋆ denotes complex conjugation. The pseudo-energies related to Elsässerfields, which in the shellmodel are
defined by

E t Z( )
1

2
, (4)
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are ideal invariants (2), i.e. both are subject to a simultaneous cascade [31]. From equation (2), bymultiplying
by Zn

±⋆ and summing over all shells, one can immediately obtain an equations describing the time evolution of
E t( )± , namely
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which involves the enstrophies Ω± (in the following pseudo-enstrophies) related to the pseudo-energies, and
the enstrophy cΩ (hereafter cross-enstrophy) related to the cross-helicity
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In non-conducting fluids equation (5) simplifies to an equation for the kinetic energy, which involves a
balance between the injected energy and a dissipative termproportional to the kinetic enstrophy (i.e. themean
square vorticity). InMHDwhen Pm 1= the situation is similar to non-conducting fluids, even if inMHD two
pseudo-energies and two estrophies are involved. In these cases, the cascade is realized in a time τwhich is the
sumof the eddy turnover times associatedwith all the intermediate scales of the cascade

k

k
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which is a convergent geometric series, while the dissipative wavevector scales as k kD 0
4 3ν∼ − . In the limit

0ν → the energy should reach infinitesimal scales kD
1− in afinite time [11] in order to generate a full turbulent

spectrum. Since in a stationary situation the injection energy ratesmust be equal to the dissipated energy rates
2ϵ νΩ=± ±, according to our description the pseudo-enstrophies should diverge as 0ν → to ensure finite non-

vanishing energy dissipation rates [1].
When only one of the dissipations goes to zero or one of the dissipations goes to zero faster than the other

one, so that Pm 0→ or Pm → ∞, the development of a singularity is not guaranteed. In these cases the cross-
enstrophy cΩ is now involved in the dynamics (ν μ= ), together with the pseudo-enstrophies, and this could lead
to differences comparedwith the case Pm 1= . It is worth noting that the cross-enstrophy in equation (5) can
play both the role of dissipation or injection rate for the pseudo-energies depending on the sign of the term
(ν μ− ). Therefore the turbulent cascademay have a different kind of behavior in the limit 0ν → as opposed to

0μ → .

3.Dynamical runs

The shellmodel (2) has been numerically integrated with a fourth-order Runge–Kutta schemewith a time-step
of 10−5, usingN=33 shells for different values of ν and μ. The forcing terms are set to
f f i(1 ) 10

n n
2= = + ×+ − − (for n 2⩽ ), and initial conditions are given by Z Z 0n n= =+ − for n 2> and small

values otherwise. This corresponds to an injection of kinetic energy, while the increase ofmagnetic energy
results from a dynamo effect [26–29]. Together with the enstrophies in equation (6), we consider also the kinetic
enstrophy 2v cΩ Ω Ω Ω= + ++ − , which represents themean square vorticity, and themagnetic enstrophy

2b cΩ Ω Ω Ω= + −+ − , which is strictly related to themean square current density.
First, as reference, we investigate the case Pm 1= . The zero-dissipation limit is achieved by a set of

simulationswith decreasing values of ν μ= down to 10−15.When the energy is injected at large scales, a cascade
towards small scales is observed, whereby the energy fills larger and larger shells, up to k kn D∼ where it is
strongly dissipated. As the dissipation decreases, the energy has to reach larger kD in afinite time in order to
guarantee not vanishing constant dissipation. During the dissipation decrease, Ω+ shows a divergent behavior as
the time is approaching to a given instant T 9.054=⋆ in the dimensionless unit (figure 1). The other enstrophies
show a similar divergent behavior. Awell-known criterion to establishwhether a singularitymight develop in a
finite-timeT⋆ is given by the BKM theorem [40]which for anMHD fluid requires that themagnitude of the
vorticity and of the current density become infinite at least as fast as T t1 ( )−⋆ . A corresponding criterion for
the loss of regularity in a hydrodynamic (HD) shellmodel is derived in [41], which implies that themaximum
shell vorticitymust grow at least as k u T t1 ( )n n ∼ −⋆ as t T→ ⋆ [45]. Therefore in order to establish the
existence of singularities in shellmodels it is important to check the behavior of:

3
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k u k blim sup and lim sup . (9)
t T n N

n n
t T n N
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The time behavior of k usup n N n n0 ∣ ∣⩽ ⩽ fulfills the shellmodel criterion for singularities as derived in [41] (see
figure 2); k bsup n N n n0 ∣ ∣⩽ ⩽ has exactly the same time behavior of k usup n N n n0 ∣ ∣⩽ ⩽ . It is evident the strong
exponential increase of the shell vorticity becomesmore severe for increasing shell number n. Argument in favor
of development of singularities is the shape of the fitting functions for the enstrophies, which turn out to be
f x N T t( ) ( )= − γ

⋆ withT 9.054≃⋆ and 1γ > (see figure 3). This can be taken as evidence of finite-time
singularities in theMHD shellmodels when Pm 1= . It is worth noting that the same kind of behavior is
observed for vanishing ν and μ but with a ratio such that Pm=10 or Pm=100 (not shown).

Sincewe can easily reach very small values of ν and μ, we can investigate the existence of singularities when
Pmvanishes or diverges. Keeping μ constant, e.g. we choose 10 5μ = − , and decreasing the viscosity (Pm 0→ )
wefind the same kind of behavior as observed for the case Pm 1= (shown infigure 1), except that themagnetic
enstrophy bΩ reaches afinite limit. This is due to the fact that, when Pm 1= , the cross-enstrophy enters into
play, so that even though Ω+, Ω− and cΩ have a blowup their difference remainsfinite, thus representing a kind
of self-renormalization process. The energy cascade in this case proceeds through the kinetic energy channel and
themagnetic variable acts like a passive field.

In the zero-diffusivity limit (Pm → ∞keeping constant the viscosity, e.g. 10 5ν = − ) wefind a completely
different situation, namely a regularization of the system is observed. In fact, singularities disappear for every
enstrophy and only a run-up of enstrophies is found up to afinite value at around the same timeT 9≳⋆
(figure 4). The asymptotic behaviors for the different enstrophies are summarized in table 1.

Figure 1.The catastrophic increase of the pseudo-enstrophy Ω+ for decreasing dissipation ( 0ν μ= → ) around the divergence time
T 9.054=⋆ is an argument in favor of the existence of a finite-time singularity. The physical quantities are in dimensionless units and
are depicted in semi-log scale.Magnification is in the inset.

Figure 2. Semi-log scale. The BKMcriterion of singularities in the shellmodel description is fulfilled. In fact, the growth of the shell
vorticity becomesmore severe for increasing shell number n when the time is approaching to T⋆. This simulation is realized by
considering 10 13ν μ= = − . The physical quantities are in dimensionless units.

4
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It is worth noting that our shellmodel considers local interactions between shells, namely, each shell
interacts only with thefirst two neighbor shells on each side. At large Pm it is known that non-local interactions
give an important contribution in themagnetic energy spectrum at small-scales [42–44]. This contribution, due
to non-local interactions, was estimated by Plunian and Stepanov using a non-local shellmodel [43]. At large
Pm they found that the non-local interactions play an important role in the transfer of energy from the kinetic
scales with largest shear (near the viscosity range) to smaller sub-viscositymagnetic scales. In the same time this
energy, or at least some part of it, is transferred back locally to kinetic scales belonging to the kinetic viscous
range. This energy is then lost by viscous dissipation [43]. Therefore, considering the non-local interactions, the
magnetic spectrum extending to scales smaller than theKolmogorov scale will be different thanwhat we obtain
here, where only the local interactions have been considered. The importance of the contribution due to the
non-local interactions on the development of a singularity in themagnetic energy channel depends on how fast
themagnetic energy reaches the diffusivity scale and howmuchmagnetic energy can reach this diffusivity scale

Figure 3. Semi-log scale. The time behavior of the enstrophies t( )vΩ and t( )bΩ fulfill the BKMcriterion: the corresponding fitting
functions are f t T t( ) 7.36 ( )v

2.01= −⋆ and f t T t( ) 1.61 ( )b
5.16= −⋆ , respectively, where T 9.054=⋆ . In this simulation

10 13ν μ= = − . The physical quantities are in dimensionless units.

Figure 4.A regularization of thefluid is observed for vanishing diffusivity (in this simulation 10 5ν = − , 10 15μ = − ).

Table 1.Enstrophy behavior for the zero-viscosity limit ( 0ν → keepingfinite μ)
and zero-diffusivity limit ( 0μ → keeping finite ν).

limit vΩ bΩ cΩ Ω+ Ω−

0ν → +∞ t( )b
0Ω +∞ +∞ +∞

0μ → t( )v
0Ω t( )b

0Ω t( )c
0Ω t( )0Ω+ t( )0Ω−

5
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(which is in sub-viscosity range) in a finite time.We think that it could be very interesting to investigate the
existence offinite-time singularities by using a non-local shellmodel.

One of the basic consequences of the possible presence of the singularities influids is the non-vanishing
energy dissipation rate for vanishing dissipation. This is still under debate in ordinary fluids [1], and some
contradictory evidence is reported forMHD flows inDNS at Pm 1= [17, 46]. The energy dissipation rate can be
written as function of the hydrodynamic Reynolds number 1ν− and themagnetic Reynolds number 1μ− as
follows:

( )
2

( ) . (10)c⎜ ⎟
⎛
⎝

⎞
⎠ϵ ν μ Ω Ω ν μ Ω= + + + −+ −

The energy dissipation rate approaches afinite limit as the Reynolds numbers diverge for all those values of Pm
investigated, both in the the zero-viscosity limit, i.e. huge hydrodynamic Reynolds number, and in the zero-
diffusivity limit, i.e. hugemagnetic Reynolds number (see figure 5).

4. Comparisonwith the two-dimensional case

Another set of simulations for the 2DMHDcase turns out to beworthwhile in order to compare the 2D case
with the 3D case. From this comparison, we can deduce useful information and gain some insight for the
existence of singularities in hydromagnetic fluids. Thereforewe integrate the equations of the 2DMHDshell
model. This 2Dmodel differs from the 3D version only by one of the conserved quadratic quantities, namely the
square of the vector potential in the 2DMHDcase as opposed to themagnetic helicity in the 3D case. This
difference results in the same functional shape as in equation (3) with different numerical coefficients [21, 25–
29]. Solutions of the 2Dmodel reveal a tamer behavior, inwhich afinite-time blowup is completely absent. This
result remains the same for every values of themagnetic Prandtl numberwe considered (see figures 6 and 7).
Since in the shellmodel description the only difference between the 2D case and the 3D case is in the
conservation of different ideal invariants, the comparison between the two aforementioned cases can suggest
that the occurrence of singularitiesmight depend on the above-given difference in the ideal invariants
conservation. This statement does notmean that the phenomenon of depletion of nonlinearity due to the
formation of 2D structures has nothing to dowith preventing or slowing down the blowup. Probably the
tendency to develop small-scale structures of the flow,which arrange themselves in such away that locally the
solution has an almost vanishing nonlinearity,may be a consequence of ideal invariants conservation. Hence in a
3DMHD fluid, the tendency to generate 2D current sheetsmay be a consequence of themagnetic helicity
conservation. Therefore theremay be a deep linkage between the conservation of some ideal invariants, instead
of other invariants, and the depletion of nonlinearity due to the generations of 2D structures. This linkage could
be a subject of further investigations. In addition to the theoretical importance of this linkage, it has useful
implications for the existence of singularities. Indeed reaching a definitive answer to the existence of singularities
through only searching for spatial features at small scales currently requires a computational effort too high for
modern supercomputers.

Figure 5.Afinite limit for the energy dissipation rate versus 1ν− in the case of zero-viscosity limit (blue squares), versus 1μ− in the case
of zero-diffusivity limit (black triangles) or vs bothwhen ν μ= (magenta circles).

6
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5.Discussion and conclusions

The appearance of singularities in anMHDshellmodel is investigated in the present paper. Finite-time
singularities exist when Pm 1= in a 3DMHD shellmodel. Due to theflexibility of the shellmodel, we
investigated the occurrence of singularities in the case of asymptotic value of themagnetic Prandtl number; this
being a situation closer towhat is expected in naturally occurring turbulent plasmas. In the 3D case, both the
zero-viscosity limit and the zero-diffusivity limit are considered, showing an asymmetrical behavior with respect
to the appear of singularities for the two different limits. One of themost important implications of this
asymmetrical behavior is related to an intrinsically different naturewithin the turbulent cascade for kinetic and
magnetic energy channels. In fact, this is a clear indication of differentmechanisms that can be used to generate
small scales in the two energy channels, showing how, under certain conditions, themagnetic field fluctuations
cascade towards smaller scales as a passive field. This is what is suggested by the lack of singularities in bΩ while
the other pseudo-enstrophies blow upwhen 0ν → and Pm 1< . In this case themagnetic fieldfluctuations do
notmake a cascade by themselves but they reach the smaller scales because they are dragged there by the velocity
field fluctuations. As a consequence, differentmodes of dissipation for the velocity and themagnetic field
fluctuations can generally be at work in the turbulent cascade.

We demonstrated the absence of singularities only in themagnetic enstrophy at small Pm and the absence of
singularities for all enstrophies at large Pm. Thismay be due to the fact that while at small Pm the kinetic energy

Figure 6. . Regularization of a 2DMHDfluid in the shellmodel description. Casewith Pm 1= in semi-log scale. The pseudo-
enstrophy Ω+ increases up to afinite value at around 20.9 dimensionless unit time for each considered value of dissipation (ν μ= ).
This growth does not correspond to a singularity: the function t10 (20.9 )− , representing a singular time behavior, increasesmuch
faster than the enstrophies in the 2DMHDshellmodel. After 22 dimensionless units time, Ω+ keeps on increasing for small
dissipation because of the forcing.

Figure 7. In theMHD2D case a regularization of the system is observed for any values of Pm. Left panel: themagnetic enstrophy
t( , )bΩ μ approaches to the limit function t( )b

0,1Ω as the diffusivity approaches zero (Pm → ∞) in a neighborhood of thefinite time
t 19.51 = (dimensionless unit). The solid black line (case 10 15μ = − ) corresponds to the limit function t( )b

0,1Ω . Right panel: the
magnetic enstrophy t( , )bΩ ν approaches very rapidly to the limit function t( )b

0,2Ω as the viscosity approaches zero (Pm 0→ ) in a
neighborhood of the finite time t 17.42 = (dimensionless unit). The solid black line (case 10 15ν = − ) corresponds to the limit
function t( )b

0,2Ω . The functions t1 (18 )− and t0.1 (17 )− , in the left and right panel respectively, are in thefigure in order tomake
a comparisonwith singular time behaviors.

7
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stillmaintains aKomogorov-like cascade at small (subresistive) scales, at large Pm themagnetic spectrum is
suppressed at small (subviscous) scales. The last point seems to suggest that the fullMHD turbulent cascade up
to the smaller scales, when Pm 1≠ , ismore efficient for small viscosity and finitemagnetic diffusivity than the
opposite case, namely smallmagnetic diffusivity and finite viscosity. This consideration can allow us to think
that in the dissipationmechanism for anMHD system, the viscosity has amore important role than the
magnetic diffusivity. Even if different cascades for kinetic andmagnetic energies [47] seem to be present, at least
at small scales, inMHD turbulence, we cannot rule out that in the shellmodel the differencemay be due to a lack
of spatial structures such as current sheets. These can eventually dissipatemagnetic energy and produce
accelerations in the development of small scales [15].

Finally, considering also the comparison between the 3D case and the 2D case for anMHD shellmodel, we
can suggest that the different way of transferring ideal invariants throughout the turbulent range of scales is
critical in the development of singularities. In other words, the tendency to conserve some quadratic invariants
instead of other invariants canmake a difference in the existence of singularities. For instance, in the 3D case
when Pm 1≪ the systemhas the tendency to conserve the hydrodynamic invariants because ofmaintaining a
Komogorov-like cascade at small (subresistive) scales and singularities are found for every pseudo-enstrophies
except for bΩ .Moreover we think there is a linkage between the purely dynamical properties of anMHD system,
such as the conservation of the ideal invariants, and the depletionmechanisms as due to the formation of 2D
structures. These results and conclusions needmore in-depthwork and validations possibly even through direct
numerical simulations. This paper provides an innovative way to look at this issue by using a simplifiedmodel.
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