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ABSTRACT

A high-precision two-dimensional stellar evolution code has been developed for studying solar variability due to
structural changes produced by varying internal magnetic fields of arbitrary configurations. Specifically, we are in-
terested in modeling the effects of a dynamo-type field on the detailed internal structure and on the global parameters
of the Sun. The high precision is required to model both very small solar changes (of the order of 10~#) and short
timescales (of the order of 1 yr). It is accomplished by using the mass coordinate to replace the radial coordinate, by
using fixed and adjustable time steps, a realistic stellar atmosphere, and element diffusion, and by adjusting the grid
points. We have also built into the code the potential to subsequently include rotation and turbulence. The current
code has been tested for several cases, including its ability to reproduce the one-dimensional results.

Subject headings: stars: evolution — stars: variables: other — Sun: interior — Sun: oscillations

1. INTRODUCTION

Modern standard solar models are known to yield the solar
structure to an amazing degree of precision (see e.g., Guenther &
Demarque 1997; Basu et al. 2000; Winnick et al. 2002). These
models, however, cannot explain the solar cycle, and other solar-
cycle-related variability. The reason for this shortcoming is that
these models do not include the dynamo magnetic fields and rel-
evant temporal variability.

Following the suggestion by Sofia et al. (1979) that any
change in the solar luminosity L must be accompanied by a
change in the radius R, a number of theoretical investigations have
attempted to establish the relationship between these changes
(denoted as W = Aln R/Aln L), by including internal processes
designed to mimic the effects of dynamo fields. We classify them
into three broad categories:

1. perturbation calculation (see Endal et al. 1985 for a review
of the early work; Balmforth et al. 1996 for subsequent work),

2. approximation analysis (see Spruit 1991, 2000 for refer-
ence), and

3. stellar evolution with magnetic fields (this method was ini-
tiated by Lydon & Sofia [1995], updated by Li & Sofia [2001],
generalized to include turbulence by Li et al. [2002], and further
generalized to include the interaction between turbulence and
magnetic fields by Li et al. [2003]).

The first two are illustrative, but not conclusive. The third can
model the effects of arbitrary magnetic field configurations. Li
et al. (2003) attempted to produce the observed cycle variations
of all global solar parameters and the p-mode oscillation frequen-
cies. The result is promising (e.g., Sofia et al. 2005), but it is not
final both because the one-dimensional approximation is used and
because not all global parameter data exist for the same time span.
The one-dimensional approximation only allows us to use a shell-
like magnetic field configuration. This approximation is relatively
limiting. For example, in one-dimensional codes the energy flux
can only advance to the surface by penetrating the magnetic field
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shell. If the magnetic field were toroidal, as most dynamo mod-
els require, energy flow could circumvent the field. The aim of
this paper is to describe a mathematical technique that can model
arbitrary magnetic field configurations by generalizing our one-
dimensional technique into the two-dimensional case.

In order to match the observed variations of solar global pa-
rameters and helioseismic frequencies, two-dimensional solar mod-
els should fulfill at least the following precision requirements:

1. aluminosity resolution equal or better than 10~2% per year,
because the observed cyclic variation of total solar irradiance is
about 0.1% per cycle;

2. aradius resolution equal or better than 1073% per year, be-
cause the observed cyclic variation of solar radius may be as small
as 1074% per cycle;

3. arealistic atmosphere model, because the helioseismic fre-
quencies are sensitive to it;

4. suitable boundary conditions, because the model is sensi-
tive to them;

5. element diffusion, because the helioseismic frequencies are
sensitive to composition;

6. a magnetic field, because there is no cyclic variation with-
out magnetic field;

7. turbulence, because helioseismic observations require it;
and

8. the interaction between turbulence and magnetic fields, be-
cause helioseismic observations require it.

Our one-dimensional code, which is based on the Yale Stellar
Evolution Code YREC (Guenther et al. 1992), meets all these
requirements, which is a nontrivial accomplishment. It is dif-
ficult to modify the other existing two- or three-dimensional codes
(e.g., Deupree 1990; Turcotte 2001), since each of them was devel-
oped with specific objectives not requiring this degree of precision.

We attempted to include magnetic fields in Deupree’s two-
dimensional stellar evolution code (Deupree 1990), but we were
unable to compare the model results with solar observations and
our one-dimensional results, probably because

1. the two-dimensional model has different center and surface
boundary conditions than the one-dimensional model,

2. the two-dimensional model does not include an atmo-
sphere model, and
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3. the numerical accuracy is not high enough to match the
solar observations.

This experience convinced us that it would be easier to develop a
high-precision two-dimensional stellar structure and evolution
code by straightforwardly generalizing our one-dimensional code
rather than modifying an existing two-dimensional code. Our ex-
perience shows that this conviction was well founded.

The highest precision requirement is that the cyclic variation
of solar radius should be better than 10~5% per year, because the
observed cyclic variation of solar radius may be as small as
107%% per cycle. There are various uncertainties in the input
physics (e.g., Boothroyd & Sackmann 2003; Sackmann &
Boothroyd 2003). Although these uncertainties affect the interior
structure of the Sun, they have little influence on the cyclic vari-
ations of solar global parameters such as solar radius, solar lumi-
nosity, and solar effective temperature because of calibration and
subtraction of the same parameter at two different times, which
remove various possible uncertainties in the cyclic variations of
global solar parameters. Such a high precision for the cyclic vari-
ations of global solar parameters is thus achievable.

We outline here the basic schematic of the method in order to
prevent the readers from getting lost in the detailed derivations.

As is common practice, the starting points are the conserva-
tion laws of mass, momentum, energy, and composition, as well
as the Newtonian universal gravitational law. Both momentum
conservation equations and the Poisson equation are second-
order differential equations. We use the radiation transport equation
to relate the temperature gradient to the energy flux in the radiative
zone and use the mixing-length theory to calculate the temperature
gradient in the convective zone. We include magnetic fields in this
paper and include in the code the potential to subsequently include
turbulence and rotation.

The main relation is the coordinate transformation from the
radial coordinate r to the mass coordinate m. Regarding mass, we
should specify the spatial range that the mass occupies. We use
the equipotential surface S on which

O(r,0;t) = D, (1)
to indicate the spatial range, where we have assumed that the
system is azimuthally symmetric or axisymmetric and that ¢ may
vary with time. The time coordinate ¢ is taken as a parameter.
Solving equation (1) for , we obtain the equipotential surface

r = R(®,,0;1). )

This equipotential surface encloses volume Vg, which is de-
fined by

¢€[0,27],
Ve =< 0€]0, ], (3)
rel0,R(P., 6;1)].

The mass contained in Vg is defined by

Vo
m=m(d.;1) E/ pdV

27 ™ R(®..05t)
:/ d¢>/ do sine/ ds p(s, 0;1)s>
0 0 1]

T R(®D.,05t)
= 27r/ df sin 9/ ds p(s, 0;1)s?, 4)
0 0
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where p = p(r, 0;1) is the density. Solving equation (4) for @,
we obtain

e = O (m; ). (5)

Substituting equation (5) into equation (2), we obtain the coor-
dinate transformation relation from (r, 6;¢) to (m, 6;1):

r=R(®.(m;t),0;t) =r(m,0;t), 6=0, t=t (6)

For any dependent variable X, for example, P, T, F,, or p, we

have
oX oX 0X\ [Or
(@)~ (@)G&E), o
a0 /, a0/, or Jy\00/,

In order to achieve a high precision that is comparable to the
one-dimensional solar model in the two-dimensional case, using
limited computational resources, we cannot directly numerically
solve those conservation equations and the Poisson equation. For
example, even in the hydrostatic case, we have five dependent
variables such as pressure (P), temperature (7), radius (»), gravi-
tational potential (®), and flux (F, or L = 47r%F,). The coefficient
matrix of the linearized difference equations with grids M x N has
N = 5MN x 5MN elements, where M (N) is the number of grid
points for the mass (colatitude) coordinate. The one-dimensional
solar model has M > 2000. If we take N = 20, we obtain A/ >
4% 10", Since 232 = 4 x 10243, a 32 bit computer can handle
only 2 x 1024% ~ 2 x 10° elements, noting that 1 bit is used to
represent the sign of a number. Of course, a 64 bit computer does
not impose such constraint, but the computation speed will be-
come an obstacle.

Analytical solutions are accurate, but such solutions are hard
to obtain in the general case. The one-dimensional case is accur-
ate because we do not need to numerically solve the second-order
Poisson equation for the gravitational potential ®,. It is well known
that the gravitational acceleration in the spherically symmetric case
is

g=d®/dr = Gm/r*. (8)

In order to take a similar advantage in the two-dimensional
case, we show in this paper that equation (8) can be generalized
as

od  Gm

cotd 9P
5274‘27@”@—%)— -

2r 00

+0(2), (9)

where O(2) represents a much smaller correction than the retained
terms and p,, is defined by

1 K
pm(m, 0;8) = 2—/ dOR*(®.,0;1)p(R(®e, 0;1),0;1) sin 6.

r2 Jy
(10)

Like equation (8) in the one-dimensional case, equation (9) substan-
tially simplifies the two-dimensional stellar structure equations.
In the two-dimensional case, the radial component of the en-
ergy flux vector F, F,, and the f-dependent luminosity, L =
47r2F, (r,0; 1), are equivalent to each other, but the actual lumi-
nosity L* is different from the 6-dependent luminosity L because

L*=2r / r2F,(r,0;1) sin 0 d6. (11)
0
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The basic equations are described in § 2, and then the coor-
dinate transformation from the radial coordinate to the mass co-
ordinate is performed in § 3. Various possible magnetic field
configurations are converted into suitable expressions that appear
in the stellar structure equations in § 4. Boundary conditions are
equally important, so we use a whole section (§ 5) to elaborate
them. The method of solution is detailed in § 6. The coefficient
matrix and input physics used in § 6 are presented in Appendices A
and B, respectively. The evolution sequences without any mag-
netic field and with a shell-like magnetic field are presented in §§ 7
and 8 to test the method.

2. BASIC EQUATIONS

The basic equations consist of the time-dependent conserva-
tion laws of mass, momentum, energy, and composition and the
Poisson equation (Deupree 1990), as well as the radiative trans-
fer equation (Unno & Spiegel 1966):

% + V- (pv) =0, (12a)
d_ _gp_ Vq>+i(vx3)x3 (12b)
Par ~ PYE T an ’
dSy
T=L = pe — V+Frpy, 12
pr— = =pe d (12¢)
dpi
i _ 12
o =9 (12d)
V2 = 47Gp, (12e)
V+Frg = — 4kp(J — B), (12f)

where v is the velocity of a fluid element, B is the magnetic field, e
is the nuclear energy generation rate per unit mass, F,q is the ra-
diative energy flux, p; is the density of species i, Q; is the creation
rate of species 7, G is the universal gravitational constant, J is the
mean radiative intensity, « is the absorption coefficient, and B is
the Kirchhoff-Planck function. The total derivative is defined by
dldt = 0/0t + v+ V.

The specific entropy Srincludes both nonmagnetic and mag-
netic components, as shown in the first law of thermodynamics
(Callen 1966, p. 242; Lydon & Sofia 1995),

TdSy = dU + PdV — dy, (13)

where U is the nonmagnetic specific internal energy, V' = 1/p
is the specific volume, y = |B|*/8p is the specific magnetic
energy, and P is the nonmagnetic pressure. Since the magnetic
work dy is taken from the nonmagnetic internal energy, the total
internal Urenergy decreases:

The isotropic magnetic pressure component P,, can be expressed
by x and p:

The total isotropic pressure component Py can thus be defined
as

Pr=P+P,. (16)

TWO-DIMENSIONAL STELLAR EVOLUTION CODE. L 217

Using Py, T, and x as independent thermodynamic variables, the
equation of state and the first law of thermodynamics read (Lydon
& Sofia 1995)

dp/p =adPr/Pr —6dT /T —vdx/x, (17a)
TdSr =CpdT — (6/p) dPr + (Prév/Pua)dyx,  (17b)

where

a=(0Inp/dInPr);, ., 6=—(0Inp/0InT), ., (18a)
v=—(0Inp/0Inx)p, 1., Cp=(9Ur/0T) (18b)

Prx;t*

From the first law of thermodynamics (eq. [17b]), we can define
two adiabatic gradients. One fixes the specific magnetic energy,

OlnT PT(S
Vg = | ——— = 19
d <8lnPT>ST,X pCpT ( )

and another does not fix the specific magnetic energy,

OlnT A%
Vii=l=—) =Va (1——X>, 20
ad (8111PT>ST ¢ o (20)

where the magnetic energy gradient V, is defined as

Olny
=—. 21
X Jln PT ( )

In order to close the radiative transfer equation (eq. [12f]), we
use the Eddington approximation (Unno & Spiegel 1966),

4

Frog=—5—
d 3kp

(22)

Unlike Deupree (1990), we do not directly solve these equa-
tions. We first perform some analytic work to make some ap-
proximations in advance.

2.1. Mass Conservation Equation

Deupree (1990) uses the constancy of the total mass during the
model evolution to determine the radius at the equator. In con-
trast, we want to determine the equipotential surface Sg, r =
R(®.,0;t) = r(m,6;1), as in the one-dimensional case.

Mass conservation can be expressed by either equation (4) or
its differential form,

om  Om ) . .
5_87_47”’ (maeat)pm(mveat)? (23)
where

1 ™
P2 (m, 0;) py(m, 0;1) = 5/ dOR*(®,.,0;1) p(R(®,., 0; 1),0; t) sin O
0

= f(m;2). (24)
It should be pointed out that in general,
pm(m, 0;2) # p(R(®c, 0;2), 0;17). (25)

Nevertheless, in the spherically symmetric case, p,,(m;¢) is in-
deed equal to p(R(®.); t). Since f(m; t) is an integral, the two-
dimensional case is much more complicated (i.e., nonlocal)
than its one-dimensional counterpart (local). This complexity
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may be the price we have to pay to go from one dimension to
two dimensions.

2.2. Gravitational Acceleration

We want to show here that the last two terms [excluding O(2)]
on the right-hand side of equation (9) are due to the two-dimensional
corrections to the gravitational acceleration. To this end, we should
start from the Poisson equation, equation (12e), which can be ex-
panded as follows in the spherical polar coordinate system:

10 (,00 1 9 (, 00
ﬁ@(f E)*M@(l 9@9> 4nGp,  (26)

where we have assumed that ® = ®(r, ; ¢) does not vary with
the ¢ coordinate. We expand @ around its spherically symmet-
ric state:

D(r,0;t) = Oo(r;t) + 6@(r, 0;1), (27)

where 6P is a small correction and

6@0 Gm
—_—=—. 28
or r? (28)
Substituting equations (27) and (28) into equation (26), we
obtain

0P  Gm cot 0P
= 7+27TGV(P Pm) — o @“‘0(2)7 (29)
where
r (0260 1 9%®
0@)="3 (a—JF_W) (0)

2.3. Momentum Conservation Equation

Generally, we can decompose the total velocity v in the basic
equations into three components:

v=Vo+ Vi +7, (31)

where V) is a secular evolution velocity, V;, is the rotation ve-
locity, and v is the turbulent convection velocity. We neglect
the secular expansion and rotation velocity components in the
momentum conservation, i.e., we assume

v="1v (32)

in equation (12b). We checked in the one-dimensional case that
the term dV,/dt in the momentum equation is negligible. Sub-
stituting equation (32) into equation (12b) and averaging the
resulting equation over the time ¢ and azimuthal angle ¢, we
obtain

TR RN

where v/ = v2 + v/% 4 v/? is computed by solving the basic equa-
tions in the three-dimensional convection simulations of the outer
layers of the Sun (Robinson et al. 2003), in which the average is
taken over the time ¢ and the horizontal coordinates x and y in
a sample box. We have shown how to include turbulence in the
one-dimensional case (Li et al. 2002). We neglect the turbulent
contribution to the momentum equation here so as to stress the
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two-dimensional effects due to magnetic fields, i.e., we simply
set

V2 =0 (34)

in this paper.

We assume that the system is azimuthally symmetric. Under
this assumption, the vector equation (33) is equivalent to the two
scalar equations

oPr 0d

WZ—PE‘FH” (353)
Tm - st (35)

where Pr = P + P, is the total pressure, including the magnetic
pressure P,, = B?/8x, and

1
=—(B-V)B
H=—(B-V)B, (36)
noticing that
1 B? 1
—(VxB)xB=-V —(B-V)B
(VBB =-V({ )+ @B ()

In the one-dimensional case, we have only a single scalar equa-
tion to describe the momentum conservation, i.e., equation (35a).
In contrast, we need three scalar equations for the momentum con-
servation in the two-dimensional case, i.e., equations (29), (35a),
and (35b). It would be much better if we could combine these
three equations into a single scalar equation. Fortunately, we can.
To this end, solving equation (35b) for 9/, we obtain

0® _ 10Pr

- @, 7@. (38)

Then substituting this into equation (29), we obtain

o0  Gm cot@ OPr  cotl
E—f+27rGr(P pm)+ 2l’p 90 - 2p

Hy + 0(2).
(39)

Substituting equation (39) into equation (35a), we finally obtain

OP G
S = M- 27rGrp<p—,om>
cotOc'?PT
BT += H9c0t9+0() (40)

This is our momentum conservation equation. The last three
right-hand-side terms represent the two-dimensional effects.

2.4. Energy Conservation Equation

The energy conservation equation (eq. [12c]) depends on the
velocity in the total derivative:

dSt  OSr ,
—_— = -VSr.
7 o + (V0+v) St (41)

The secular expansion velocity V, cannot be neglected, and from
now on we define
dSt _ OSr
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The statistical average of pTv' « V7, namely, (pTv'+ VSr), will
determine the divergence of the convective flux F,,:

V+Feony = (pT0'-VS7). (43)

By defining the total energy flux to be the sum of both the convec-
tive and radiative flux, F = F,q + Fony, equation (12¢) becomes

dSr
V-F = - T— 44
o~ 1) (44)
where
dSr dinT vV \ dIn Py
TW CPT[ 7 —Vad(l - ) 7k (45)

In the azimuthal case, equation (44) is equivalent to the equation
1 O(r?F,) ds 1 O(sin OFp)
— = - T—|-———— . (46
2 or P\ Tar) rsing o (46)

We work out both the radial flux component F, and polar flux
component Fj in the next subsections.

2.5. Enerqy Transport by Radiation

The radiative flux is given by equation (22), in which the mean
radiative intensity J is governed by the radiative transfer equa-
tion (eq. [12f]). The Planck function B is known:

B= ﬂ T4 (47)

where a is the radiative constant and c is the speed of light in vac-
uum. In stellar interior, local thermodynamic equilibrium is a good
approximation, which leads to

J~B=2574

4 (48)

The more accurate solution of equations (12f) and (22) is (see
Unno & Spiegel 1966)

I 14
J:B+§v23+§v43+..., (49)

where [, = 1/kp is the mean free path of photons. Since

p_ 10 (208
VB_rz(?r r ) (50)

using equation (47) in equation (50), we obtain

OInV, 4nr’Hpp,\ B

OJln PT m HI% ’
(51)

where Hp = —dr/d In Pr = P/pg is the pressure scale height

and V is the actual temperature gradient. Substituting equa-

tion (51) into equation (49), we obtain the mean radiative in-

tensity that goes beyond the local thermodynamic equilibrium
approximation with one more term correction:

12
J=(1+10-%|B, (52)
( HP2>

VB = 4vs<4vs— l+a—6V,+
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where
4 0V,
Ay ==V, | 4V, — — 8V, 53
073" < | o PT> (53)

We want to note that the term (4772 Hp p,,,/m) (l 2/H?2) < 1isneg-
ligible in the whole star. Using this solution in equatlon (22), we
obtain

4acT?
Frg = — <" (1 + J)VT, (54)

3kp

where
. Olnk 11 Olnk 2Hp
A= {1 (amr) 2V, [H(amPT)T , ]
101n o l,?

+481nT} (55)

Since /, is much smaller than Hp in the optically thick region,
we know 4 & 0, so that equation (54) reduces to the widely used
approximation expression without 4. However, /, can be com-
parable to or larger than Hp near the surface, and the correction
factor A cannot be neglected.

2.6. Enerqy Transport by Convection

Without solving the turbulent convection problem, equa-
tion (43) only tells us that the convective flux may depend on the
convective velocity v,y and the entropy Sz where the convec-
tive velocity v,y has only the statistical meaning. We use the
mixing-length theory to obtain an analytic expression for F .y,
in terms of vopny and Sy (e.g., Stix 1989; Lydon & Sofia 1995).
Since the convective velocity has only the statistical meaning,
we assume that the turbulent convection is isotropic, so that
F ., depends on the amplitude of the convective velocity veony:

Feony = _%pTlm.f<Uconv)VST7 (56)

where f(v) will be determined by the mixing-length theory and
1, is the mixing length. It is well known that f'(v) = v when the
radiative loss of the convective element and the magnetic fields
are neglected (e.g., Stix 1989).

The starting point of the mixing-length theory (MLT) is to
calculate the excess heat flux in the radial direction:

Fgonv PUeonvDQ = pvconv(Qe - Qs)
= PVconv [CP(Te - Ts) - (6/,0)(PT5 - PTS)
+ (PT(SV/PmO‘)(Xe - Xs)]a (57)

where we have used the first law of thermodynamics DQ =
TDS7. The subscripts e and s stand for a convective eddy and its
surroundings. If the eddy is always assumed to be in pressure
equilibrium (DPy = Pr, = Pry = 0) and magnetic equilibrium
(Dx = xe — xs = 0) with its surroundings, we have

Fe vaOHVCP(Te_TS‘) =

conv

I
EpvconvCPT( Vs — vg)’ (58)

where the mixing-length approximation in MLT is used to
calculate the temperature (or density) difference:

Iy (0T, OT; InT
Te_TSZ?(@r_ar) 2Hp 2y (Ve Ve (59
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We have also defined the eddy and surrounding temperature
gradients and the pressure scale height as

dlnT OlnT or
V.= YV, = = - .
¢ <8lnPT>e’ ’ <8lnPT>S’ == 5pr,

(60)

The convective velocity v.oy is generated by the radial buoy-
ancy. The radial buoyancy acceleration is related to the density

difference by
d’r Dp
L e 61
iz g( ) ) (61)

where g is the gravitational acceleration. For standard MLT, the
density difference is related to the temperature difference via the
equation of state with DPy = 0 and Dy = 0 (see eq. [17a]):

Dp DT )
P (Z)s =0 (v, — V).

We also use the mixing-length approximation to calculate buoy-
ancy acceleration

d 10 (ar\ 1 [dr\ 2 42, (63)
dt2  20r\dt) 2 \dt L, L,

max M

where we have assumed that the convective velocity veon, equals
half of the maximum velocity (dr/dt)y,a. Substituting equa-
tions (62) and (63) into equation (61), we obtain

vl = gb(V,—V,)(1%/8Hp). (64)

conv
This gives

_8Hp ,
e ﬁvconv‘

Substituting this into equation (58), we obtain

Fcronv = (4pCPT/gl’"6)vc3:0nv' (66)
Equation (54) yields
4acT*
Fl.=——(14+A)V,. 67
rad 3HPHP ( + /L) ( )

Defining a “radiative” gradient

3kpHpF,
vra = T a4 63
d 4acT* (68)
we obtain
_ dacT? (69)
r = 3’§PHP rad-
We use the energy flux conservation law F/  + F., = F, to
constrain the convective velocity by
1 4pCpT 3kpH,
p P K/p P 3 + VS — vrad~ (70)

1+ 4 gl,6 4acT? Peon
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2.6.1. Nonmagnetic Adiabatic Approximation

When the convective eddy is adiabatic, its temperature gra-
dient equals the adiabatic gradient. The nonmagnetic approxi-
mation implies x = 0. Therefore, the temperature gradient in a
nonmagnetic adiabatic eddy is determined by

Ve =V =V (71)

Equation (58) thus becomes
- 1 oS
Fconv = EPTlmUconv (E) Sa (72)

where we have used the equality
oS Cp
— | = ——=—(V, - V).
<8r)s Y V) (73)

Comparing equation (72) with the radial component of equa-
tion (56), we find

f() =, (74)

as stated above.
Using equations (65) and (71) in equation (70), we obtain the
cubic equation of the convective velocity,
1 4pCpT 3kpHp 4 8Hp ,
147 glyd AacT® e T gpag "eony

= Viad — Vaa-  (75)

The convective instability condition in the adiabatic approxi-
mation is

vrad > vs > ve = vad> (76)

according to equation (64).

2.6.2. Nonmagnetic Nonadiabatic Approximation

During its rise the eddy radiates energy into its environment.
For this reason the eddy gradient V, differs from the adiabatic
gradient V4. We decompose the convective flux (eq. [58]) into
the adiabatic (the first right-hand-side term) and nonadiabatic
(the second right-hand-side term) fluxes:

. 1 L,y 0cony
Féonv = EH;;ZHPTCP(VS - ve)
1 Lveony
== TCp(Vy —V,
> w1, P P(V, a)
4 Lt e (G — ) (77)
P HP pLlp ad e):

If the effective cross section of the convective eddy is ¢, the heat
energy-loss rate of the eddy due to radiation can be expressed by

er o l ImVeony
dt 2 Hp

pTCp(Vad — Ve)g. (78)

We can also use equation (54) to calculate the radiative loss by

11,Y 4acT?

do,  4acT’T,—T,_
2 Hpd 3kp

dt 3kp d

(vs - ve)a

(79)
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where d is the effective radius of the eddy and X is the eddy sur-
face. Comparing equation (79) with equation (78), we obtain

ve - vad = (UO/Uconv)(vs - ve)v (80)
where

@4acT3 |
gd 3pCp lLukp’

(81)

V) =

Substituting equation (80) into equation (77), we can express
Vs =V, by Vi — Vyg:

1

Vy—Ve=———(V, -V
1+ UO/”conv ( ad)
1 OSr
= 82
1—|—vo/vconV (8r> (82)
where we have used equation (73). Finally, using equation (82)
in equation (77) we obtain
1 Vconv oS
Fr  =——pll,————— [ — | . 83
conv 2 1 + vo/Veony (8r s (83)
This shows that
f(0) = +— (84)
V= 1+ v/ v
Using equation (65) in equation (82), we obtain
8Hp , 0
Vi =V =—= 1 . 85
V=g (142 89)

Substituting this into equation (70), we obtain the cubic equa-
tion of the convective velocity,

4pCpT 3Iﬁijp 8HP ()
glm6 4acT? Ugonv + 9125v020nv 1+ Yooy = vrad - vad-

(86)

The convective instability condition in the nonmagnetic non-
adiabatic approximation is

vrad 2 vs > ve > vadz (87)

according to equation (64).
2.6.3. General Case

When magnetic fields are present, we have
oSy Cp ,
— | =—— (Vs = V). 88
(5) =~ (%= (58)

We decompose the convective flux (eq. [58]) into the adiabatic
(the first right-hand-side term) and nonadiabatic (the second
right-hand-side term) fluxes:

ro_ 1 lm”conv
conv 5

,()TCP( VS - Ve)
P

1 Lnveony /
pTCp(Vy -V
2 Hp Cp ( ad)

+ l ImVcony
2 Hp

pTCp(V! — V). (89)
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The heat energy-loss rate of the eddy due to radiation now can
be expressed by

do, o 1] tmUconv
dt 2 Hp

pTCp(V'y — V. )g. (90)

The radiation loss rate calculated by equation (54) is the same as
that given in equation (79). Comparing equation (79) with equa-
tion (90), we obtain

Ve — V;d = (v0/veonv) (Vs — Ve). (1)

Substituting equatlon (91) into equation (89), we can express
Vi =V, by Vi —

1
1+ Vo / Vconv

1 Hp (OST
= F |- 2
1+ v9/Veonv Cp <3r >S7 (92)

where we have used equation (88). Finally, substituting equa-
tion (92) into equation (89), we obtain

1 Vconv 8Sr
Fro = =y, —tem (95T 93
comv = T3P l—l—vo/vconv(@r , ®3)

Vi =V, = (vs_v;d)

which leads up to equation (84).
Using equation (65) in equation (92), we obtain

8H,
VS - v;d lzf(; Czonv (1 + %0 ) (94>

Uconv

Substituting this into equation (70), we obtain the cubic equa-
tion of the convective velocity in a magnetic system,

8HP o

Vconv
(95)

4pCpT 3kpHp )3
gl,d  4acT* ™

The convective instability condition in the magnetic nonadia-
batic case is

vrad > vs > ve > vada (96>

according to equation (64).
Equation (95) can be rewritten as

240p° + W+ Vi -V =0, (97)
where we have defined the dimensionless variable

y= chonv/vo (98)

and the dimensionless parameters

vy = 6acT? | pCplykip,

126
c=9n
8H,
V =10/|C"*(Vaa — Vi)'?],
91
O T 8T
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We choose /,,>/gd = 9/2 for spherical eddies and d/l,, = 8/9.
The convective gradient can be expressed by y as

vconv = vs = v;d + (Vrad - v;d)y(y + V)a (99)

according to equation (94).
When magnetic fields are neglected, V;d = V.4, all formulae
automatically reduce to their counterparts in § 2.6.2.

2.7. Enerqy Flux Vector

In the radiative zone, the total energy flux vector equals the
radiative flux (eq. [54]),

4acT?
F—=— 1+ A)VT. 100
Sy (1 H7) (100)

In the convective zone, the total energy flux vector equals the
sum of the radiative (eq. [54]) and convective (eq. [56]) fluxes,

1 pT ImVeonv

4acT?
2 1 4 veony/v0

F= 1+ A)VT —
3p U HA)

VSr

4acT? 1 PCleUconv
_ | 4 1) 4 = PP tmleony |G
3kp (1+4) + 2 1 + veony/0

1 pCpT V! ylyveony 1
_pTp? Vadlmbeony - gp, 101
2 1+ Uconv/UO PT g ( )

where we have used the formula
VSt = (Cp/T)VT — (CpV.y/Pr)VPr. (102)

2.8. Composition Conservation

Equation (12d) describes the composition conservation law,
which can be rewritten as

) A )
P T X LV (o) = 0, (103)

ot ot

where we have used equation (32) and have used the mass frac-
tion X; = p;/p to replace density p; We have also assumed
Vo' = 0. Equation (103) involves two timescales: one is the
thermonuclear reaction timescale 7,,., which determines Q;
and is quite long, and another is the convection timescale 7oy,
which determines the convection mixing and is much shorter
than the former.

As before, taking the statistical average over equation (103),
we obtain

ox; 1
L Ve (pX') =g 104
pat+p (pXiv') = qi, (0)

where we have used the assumption (9p/0f) = 0 and defined
q; = O;/p. Using the mixing-length theory, we can express the
mass flux F; = (pXv') as

Fi =1 pueonn V.X;. (105)

Substituting equation (105) into equation (104), we obtain

0X; 1
=i + — YV (0eomly VX)) 106
o =5V o ) (106)

In the radiative zone, the element diffusion velocity w; (e.g.,
Thoul et al. 1994) changes the local composition in addition to
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the thermonuclear reactions. Element diffusion in stars is driven
by pressure gradients (or gravity), temperature gradients, com-
position gradients, and radiation pressure. Gravity tends to con-
centrate the heavier elements toward the center of the star.
Temperature gradients lead to thermal diffusion, which tends
to concentrate more highly charged and more massive species
toward the hottest region of the star, its center. Concentration
gradients oppose the above two processes. Radiation pressure
causes negligible diffusion in the solar core. Element diffusion
affects the element abundances, the mean molecular weight, and
the radiative opacity in the radiative zone, and therefore affects the
calculated neutrino fluxes and oscillation frequencies, on which
observations impose strict constraints on the solar model.

The characteristic time for elements to diffuse a solar radius
under solar conditions is of the order of 6 x 10'3 yr, much longer
than the age of the Sun. Element diffusion therefore introduces
only a small correction. Many authors have studied this topic
carefully (see Thoul et al. 1994 and references therein), and both
portable subroutine and analytic formulae for element diffusion
calculations are available. In particular, the formulae for the ele-
ment diffusion velocity fit our theoretical framework developed
in this paper. We use the formula given by Thoul et al. (1994)
with ¢; included,

ox, 10 ,
at - ql rzp 8r (r p)(lwl)’ (107)

where

N7 ., dInC
Oln +A'Hagr">. (108)

See Thoul et al. (1994) for the expansion coefficients, which are
actually computed by numerically solving the multifluid equa-
tions for all species. These formulae just give readers the main
idea. We use the portable subroutine provided by the authors to
compute the element diffusion correction. Diffusion in the polar
direction is negligible.

752/ 9lnP :
Wi(l"): (A a n T—‘y—Al

P P or T o

3. COORDINATE TRANSFORMATION FROM r TO m

So far, all derivatives with respect to 6 assume r to be constant.
What we need is to obtain the corresponding derivatives at the
constant m. This can be done by using the so-called implicit-
function rule, that is,

ON (9 (o) 2 _(9), (0lnry 0
a), ~\oo) \ow) or \ow) "\ 06 ) omr
(109)

From now on, we use the following shortcuts to save writing:

p=Inp, P =InPr,
T'=InT, s=Inm. (110)

r=lInr,

We note that In is the natural logarithm.
Another formula we need for this purpose is the mass con-
servation equation, equation (23), which can be rewritten as

or' m

—_— = 111
Os  4mrip, (1)
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3.1. Momentum Conservation Equation

We perform the necessary coordinate transformation from 7 to
m in equation (40). The only term that needs to be transformed is
the term that contains P7/06, which is equivalent to (OP7/00),..
Using equation (109), we obtain

8P77 8PT 8PT 8r’
ae(ae)m_ o <ae> (112)

Consequently, equation (40) becomes

oPr cotd [/or ! Gmp
w5 ()] | e
cotf [OPr 1
_zr(ae)m+H,+ZHecot9 +0(2). (113)

The first factor on the right-hand side is caused by the coordi-
nate transformation from » to m.

Since OP7/0r = (Pr/r)(0s/0r")(OP'/0s), using equation (111),
we can rewrite equation (113) as

opP' Gm> p
- i 2 114
EP 47rr4PTpm+@+M+O( ), (114)

where

o__ Gm(p—pm) P [ cotd [ o -
N 2rPr  pm 2 \Qcotl/,

_om cotf 8_P’ {— cotd 6’_1” -
4rr3p, 2 a ), 2 06 /.,
B Gm? p_cotd (o' L cotd (ar' !
A7riPr p 2 a0 ), 2 ),
m cotf [Or - 1
= 1 — e r ~ t .
M=, by [ 2 (ae),j (H o Hoco 9)

3.2. Enerqy Conservation Equation

The starting equation is equation (46). The only term that
needs to be transformed is the term that contains the derivative of
(sin OFy) with respect to 6. This term is a small two-dimensional
correction to the energy conservation equation, since Fy, which
is given in equation (101), is already a combination of the first-
order derivatives of Tand Pr,

4acT? 1 pCpTl,veony | 1 OT’
Fp=— | 2290 (14 gy 4 2 5P Zimbeonv | T
3kp 2 1+ veonv/v0 | 7 00
1 pCpTlyveony V'y OP'

21+ veony/vo ¥ 00

(116)

Therefore, after neglecting the higher-order corrections as we
did above, the energy conservation equation becomes

r2  Or

_r=r
P\

1 O(r*F,) _ ( dST) 7F900t9+0(2)' (117)

TWO-DIMENSIONAL STELLAR EVOLUTION CODE. L 223

This shows that we only need to transform F from r to m. Ap-
plying equation (109) to (97'/06), and (OP'/0§), in equa-
tion (116), we obtain

4acT* 1 pCpTlmvcom,} 1
-

Fo=— { 3np (1+)V)+21+Uconv/vo -
(&), -5 (%),
00 ), or \o0),
JrlpCpTlmvconV Vi K@P’) _8P’ (E)}”) ]
2 14 veonv/v0 7 a0 ), or'\ o),

B {4acT4 1 pCpTlmvconv} 1

- (1+4) += p

3/{p 21+ Uconv/UO
oT’ Gmp _ (Or'
- v
(&), ()
1 pCpTlyveony V., OP' G or'
2P “onbeony Taq + 2PN (118)
2 14 veony/v0 7 a0 ), rPr \ 00 ),
where V is the temperature gradient.
The second step is to use equation (111) to replace Or by Os in

equation (46). Unlike »/, P/, and T’, which are the natural loga-
rithms, we define

L' = 4mr’F, /L., (119)

which is not a logarithm at all. The resulting equation is

oL’ 1 dasr\ p 1 mFycotf
=—mle-T—|———————
Os LG Pm L’\ T'Pm

+0(2). (120)

3.3. Composition Conservation

Equation (106) involves the derivatives with respect to 6 at
constant 7. Since what we need are the corresponding derivatives
at constant m, this equation needs a coordinate transformation
from r to m. To this end, we first expand it as

oN_ 1o, oy
Ot ={qi 27’2[) or PUconvim or

1 a (. 0X;
+W@ <Sln9pvconvlm%>. (121)

The last right-hand-side term needs the transformation. We retain
its most important part. The resulting equation is

X; 19p' 0X;
_:qi+(1+_ P )Uconvlm_

ot 20r" or
cot Oveonvln [ OX;
_— 2 122
e (S5) vow. ()
where
1 82)(1 Veonvdm ap/ 0X;  veonvim 82/\/1
OO =3%24v27 o0 T 27 o8

_ cot Ovconvlm 0X; (6_}*’) . (123)
2r2 or'\ o0/,

We have taken advantage of the fact that veony/,, & constant in stars.

Since the convection timescale is much shorter than the evo-
lution timescale, the convection zone is well mixed on the evo-
lution timescale. As a result, the detailed expression for the
composition conservation equation in the convection zone does
not matter much. We do it here just for the sake of completeness.
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3.4. Two-dimensional Stellar Structure Equations

In summary, we obtain the two-dimensional stellar structure
equations with (m, #) as independent variables:

o’ _m [rl (124a)
Os  4mr3p | pm
orP' Gm? p
=— — 2 124
=i { O} M0, (124
OT' OP' ( Vi, radiative,
= 124
s Os {Vc, convective, (124c)
OL' 1 dasr P 1 mFycotf
Y (PR i B A QI S 2
() e e
(124d)
1, , .
—ma(r pXw;), radiative,
oX; 1 9p’ oX;
ot =qi+ <1+26r,>vconvlmar
cotd 0X; .
+{7 Veonvlm (@> m} + 0O(2), convective.
(124e)

Those terms or factors associated with two-dimensional effects are
indicated by curly braces in the equations. The symbols used
above are defined as

o__ m  cotf [OP l_cot@ 8_r’ -
 Amip, 2 \ 09/, 2 \)/,

_Gmlp—pm) P [1 _ cotd (a,,/) }1

2/Pr P 2 \ 9
Gm?> p cotf [Or' ) cotf (or'\ 17!
A7riPr pm 2 o ), 2 o),
(125a)
m cotd [Or' ! 1
- - . s+~ Hycoth),
M= G2, Pr [ 2 (ae)m] (H oo )
(125b)
4acT* i 1 pCpTlyveony | 1
Fp=— | _PEp tmbeony | 1
! [ 3kp ( +A)+2 1 +vc0nv/1)0 r

oT’ Gmp _ (Or'
|(&), (%),
+ l pCPTlmvconv v;d OP' + Gmp 8_’J
2 1+Uc0nv/1)0 r oo " rPr 00 " '

(125¢)

From now on, we drop the subscript m in the derivatives such as

(0r'l09),,,
or' or’

Wherever needed, we specify the subscript m or 7 to avoid confusion.
4. MAGNETIC FIELDS

Our strategy is to take advantage of analytical results as much
as possible. For this purpose, in this section we work out the
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explicit expressions for the terms associated with magnetic
fields.

Generally, a magnetic field has three components. Using the
spherical coordinate system, it can be expressed by

B = (B,, By, By). (127)

All three components are functions of m and 6 in the azimuth-
ally symmetric case treated in this paper. The B-related terms
are expressed by H (see eq. [36]), which can be expanded as
47rH = e,(rB+VB, — ByBy — B,B;)
+ e9(rB+VBy — ByB; cot + ByB,)
+e4(rB+VB, + ByB, — ByBycotd).  (128)

Consequently, we see

47rH, = rB+VB, — ByBy — ByBy, (129a)
4mrHg = rB+-VBy — ByBycot 0 + BpB,,  (129b)
AnrHy = rB-VB, + ByB, — ByBycot0.  (129¢)

We use B to define three stellar magnetic parameters, in addition
to the conventional stellar parameters such as pressure, temper-
ature, radius, and luminosity. The first magnetic parameter is the
magnetic kinetic energy per unit mass, X,

X = B/(8p). (130)

The second is the heat index due to the magnetic field, or the
ratio of the magnetic pressure in the radial direction to the mag-
netic energy density, v — 1,

v=1+(Bj +B})/B*. (131)

Lydon & Sofia (1995) introduced the first two in the one-
dimensional case. Here we introduce the third one, the ratio of
the magnetic pressure in the colatitude direction to the magnetic
energy density, v — 1,

¥ =1+ (B} +B;)/B". (132)

We can use these three magnetic parameters to express three
components of a magnetic field as

B, = [87(2 — 7)xp]'"?, (133a)
By = [8m(2 — )xp]'?, (133b)
By = [87(y+ 9 — 3)xp]"/%. (133¢)

We discuss below various possible cases. Note that any case
should satisfy the restriction

VB =0. (134)
4.1.B =(0,0,0)
In this case,
x=0, ¢9=1, ~=1, H=0. (135)

Consequently, the term associated with magnetic fields vanishes,
namely,

M=0. (136)
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Defining
B =— 4;’:1;'0%7 (137a)
g Gme=rn) o (137b)
2rPr  pm
B =— ﬁ, (137¢)

we can rewrite © as

o_p cot98_r’(1 B cot98_r’>_1+82<1 B cot98_r’>_l

2 00 2 00 2 00

5 cotf P’ ( cot90”'r’)1

+6209 2

(138)

Solving this case will provide us with a standard two-
dimensional stellar model.

42.B =(0,0,B,)

Since B is assumed to depend on only rand 0, equation (134) is
satisfied for any arbitrary function By, = B, (r, §). Inthis case, since

X:Bg/(gﬂ-p)a 19:23 7:27

we have
B, =0, (139a)
By =0, (139b)
B, = (87xp)'"/%. (139¢)
Substituting these into equations (129a) and (129b), we obtain
H,.=—2xp/r, (140a)
Hy = H, cot. (140b)
Substituting them into equation (125b), we obtain
M—B4<l+%cot20> <1 _%te%_w‘l, (141)
where
B* = angpm ﬁ—’;. (142)
43. B = (0,By,0)
Equation (134) requires
78(5129939) —o. (143)
This leads to
By = B(r)/sin 6, (144)
where B(r) is an arbitrary function of r.
In this case, since
X=Bj/(8mp), V=1, =2,
we have
B, =0, (145a)
By = (8mxp)'”, (145b)
By=0 (145¢)
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Equation (144) requires that B = (87yp)"'* sin 6 does not depend
on 6.

In order to calculate M, we have to calculate H, and H, first.
Substituting equations (145a)—(145¢) into equations (129a) and
(129b), we obtain

H, =—2xp/r,

1 1 (0B
o =42 <ae>

_XP a_p/+6X’ 747Tl”3pm 8_p’+8x’ B_r’
Cor [\o9 o), m os  os J\d9),|

(146¢)

(146a)

(146b)

Substituting them into equation (125b), we obtain M,
t0 (0p Oy cotf ar’\
_ il co -
M=-5 [ 4 \o0 o 2

0p'  9x"\ cotf or' cotd ar’\ "
p— 5 —_ —_— _——
B<3s+8s) 2 o0 (l 2 aa) » (147)

where
B> =xp/Pr. (148)

44.B = (B,,0,0)

In this case, since

X=B}/Bmp), =2, y=1,
we have
B, = (8mxp)'"?, (149a)
By =0, (149b)
By =0. (149c¢)
Equation (134) requires
3(”5}{%) =0. (150)
This leads to
B, =B(6)/r?, (151)

where B(f) is an arbitrary function of 6. Therefore, we know
B = (8mxp)'/*r? (152)
varies with only 6.

Substituting equations (149a)—(149c¢) into equations (129a)
and (129b), we obtain

_ Ao xp (0" OX'
" m  r \9s 95 )’
Hy = 0.

Substituting them into equation (125b), we obtain M,

o' oY cotd or"\ !
_1rS _ P
MB(as+as)<l 2 ae) - (133)
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4.5. B = (0,By,By)
In this case, since
Bj + B} 91 B 5
X = 87Tp ) =l+—=—— Bz +Bz ) T=4%
we have
B, =0, (154a)
By = [8m(2 — )xp]'?, (154b)
B, = [8( — 1)xp] 2 (154c)
Equation (134) requires
J(sin OBy)
————==0. 155
o0 (155)
This leads to
By = B(r)/sin#, (156)

where B(r) is an arbitrary function of 7. Therefore, we have the
constraint that [87(2 — 9)xp]"? sin 6 depends only on .

Substituting equations (154a)—(154c¢) into equations (129a)
and (129b), we obtain

H, = —2xp/r, (157a)
ng—szp(ﬂ 1) cotf +— {83[(2—19)%0]}
— 2251y eorp+ L {%[(2—@»@}
7’ !

Substituting these expressions into equation (125b), we obtain

N
M:_Bé(l_ cot@@r)

2 00

;ootd (Ox'  9p" 0" _ cotb or' -
5= (ae+ae+aa =

Bg<8x 8;) +3l9”) cot or' (l cot98r>

s s Os 2 00 2 00
(158)

where

B =B {1+1w-

B =dB'2-19),

B =B(2 -9,
"9
ds _ Os
" 0
0 o

1) cot*d],

log (2 — ¥),

log (2 — ¥).
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4.6. B = (B,,By,0)
In this case, since
B2 + B B2 B2
—r 170 g =14_"r —14+—0
87p TBim VT TR
we have
_ 1/2
B, = [87(2 = v)xp] "7, (159a)
By = [87(2 — D) o], (159b)
By =0. (159c¢)
We have used the fact that
~y+9=3. (160)

A meaningful magnetic field should satisfy equation (134). For
example, 2B, does not vary with 7, and sin By does not vary with 6.

Substituting equations (159a)—(159¢) into equations (129a)
and (129b), we obtain

-2y

4 pw xp (0X' | Op' | 97"

N m (8s i Os * Os
xp (O0x' 0O o~"

+[<2—v><z—?9>1“2,f’(89+a’;+ a

4 m Or’ (0 op' 9y
1/2XP AT pm r(x+_p+7)’

- [(2 -7) (2 19)] P m 90 \ Os Os Os

Hy=[2 — )2~ 0))' 22X

dnr3p, xp (Ox'  Op' 09"
+Ie =@ ) X (T T )

ox' o &
+e-0)F (89+8 +89)
xp 4 py Or' (0x' Lo op’ n o
r o m 90 \ Bs Os Os

-@2-0)==

Substituting these expressions into equation (125b), we obtain

o, cotdor’ -
M=-b <1 2 o0
o' ox 8y cot® or'\ !
0¥~ YA o e
5 (8s+3s+ as )\' 772 o
1 N\ —1
g’ or' (Ox"  Op +8’y | — cotf Or
9\ os ' 9s ' Os 2 00
ox'  9p 94" cotf or"\ !
12 _ -
+5 (ae*ae*ae =
ax'  9p v cotf ar’\ !
13 op _ -
5 (a s Tas )T
oy p 89"\ cotl Or' cotd ar'\"!
- rl4(FA “P vy e
B(@S+3s+6s 2w\ "2 G
15 cotd (Ox'  Op O’ _ cotd or'
57 (ae+ae+aa =)

(162)
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where
p=5{e-0- 3 e-ne-nh
BY = B2,

B = B2 -9)2 -]
B2 = 15Y(2 —0)(2 — )",
B = 15% cot0[(2 — 9)(2 — 7)),

614 — BS

BIS — 67
a,y//

8S = 67 10g(2 - 7)7
87//

47.B = (B,,0,B,)

In this case, since

B+ B} B’
S R P S R -
8mp Bl + B
we have
_ 1/2
B, = [87((2 - W)Xp] ) (1633)
By =0, (163b)
B, = [8m(y — 1)xp]". (163¢)

A meaningful magnetic field should satisfy equation (134), which
requires 2B, not to vary with 7.

Substituting equations (163a)—(163c) into equations (129a)
and (129b), we obtain

2xp 47 pu xp ' ox' 9"
O LV A A &

2
Hy=—(y-— l)ﬂ cot .
r

Substituting these expressions into equation (125b), we obtain

_ e cotdor’ -
M=-5 (1 2 00
o' ox 8y cotf ar'\ !
10 Y~ _ i
+5 <3s+8s+ o )\~ ) - (%9
where

B' = B*(y — 1)(1+1 cot?6).

4.8.B = (B,, By, B,)

This is the general case, in which all magnetic field parameters
X, ¥, and -y are variables. Therefore, we use the general expres-
sions for B,, By, and B, given at the beginning of this section.
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Substituting equations (133a)—(133c¢) into equations (129a) and
(129b) to calculate H, and Hy, we obtain

473 pm Xxp <<9p’ ox' 67”)
m

2
Hr:_(7_1)¥+(2_7) r \0s Os + Os

_ @2 —gyeXxe (90X Ot 97"
R GG d) R (ae o0 o
4mr3 or'(0x"  op' oy
o a2 Pm Xp Or (OX  Op i
(2=)2-9) m r (BS Js  Os )’

2 2
Hy =2 = 1)@= 9)]"? 22— (749 -3) 2L cot

47r3 ox'  op' 09"
_ _g\ 22 Pm XP(OX 9P
+@=-m@-9) m r (85 + Os + 0Os )
xp (0p  Ox 9"
+(2 19)r<89+89+89>

4nr3p, xp or' ((’)p’

o' 8X’+819”
m r 00 \ Os Os Os )’

—@2-v)

Substituting these expressions into equation (125b), we obtain

_ o,  cotdor' -
M=-bB (1 290
op'  Ix' 9y cotd ar’\ !
10>~ YA _
+5 (as+as+as =
or' (Ox'  dp Oy cotd ar’\ !
889<8s+8s+8s =
ax'  9p' 9y cotf o'\~
2({YA e o i
5 (89+89+89 SN
ax' o' 8" cot or’\ !
13 Y v v
+5 (av+8s+8s><1 2 39)
ax'  dp' 9"\ coth ar' cotd o'\
B<3s+8s+8s> 2 ae(l 2 ao)
15 cotd (Ox'  Op’ 9" _ cotf or' -
57 (ae+ae+ae )
(165)
where
B — 54{7 —1—Lcot[2—y)(2— )"
+(y+0-3)L cotzﬁ}. (166)

Realistic magnetic fields in the stellar interior should satisfy
the Maxwell equations. One of them is the divergence-free condi-
tion specified by equation (134). Using the coordinate (m, 6), this
equation reads

47rp,y, sin 0 O(r*B,) n O(sin 6By)
m Os a0

Assuming B, = C(m) cos 8/r2, by solving this equation for
By(r,0) we obtain

=0(2). (167)

_ 2mrpy dC(s)

By(r,0) = m ds

sin 6. (168)

So far, we have finished the coordinate transformation from
(r,0) to (m, 9). This allows us to use the analytical formulae, for
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instance, © and M, to describe the two-dimensional effects.
This effort has at least the following rewards:

1. We can control the approximations by neglecting certain terms.

2. We can understand whether a certain factor or factors play
an important role by including or excluding the corresponding
term or terms in the numerical calculations.

3. We can use the existing technique to numerically solve the
two-dimensional stellar structure equations.

4. We can use the analytical expressions to calculate the matrix
element coefficients for the linearization correction equations.

We make use of these advantages below.

5. BOUNDARY CONDITIONS

As usual in mathematical physics, the boundary conditions
constitute a serious part of the whole problem, and their influence
on the solutions is not easy to foresee. In the one-dimensional stel-
lar model calculations, the boundary conditions cannot be speci-
fied at one end of the interval [0, M, only, but rather are split into
some that are given at the center and some near the surface of the
star. The central conditions are simple, whereas the surface condi-
tions involve observable quantities. The boundaries in the angular
direction are located at @ = 0 and either § = 7/2 or § = 7. We fol-
low Deupree (1990) in using symmetry conditions to determine
them. Otherwise, the treatment of the boundary conditions is as
described in Prather (1976, his Appendix A) and as implemented
in YREC (Pinsonneault 1988).

5.1. Central Conditions

Two boundary conditions can be specified for the center, de-
fined by

m=0: r=0, L=0. (169)
Rewriting equation (124a) as
3
dr® = dm, (170)
4T pm

we can integrate it over a small mass interval [0,m] in which
Pm = Pme can be considered to be constant. The result

3 \!/3
r= ( ) m!/3 (171)
47Tpmc

can be considered to be the first term in a series expansion of »
around m = 0. Taking the logarithm, we obtain

r'=1[s —log (4mp,/3)). (172)
A corresponding integration of equation (124d) yields

=" <e - Tﬁ) LM F oo, (173)

In both cases we have used the proper boundary conditions
(eq. [169]) by taking the lower limit of integration to be zero.

Equations (172) and (173) are two central boundary condi-
tions that are equivalent to equation (169).

5.2. Surface Boundary Conditions

5.2.1. One-dimensional Surface Boundary Conditions

Nothing is a priori known about the central values of pressure
P_and temperature 7, so we need to define the surface and spec-
ify the surface values of pressure and temperature.
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In principle, we can use a definition for the surface such as
m = M. (174)

However, since near the surface m does not change much, this
definition is not accurate enough. The theory of stellar atmo-
spheres suggests the use of the photosphere, from which the
bulk of the radiation is emitted into space:

T = T, (175)

where T, is the effective temperature. The optical depth 7, of

the overlying layers,
o0
T= / kpdr,
R

is equal to 2/3 for the Eddington approximation,
T*=3T4H(r+2), (176)

where R is the total stellar radius. In contrast, the optical depth
7, = 0.312155 of the overlying layers is different from 2/3 if
the atmosphere is assumed to obey a scaled solar 7(7) relation
given by Krishna Swamy (1966),

T*(1) =3 T4[r +1.39 — 0.815 exp (—2.547)
— 0.025 exp (—30.07)]. (177)

Since T is the temperature of that blackbody that yields the
same surface flux of energy as the star, then

m= Mgy : L;=41R* 0T, (178)

where o = ac/4 is the Stefan-Boltzmann constant of radiation
and L is the total luminosity. This is one of two surface bound-
ary conditions.

The second surface boundary condition is the hydrostatic equi-
librium condition: the pressure at the surface is given by the weight
of the matter above. We can well approximate the gravitational ac-
celeration by the constant value g, = GM,/R?, since the bulk of
the matter above the surface is very close to the photosphere any-
way. We hence have

GM,o
R2

m= My : PS:/ gpdr = 1, (179)
R

7'51
I:/ —dt
0o K

is calculated in the following way: The starting values of (Py, 7)
are chosen by selecting a small density p, and then computing

where the integration

Py = (a/3)Ty + poRTo,

where Ty = T(7 = 0). Then (Py, 7o) gives p;, which gives
ko(p1, To), which gives 7y = ko Py/g or 67 = 11 — 9. Thus, we
have Iy = 07/kg. Then we redefine 79 = 7, and py = p;. This
method could be iterated upon by redefining Ty = T(79) and so
forth:

1 /1 1
I:Io—|——<—+—>67'—|—. o
2 ) K1

Sufficient accuracy was achieved in the atmosphere integration
by choosing a small enough py (e.g., po = 107'9) such that
<1074
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From the calculation description, we can see that [ =
1(Ps, Tetr). However, we do not know the explicit expression.
Therefore, we cannot directly use equations (178) and (179) as
our surface boundary conditions. Instead, we solve the system
(Kippenhahn 1967)

P T 1 ay as a; Ry InLy Tl

P, T; 1 a as ag | =| Ry Inly Tj

P, T 1 ay ag ag Ry InLy Tl
(180)

for the a; that are used for the surface boundary conditions,

R =a\P' + a,T' + a3, (181a)
InL =asP' + asT' + ag, (181b)

and for the calculation of the effective temperature,
Te/ff:a7P’—|—a3T’—|—a9. (182)

Here, the (P’, T") refer to the values at the outermost mass point in
the model. The last three equations can be considered to be the first
term in the series expansions of equations (178) and (179).

The initial model with an estimated (In L*, T};) is triangulated
in the (In L, T;)-plane by constructing three atmospheres of the
form

Al, (InL* 1A, ThH+1A7);

A2, (InL* — 1A, T —LA7);

A3, (InL*+1ALTE).
If subsequent models or the model itself during convergence
move significantly out of the triangle, the triangle is flipped until it

once again constrains the model. The decision as to which point of
the triangle should be flipped (if any) can be made by testing

Ci :f{(lnL,«H - 11'1Li+2) (Telff - Te/ffzurl)

+ (Tl = Ty, ) (nL—In L)

where /= %1 is the orientation of the triangle (e.g., in the ex-
ample given, f = +1) and {i,i + 1,i + 2} is {123}, {231}, or
{312}. The value of ¢; is tested against eA; Az, where set-
ting € = 0 gives exact triangulation and € > 0 allows the point
(InL, T)) to be at most ¢ outside of a triangle. We begin test-
ing with i = 1-3; if ¢; < —eArAr, then we flip point i,

111Li <In Li+l + lIlLiJrz — lI’lLi7
Te/ﬁi < Te/ﬁm + Téff - Te/ff,»ﬂ

fﬁffa

i+2

and repeat the testing again starting with i = 1 until ¢, passes for
i = 1-3. The atmospheres that have been flipped are then re-
computed, as are all the coefficients a;.

This treatment of the surface boundary conditions is the same
as that in one-dimensional model calculation, except that we move
the fitting point to the surface where 7 = T.. Therefore, we do
not need an envelope integration. This has been tested for the one-
dimensional model calculations, and it turns out to be acceptable.
This saves much computation time in the two-dimensional case.
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Fic. 1.—Reference values of pressure and temperature at the surface as func-
tions of age. The dotted lines are polynomial fits to the calculated model (solid
lines) using the standard surface boundary condition.

Our surface boundary conditions are much more complicated
than Deupree’s (1990), because our applications to the Sun are
very sensitive to the surface conditions.

5.2.2. Deuprees Two-dimensional Surface Boundary Conditions
In his two-dimensional rotational models, Deupree (1990) uses
the surface boundary conditions

P = pref;, T = T,

where p.r and Ty are the reference density and temperature,
respectively. The most difficult part of using these surface bound-
ary conditions is how to select the reference density and tempera-
ture at the surface.

Unlike Deupree (1990), we use Prand T as independent ther-
modynamical variables. Since p = p(Pr, T), the equivalent sur-
face boundary condition is

Pr = Pret, T = Tt (183)
In order to compare this with the standard surface boundary condi-
tion given above, we use the surface values of Prand T obtained
by using the standard surface boundary condition for the current
Sun as the reference. Figure 1 shows the reference values as func-
tions of age and their polynomial fits. The fitting formulae are

73695.514 — 9004.5498¢
+13898.511¢2,
72777.060 — 2211.7088¢
—49.075155¢2,
5647.8836 + 266.07365¢
—539.35360¢2,
5673.6126 + 28.625469¢
—1.1516435¢2,

P =

Tt =

The age ¢ is in gigayears.

0<1<027,

0.27 < t < 4.55,

0<1<027,

0.27 < t < 4.55,

(184a)

(184b)
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5.3. Polar Boundary Conditions

Equations (124b)—(124e¢) are singular at the poles (§ = 0 and
) because of ©, M, Fy, and uy. However, if 9r'/00 = 0, the sin-
gularity due to © will disappear. In order to guarantee r'/06 = 0,
we also need to zero the other derivatives. Therefore, we require

or' oL oP" 0T’

0 00 00 0
at the poles. In order to remove the singularity due to M, we have
to zero x at the poles, namely,

x=0 (186)

=0 (185)

at the poles. Equations (185) and (186) are the polar boundary
conditions. Equation (185) is similar to Deupree’s (1990) polar
boundary conditions, which are the symmetry conditions.

5.4. Equatorial Conditions

Equations (124a)—(124d) show that the two-dimensional stel-
lar structure equations are not singular at the equator. Therefore,
there are no special constraints there. If we neglect O(2) in equa-
tions (124b) and (124c), the two-dimensional stellar structure
equations are a set of first-order differential equations. Since we
have already specified four boundary conditions at the north pole
(6 = 0), we do not need extra boundary conditions at the equator.
If we want to include those terms that contain the second-order
derivatives in O(2), we have to specify four equatorial boundary
conditions or five polar boundary conditions at the south pole
(60 = m). We do not include those second-order derivatives in
O(2) in this paper for the following reasons:

1. They are much smaller corrections than the retained terms.

2. They may cause a much bigger numerical error than the
actual corrections.

3. They require a totally different method of solution (e.g.,
Deupree 1990).

6. METHOD OF SOLUTION

6.1. Linearization of the Two-dimensional
Stellar Structure Equations

The dependent variables to be solved for are pressure Py, tem-
perature 7, radius r, and luminosity L (hereafter we use L to re-
place L', but remember that L is in solar units); the independent
variables are chosen to be mass m (or s = In m) and angular co-
ordinate §. The magnetic field variables , 9, and -y are also de-
pendent variables. However, since we do not introduce their
governing equations (such as the dynamo equations), we con-
sider them to be given. All units are in cgs, except for the lumi-
nosity, which is in solar units.

The construction of a two-dimensional stellar model begins
by dividing the star into M mass shells and N angular zones. The
mass shells are assigned a value s; = log m;, where m; is the
interior mass at the midpoint of shell i. The angular zones are as-
signed a value 6;. A starting (or previous in evolutlonary time)
model is supphed with a run of (P}, T, rj, Ly, X;j» ¥y ;) for
i=1-Mand j = 1-N.

Here we take the general case B = (B, By, B,) as the example
to show how to solve the two-dimensional stellar structure equa-
tions. In order to write down the linearization equations, we
introduce the notations

Gm> p

— 187
4rr4Pr py’ (1872)
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m. o p
p (187b)
T =PV, (187¢)
1 dST P
T' =BV, (=1,23,10,...15,17, (187¢)
tQ Or' cotf Or !
pl =07 [y 187f
2 ( 2 69> ’ (187f)
»_(, cotdor
D= (1 —55) (187¢)
t0 oP' cotd or'\ !
p = SOVO (P 187h
2 o0 < 2 ae) ’ (187h)
ox'  op’ 0y’ .
DO =p? & 4 22 18
(3s+8s+8s ’ (1871)
or'
Dll = _Dlo_ 1 .
50 (187j)
aX/ 8[) a,y//
D2 =Dp? = 187k
(ae o0 T en ) (187k)
8X/ ap a9
13 _ 2
DB =D (as + ot ) (1871)
8X/ ap o9"
14 - _ 1(ZA i
D" = D(8s+8s+8s>’ (187m)
to 8x op' o’
pls = p2 &0 187
2 o0 T o (187n)
DV = —D?, (1870)
4ac mT*
e R 187
d 3Lo szfppm( T4 (187p)
1 m pC,Tl,w
2 p+tmbconv
7= Lo Ppm T+ veame /10" (187q)
F= - FV., (187r)
GmpV
4= rl 1
F F ot (187s)
GmpV
5 _ 2
F=F P (1871)
Gmp
6= P20 1
FP=F B, (187u)

Consequently, the stellar structure equations in the general case
can be rewritten as

P’ 15,17 o
o :P+,»:1;106DI+0(2)’ (188a)
or’ 15,17 o
o :7+i:1;1072> +0(2), (188b)
or'

= l
7 =R (188c¢)
oL oT’ or & or
=L+ ¢ 3 tZ__lcotd+ O
ds (;f oL ae)c" 0@

(188d)
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where V = V4 in the radiative zone and V = V. in the convec-
tive zone.

We calculate the derivatives of the dependent variables with
respect to s by the central difference scheme, e.g.,

(88};/>[j+ (68}:)”/_1 . (189)

but we simply use the difference scheme
rp =T or'
LAl S (_) (190)
0 — 01 a0 )
to calculate the derivatives with respect to 6, because the first
two of the two-dimensional stellar structure equations are sin-

gular at the poles. Thus, we can define a set of functions that
should vanish at the solution of the stellar structure equations,

P, — P o

Si — Si—1

F E(P’ P! )

15,17 ‘
‘EA”<P”+R*”+4EQNI¥+B’“#L
(191a)
Fi= (T/ Til—lj)
15,17
¢
_EASi (Tl]'+7i71j)+[:1223 0 T +Tl lj) )
(191b)
ij 1
FI{ = (}"IJ/ — ril—lj) - EAS,‘(R,‘] + Ri*lj)a (1910)
!
Fil = (Ly = Licy) = 5 Asi| (L5 + Liyy)
2 p cot9 , ,
+Z f +‘7:.1 l] AQ (le Tij—])
=1
3 cot 0;
+(f +‘7:l lj) Aa (P/ Pl; l)
6
cot 6;
+> (Fi+Fiy) M_f (r[;—rél)], (191d)
=4 J

where As; = (s; —s;,_;) and i=2-M, j=2-N. The D!

y’
D}]O, . .,Di}“ are defined as

I_COtej [ _COtHJ- . -1
D - 2A0 (rij rij—])|:1 ZAHJ (rl/ rii_l) 5 (1923)

D=1 )]
1

D= g (7P [1=5ag (i) |
(192¢)

2
Do A [(X,’, — X;—lj) + (pl/j — pl{_l_j) + (’yi;( — ’Yi/ilj)]’

(192d)
DIO
1 _ -
= Ae)j(rff i)

(192b)

(192e)
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D2
= 2 [0+ () ()

(192f)
Db = ESZ KX,] X,LU) + (P,/J - pz{—lj) + (19” 0 1])}
(192¢)
DY = —% [(X,/J - Xz{—lj) + (P,/j - ,0,(,1]-) T (19” v Uﬂ
(192h)
DY = ngoAth [(x; - X{,_1> + (Pff - p,}_l) + ( i~ Vi ‘)}
(192i)
P — _p2 (192j)

We want then to solve for the set of (Pl’ , Tl;, rlj, Lj)) such that
Fi =F) =F] =F/ =0 with ¥, 9, and ~ specified.

The lmearlzatlon of equations (191a)—(191d) with respect to
(6P}, 6T}, or;, OLy) yields 4AMN — 4(N — 1) — 4M equations
for the 4MN unknowns. The 2(N — 1) additional equations are
supplied by the boundary conditions at the center. From equa-
tions (172) and (173), we can define

FY = r;—xls

1 — log (47rpm1j/3)], (193a)

; cotH
FLIJELU_[’IJ Z}—/ T/ Tllj—l)

+ F(P, = Ply) qurlj r{jl)], (193b)

where j = 2—N. Another 2(N — 1) additional equations are sup-
plied by the boundary conditions at the surface. From equa-
tions (181a) and (181b), we can define

FM+1] —

/ /
R RMj—alPM.—azTM

j— a3 (194a)

P = (1nLM, P aé), (194b)

where j = 2—N. The 4M additional equations are supplied by
the polar boundary conditions,

Fi' =P, — P, (195a)
Fi' =T, - Th, (195b)
F}' =R/, - R),, (195c¢)
Fl' =1Ly — Ly, (195d)

where i = 1-M. The F equations are linearized,

M
FY FY F* F
Z (aW(SR/ awélllk—i-aw(splk—i-aw(”ﬁ)
=1

= OR}, OL OP}, oTy,
— _Fi

w)

(196)

where w =P, T, R, and L; i = 1-M; and j = 1-N. The sum-
mation over / has nonzero terms only for / =i — 1, i; the
summation over k has nonzero terms only for k =j — 1, j. See
Appendix A for the matrix coefficients.
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Fic. 2.—Linearization equation for a 4 x 4 point star.

6.2. Solution of the Linearized Equations

Rather than solving the (4MN )? system of equations directly,
we take advantage of the specific form of the equations and es-
pecially of the large number of zero elements in the matrix. From
Figure 2 we can see that only 12 by 4MN elements are nonzero at
most.

The matrix is reduced in a forward direction (i =2—M) as the
coefficients are defined and is then solved in the backward direc-
tion (i = M—1) for the corrections (6Pi’j, 6T,;'j, 6Rl(j, OL;) for j =
2—N. The reduction procedure begins as follows: (1) Forj = 2,
we use the polar conditions at § = 0 to eliminate those elements
with subscripts / = i, k = j — 1 (i.e., block I1I defined in Appen-
dix A), which can be done by simply adding block III to block II.
At the end of this step, the matrix equation for a specified j looks
like Figure 3a for a four-point star in the mass coordinate (in-
cluding the center and surface boundaries). (2) We use the cen-
tral boundary conditions to eliminate the first two columns in
block I for i = 2. (3) We continue diagonalizing the four bottom
rows for i = 2. (4) We store the right-hand side and the elements
in the rightmost columns (see Fig. 3b). After this reduction is
completed, the bottom two rows of the first part of the coefficient
matrix become the “central boundary equations” for the " equa-
tions of the next pair of mass points. The method is repeatedly
applied until the surface is reached, whereupon the surface bound-
ary conditions complete the set of 4M equations (see Figs. 35 and
3¢). For the back solution (1) the values of (6P,,, 6T},,) are first

calculated, then (2) the values of (6R),, 6L, 6P]_,,, 6T/ ,,) for
i = M -2 are calculated using the stored elements of the array and
(6P}, 6T}), and finally (3) the values of (R}, 6L1,) are computed
from the central boundary conditions and the values of (6Pf,,
6T71,) (see Figs. 3d—3f). Since the submatrix with j = 2 has been
diagonalized, we can use it to diagonalize the submatrix with
j = 1and3.Forj =3, weusej = 2 as the “polar boundary con-
ditions,” and so forth. Finally, we solve the matrix equation, and
the results are stored in the right column.

6.3. Advancing the Model

These routines are based on the work of Prather (1976, his Ap-
pendix A) and their revised implementations in YREC (Pinsonneault
1988; Guenther et al. 1992; Guenther & Demarque 1997).

6.4. Time Steps

In this section we use the cgs units for luminosity L (ergs s™')
and use X (Y) to represent the mass fraction of hydrogen (helium).
The angular zone index (i.e., j) is 2.

The timing routine calculates the time steps based on a hydrogen-
or helium-burning source. Let Ly (ergs s—1) be the total hydrogen-
burning luminosity, and Ly, the helium luminosity. There are two
time steps,

Aty, the hydrogen-burning time step, and
At,, the total time step (i.e., for entropy and helium),
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10XX ﬁ 10XX é 10XX ﬁ
X 1X X 01XX 01XX
X OX XX oX X A 00100QYY B 001000XX A
X XX XX XXX A 000100YY B 000100XX A
X 0X XX 0X X A 000010YY B 000010XX A
X-IXXX 1XX A 0000017YY B 000001XX A

X XXX oXX A XOXXX oXX A 001 OOOYY B
XXXXXXXX A XXX XXXX A 0oo0100YY B
X OXXX 0XX A X OXXX 0XX A 000010YY B
XAXXX TXX A X AXXX TXX A 000001YY B
101X A 101X A 101X A
01XX A 01XX A 01XX A

(a) (b) (c)
10XX ﬁ 10XX ﬁ 10XX ﬁ
01XX A 01XX A 01XX A

001000XX 001000XX 00100000
000100XX A 000100XX A 00010000 B
0000710XX A 000010XX A 00001000 B
000001XX A 000001XX A 00000100 B
001000XX A 00100000 B 00100000 A
000100XX A 00010000 B 00010000 A
000010XX A 00001000 B 00001000 A
000001TXX A 00000100 B 00000100 A
0010 B 0010 A 0010 A
0001 B 0001 A 0001 A

(d) (e) (f)

FiG. 3.—Schematic Henyey solution for a four-point star. The matrix block is denoted by Os, 1s, and X’s, which are nonzero. The right-hand side is denoted by A,
and the elements changed through pivoting, by Y and B. The final reduction to the identity matrix is not shown.

where Af; = Aty only if the hydrogen shell is being shifted
outward. If Ly = 0, the following section for hydrogen burning is
skipped. ‘

For hydrogen-core burning (Xcore > X,™"), a time step corre-
sponding to a set of reduction in X is calculated. Let i be the
innermost point if the core is radiative (i = 1) or the outermost
convective point if the core is convective. Then, the change in
Xeore 18 computed,

AXoore = min{ AXI™ AfISX 1Y
and the time step is
At; = Atg = 6 x lolgA)(coremi/Liv

where m' is the mass of the core (g) and L/ is the luminosity of
the core (ergs s~!, assumed to be mainly hydrogen burning).

When the core-burning criterion no longer applies (Xcore <
X ™), a limit is placed on the total amount of mass that may be
burned,

Am = Afm]\/l\’:)AXenva
A =6x10"Am/Ly.

If there is a hydrogen-burning shell (X = 0), the timing rou-
tine locates it. Let the subscript 0 denote the inner edge of the
shell (first point where X' > 0), let subscript 1/2 denote the mid-
point of the shell (X = %Xenv); and let subscript 1 denote the end
of the shell (L' — L'"! < 107*L or X = X_,, or ey = 0). There
is a limitation set on the maximum depletion at the midpoint of
the shell,

Al = AX ).

With the exception of the core-burning phase, the new hydro-
gen burning time step is limited by the previous total time step,

Aty(new) = min{l SAz(old), Ay, Atél/z}.

If there is to be no shell shifting, then one sets A¢, = Aty. If the
hydrogen shell is to be shifted outward through Am; in mass, then
the shift time step is computed as

Atgin = 6 x 108X, Amy /Ly,
and the total time step is
At, = Aty + Abgige.

If there is a hydrogen shell (Xcore = 0), the helium burning is
examined. For helium-core burning (Yeore > X ™" and Leore >
0.1 L), the maximum helium depletion is

AYeore = min{Achinv Afymax core}v
and the helium time step is
Aty = 5.85x 10" AYore Mo / Leore.-

For helium-shell burning (Yore < Xcmi“), the amount of mass
burned through by the helium shell is limited,

Aty = 5.85 x 10V A f;, M / Lge.

The helium time step places an upper limit on the previously
computed hydrogen time step,

At, = min{At,, Aty },
Aty = min{At,, Aty }.
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The following parameters used in the determination of the
time step are read in at the beginning of each model run. Their
typical values are given as

Xc“““ =0.001, AX™ =0.04, AY™ =0.02,
Afxmax =0.5, Afymax =0.3, Afm = 0.0015 Mo,
X =010, Amg=5x10"* M.

Of course, we can also use a fixed time step to advance the model.

6.5. Composition Advance

The mixing routine performs all the operations on the model that
are needed by the application of the time step to increase the age of
the model. The routine first checks that there is no mixing within
the hydrogen shell if the shell is supposed to be shifted. If there is
such mixing, the shifting is suppressed (i.e., set At;, = Aty).

Each mass element (the mass contained in the zone defined by
mé[m;_y,m;| and 6€[6,_,6;]) is burned individually by com-
puting the energy generation rates for the physical conditions
existing in that mass element from the previously converged
model. Since the program stores only the values of hydrogen, to-
tal metal, and oxygen abundance, the change in these quantities
is computed as

X(new) = X (old) — (dX /dt)At,
Z(new) = Z(new) + (dY /dt)At,
X]()(I’ICW) = X]ﬁ(Old) — (dXo/dl)At,

where At = At, inside the hydrogen shell (X = 0) and Ar =
Aty elsewhere.

The routine then mixes those zones that it is instructed to by
being given a set of indices (i = i} —i; and j = j; —j2),

k=i, I=j k=iy I=j -1
Xij = (Z Zalekl> (Z akl) :

k=i 1= k=i I=j,

The weights ay; are proportional to the amount of mass associated
with zone 4/ and are set up in the point readjustment routine.
If the hydrogen shell is to be shifted, the routine calculates

Asgin = (6 — 6°/2+6°/3 — §*/4)/ In 10,

where 6 = Amg/my;, < 1. The points in the hydrogen shell are
shifted by Asshiﬁ,

50 < s; < 51— si(new) = s;(old) + Asghig,

where s; = log m;. The points up to a distance ;A sg,; in front
of the shell are squeezed together,

§1 < 8; < Send — Si(new) = [s;(0ld) + Sena — s;(0ld)] /5,

where Seng = 57 + f5A Sshifi-

For all of these shifted and squeezed points, the changes in P’
and 7" must be preserved for the calculation of the entropy energy
term in the subsequent model. Thus, for every s;(new), one must lo-
cate s;(old) such that s;(old) < s;(new) < s. (old) and then inter-
polate linearly in s to get the old values of P’ and 7" that correspond
to the new value of 5. Then the effective changes are stored,

! _ pl / :
APj; = Pj(new s) — P;(preshift 5),
ATj = Tj(new s) — T;(preshift s).
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For the region in front of the shell that is squeezed, it is desirable
to preserve the original composition gradient if such a gradient
exists. The values of X, Z, and Xj¢ are interpolated linearly in s,
as are P’ and T". Note that the shifting process affects only the
value of s and not the values of (P, T, R, L, X, Z, X;c) with the
exception of (X, Z, Xj¢) in the squeezed region.

The mixing routine finally checks on the physical sense of the
new composition at all of the points,

X = max {X,0},
Z=min{Z,1 — X},
Xi6 = max {Xj4,0.99 x 10> Zcno b

The first two requirements are obvious; the third requirement
brings the value of X4 up to the approximate equilibrium value
while turning off the X4 burning rate that is calculated if X6 >
1073 Zcno. The value of Zeno = Z — Z2, where Z? is the original
weight abundance of all non-CNO metals. This method allows for
the enrichment of CNO elements from the helium burning.

6.6. Mixing Zones

Consecutive mass shells, which are determined to be convec-
tive (Viag > Vaq) in the previously converged model, are mixed
together.

If there is a helium-burning convective zone, the semiconvec-
tive instability is treated as an overshooting (Castellani et al. 1971).
The composition is first burned and mixed according to the stan-
dard convection zones. At the first radiative point outside a helium
convective zone, the quantity /' = V,23/ V! is defined, where the
radiative gradient is computed with the (s, P, 7, r, L) values of the
radiative point and with the composition of both the radiative point
(superscript ext) and the interior convective zone (superscript int).
The original convective zone is extended outward through the
radiative region for all the points at which [ Vg > V4.

This overshooting region is restricted to the helium core
(X = 0)and is limited by the condition of Castellani etal. (1971)
that defines a maximum radius R, of the overshooting mixing,

Rinax vint L At
[T (1= G ) et
R, He Vradf 407P,. R?

where the subscript ¢ refers to the (s, P, 7, r, L) values at the edge of
the original convective zone. Here 4 is the mean molecular weight.
The composition is then remixed from the beginning of the con-
vective zone to the maximum extent of the overshoot region.

6.7. Point Readjustment

The point readjustment routine reflects all of the points be-
tween successive models. This routine starts with the central point
and places each subsequent new point 7 so that all of the following
criteria are met:

§i = Sic1 < ASma,
/ / /
Pi2 _Pi—12 <AP

— max’

Li» —Li—io < AfiLuo.

All of the new values are interpolated linearly in s by locating
the old point / such that s;(old) < s;(new) < s;41(old). The fun-
damental variables (s, Pz, T, R, L), the composition (X, Z, Xj¢),
and the density and entropy terms (A P/, AT’) are relocated be-
tween the center and outermost points for all angular zones. These
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variables are stored in temporary arrays and are transferred to the
original arrays once the process is completed. In addition to the
first and Mth points remaining fixed, other points may be retained:

1. the first radiative point (outer edge of convective zone),

2. the innermost point of the convective envelope,

3. the edge of the helium core (X = 0), and

4. composition discontinuities, X;, — X;j_12 > AXgisk or Zpp —
Zi_12 > ANZgisk.

The point routine then recalculates the weights assigned to
each mass shell based on the mass values at the preceding and
following midpoints,

m,»leS",
aj Z%(ml + my),
a; =% (miyg —mj—y), fori=2toM—1,

ay = Moy — % (myr + myr—1).

The value m; defines the location of the ith shell, and ¢; is the
number of grams contained in the shell.

In addition, the point routine adjusts the temperature of the
outermost Mth point by adding a new point or deleting some old
points. Given the desired temperature range 7Ty, t0 Tyax, if Ty <
Tmin, then the outermost point j < M such that 7) > T =
%(T min + Tmax) 18 selected as the new surface point. The points
[+ 1to M are deleted. If T); > Tinax the process is more compli-
cated. The last atmosphere that was integrated will have stored the
values of (Saum, Patmj» Tatmj» 7am;) for the first inward integration
step in which Ty > T'. The new point M + 1 is added with the
values

_ / _ p!
SM+1 = Satm, PM+1j = Patmj7

/ o / o
vy = Tamjr  "hstj = Tatmys

Lyr+1j = Lamjs  Xuv1y = Xuj,

ZM+lj = ZMJ7 X16M+1,' = XIGM/“

6.8. Model Calculation Sequence

The following list describes the sequence of calculations that
is used in computing a series of stellar models. This sequence is
the same for both one- and two-dimensional model calculations.

0. Input a model and compute a time step.

1. Locate the mixing zones and advance the composition and
hydrogen shell for the given time step.

2. Calculate element diffusion for the given time step.

3. Readjust the points in the mass coordinate in the model.
This step is the main source of numerical errors and should be
switched off for high-precision calculations such as solar vari-
ability applications.

4. Calculate the entropy terms (A P’ and AT"). Just zero them
at the beginning, and give an estimate using their temporal
change rate times the given time step.

5. Add the predictable corrections to (P’, T’, v/, L) if their
temporal change rates are available (after advancing one time
step). This allows us to use a much larger time step and save a lot
of computation time.

6. Specify the magnetic field configuration by selecting the
functions x (m, 6), ¥(m, ), and v(m, 6).

7. Retaining the old surface (or envelope) triangle and surface
boundary conditions, do two iterations for corrections to the de-
pendent variables (P’, T", ', L) and apply a given fraction (<100%)
of the corrections.
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8. If necessary, relocate the surface triangle for the partially
converged model and compute new atmospheres and surface
boundary conditions.

9. Iterate until the model converges.

10. Refine the composition and iterate until the model con-
verges for solar applications that need a high precision.

11. Repeat step 9 once for solar applications.

12a. Ifthe corrections are excessively large at any time or if the
model does not converge after many iterations (say, 20), then re-
tain the previous model that has been stored on the disk and stop.

12b. If the model has converged,

() compute a new time step,

(it) perform the requested printing,

(iii) store the model temporarily on the disk, overwrite the
previous model, and

(iv) return to step 1.

7. TEST 1: TWO-DIMENSIONAL STANDARD
SOLAR MODEL

In this test, we investigate how different resolutions and differ-
ent boundary conditions affect the two-dimensional solar mod-
els in the standard case (zero magnetic field).

Starting from a one-dimensional ZAMS (zero-age main se-
quence) model, we move the fit point to the surface where the
mass coordinate s = 1 x 10~'% from the usual location s = 1 x
1073 in a stair-stepping way. The (ZAMS and the advanced)
models are determined by the following parameters: the minimum
and maximum change in s between Henyey grid points, 1 x
10712 < As < 8 x 1072, and the maximum change in w’ (= P/,
T’, r', and L/L) between Henyey grid points, [6w’| < 5.2834 x
1073. The convergence criteria for the stellar parameters are
|6P'| <6x 1077, |6T'| <4.5x1077, |6r'| <3x1077, and
|6(L/Le)| < 9x 1077, The convergence tolerance on the right-
hand sides of the P and 7 equations is 3 x 1077, and the conver-
gence tolerance on the right-hand sides of the L and T'equations is
2.5 x 1077, We also require |6P'/P'| < 9,|6T"/T'| < 5, |6r'/r'| <
5, and |6L/L| < 90. All these requirements must be satisfied si-
multaneously when we apply the correction to the model. This is
why we have to move the fit point in a stair-stepping way. Other-
wise, the correction is too large, and the solution will diverge. The
model has about 2401 grid points in the mass coordinate s, i.e.,
M = 2401. We also test the cases with M = 1201, 601, and 301.

When this one-dimensional convergence has been obtained,
the angular part of the two-dimensional grid is selected. Unlike
the mass coordinate s, which is not uniform, we simply equally
divide the angular coordinate 6 in the range 8€(0,7/2], 6; =
(7/2)(j — 1)/(N — 1), where j = 1-N. We use the converged
one-dimensional model for every angular zone. We use N = 10,
19, and 37 in this test.

The solar mass is M. = 1.9891 x 10*3 g. The initial metal
mass fraction is assumed to be Z = 0.022 at ZAMS. The model
will evolve from ZAMS to the current age of the Sun (4.55 Gyr).
The hydrogen mass fraction and mixing-length parameter (ratio
of the mixing length over the pressure scale height) are determined
by the requirement that the solar model at present reproduce the
observed radius (R, = 6.9598 x 10'° cm) and luminosity (L., =
3.8515 x 10*3 ergs s—!). We first use the one-dimensional code
to generate a one-dimensional standard solar model as the refer-
ence. We then use the two-dimensional code to generate the two-
dimensional zero-magnetic-field solar models with different M
and N and different surface boundary conditions and compare
them with the reference. Our aim is to investigate whether we can
get a two-dimensional high-precision solar model.
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7.1. Convergence

First of all, convergence is the most important requirement in
model calculations. There is an intrinsic divergence at the poles
in equations (188a), (188b), and (188d), which results from the
terms that contain cot 6. In order to solve this intrinsic divergence
problem, we require both equations (185) and (186) at and near
the poles. In practice, we zero equations (195a)—(195d), where
subscript 1 indicates the pole (§ = 0) and subscript 2 means the
point adjacent to the pole. The denser the grid in the second dimen-
sion, the more severe the intrinsic divergence problem. Therefore,
it is desirable to use fewer grid points in the second dimension for
the sake of convergence.

Since we have neglected the second-order derivatives with re-
spect to 6 that are believed to be smaller corrections to equations
(188a), (188b), and (188d) than the first-order derivatives with
respect to 0, we neglect those second-order derivatives to remove
the divergence due to the numerical errors caused by them.

There is a numerical divergence problem due to the possible
equality between ry, Tj;, and Pjand r;; 1, Tj;—1, and Pj;_;, respec-
tively. When, say, r;; equals 7;_1, the difference between them,
R = rij — rij—1, vanishes. In this case, the derivative of the dif-
ference with respect to r;; (OR'/dry) or ry—y (9R'/0r;—1) should
also vanish (i.e., 9R'/Or; = 0, or OR'/Ory_y = 0, when r; =
rij—1). If one sets IR'/9ry = 1 and 8R'/8r,~j,1 = —1 no matter
whether 7;; equals 7;;_; or not, one will run into a numerical di-
vergence problem. We introduce the 6, dp, and d7 functions in
Appendix A to solve this divergence problem.

The fourth divergence problem is due to the numerical error
caused by numerical integration of p,, that affects the ratio p/p,,,

which is a two-dimensional correction factor that appears in all the
stellar structure equations, equations (188a)—(188d), noticing that the
intrinsic singularity requires that the fewer the grid points at 6 the bet-
ter. The numerical integral is usually made in terms of the trapezoidal
rule, which is of the second order in accuracy. Deupree (1990) adds
more grid points to increase the integration precision when the
numerical integral is performed. We find that it is more efficient to
introduce a normalization factor in the integral, as shown in § A2.
When the radiative diffusion approximation (i.e., A = 0)is used,
the code converges very well. This approximation is not valid near
the surface. If we use the temperature gradient at the surface to
replace the actual gradient V, the code also converges well. How-
ever, if we use the exact expression given in equation (55), we
cannot get a converged model. The main cause is due to the nu-
merical errors in the numerical derivatives associated with 4.

7.2. Resolution

Ifthe convergence solves the internal- or self-consistency prob-
lem, then model resolution will address the external-consistency
issue. Our reference model, i.e., the one-dimensional standard
solar model, is almost the same as the best model described by
Winnick et al. (2002), who emphasize its comparison with various
observations.

From numerical experiments using different resolutions in
both dimensions, we find that the model is not sensitive to the res-
olution in the angular coordinate, but very sensitive to the mass
coordinate (see Fig. 4). This figure compares four mass resolu-
tions, in which the lower resolution is obtained by taking out one
mass point for every two points from the adjacent higher resolution
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Fic. 5.—Same as Fig. 4, but only for M = 2401 and 1201.

model. Figure 5 zooms in to compare the models with the highest
and second-highest resolutions.

We compare different angular zones in Figure 6 to make sure
that the two-dimensional model is self-consistent in the angular
direction. Figure 7 shows that the two- and one-dimensional solar
models with the same mass resolution are in very good agreement.

7.3. Surface Boundary Conditions

Until now we have used only the standard surface boundary
condition used in YREC (Pinsonneault 1988; Guenther et al.
1992). If we use these standard model surface values of pressure
and temperature as Deupree’s (1990) reference values, as indi-
cated in § 5.2.2, we obtain the same results, as seen in Figure 8.
The solid lines use equations (184a) and (184b). In order to in-
vestigate how errors in the reference pressure and temperature
affect the result, we add 1% to P given in equation (184a) and
0.1% to T,.r given in equation (184b). The result is shown by the
dotted lines in Figure 8. From the dotted lines we can see that
errors in the surface boundary condition have a larger influence
on the outer layer than on the deep part of the model.

It is inevitable that some errors are introduced when Py.r and
T,or are selected in model calculations. Nevertheless, Deupree
(1990) did not need to worry much about it, since his interest fo-
cused on the core convection. In contrast, we should be cautious
about using Deupree’s surface boundary condition, because we
want to apply our model to solar variability that takes place in the
convective envelope.

The model is less sensitive to the error in the reference pres-
sure than to that in the reference temperature.

8. TEST 2: SHELL-LIKE MAGNETIC FIELDS

Shell-like magnetic fields depend on only the radial coordi-
nate . Any physical magnetic field should be free of divergence.
The following magnetic fields are both radius dependent and
divergence-free:

(0,0,1(r)),
(C/r%,0,0),

(C/r?,0./(r)),

where f(r) is an arbitrary function of  and C is an arbitrary con-
stant. If we assume that there is no magnetic field in the radiative
zone of the Sun, then we have C = 0. Consequently, the unique
physical shell-like magnetic field is

B = (0,0,/(r)). (197)

This is the case described in § 4.2, in which

M :—84(1 41 cot29> (1 - C"tea—’"/)l
2 bl

B
B
B

2 00
m  xp
B* = ataty
47r3p, Pr

Comparing the two-dimensional stellar structure equations
(eqs. [124a]-[124d]) with their one-dimensional counterparts
(e.g., Li et al. 2003), we can see that the terms and/or factors
in the curly braces are due to two-dimensional effects.
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In the solar variability applications, we use a standard solar
model at the current age (¢ = 4.55 Gyr) as the initial model. We
apply a cyclic magnetic field to the model and use 1 yr as the time
step to advance the model.

As in the one-dimensional case, we specify x as a function of
time ¢ (or sunspot number R;) and the mass depth mp =
log (1 — m/M,) as

X(mp. Rz) = Xo(Rz) exp|— (mp — mp.)* /o], (198)
where mp, specifies the location and o specifies its width. Here
Xo 1s determined by

XO(RZ)ngg {140+[1+10g(1+Rz)]5}2, (199)

TPe

where By is an adjustable parameter (in gauss) and p,. is the den-
sity at the mass depth of m ... In this case the magnetic variable—
related derivatives reduce to

v=xp/Pr,
_ Olnx Olnmp Olnm
X" 9lnmp Olnm dlnPr
. mD(mD — mDC) 1 —10"
T o210 1070

\Y

47TPTI”4
GM2(1 — 10m0)*

In this test, x does not depend on the angular coordinate 6, as
required by a shell-like field. The resulting models should be the
same as we obtained in the one-dimensional counterparts (Li et al.

2003). The method of solution used in this study guarantees this
test, as confirmed by actual model calculations.

9. CONCLUSIONS

A high-precision two-dimensional framework for treating
stellar evolution with magnetic fields has been developed and
successfully tested. The required high precision is achieved by

using the mass coordinate to replace the radial coordinate,
including the convection instability,

including a stellar atmosphere,

allowing element diffusion,

using fixed and adjustable time steps, and

adjusting grid points.

Sk v =

The code has the potential to include rotation and turbulence,
but does not have the potential to generate them like a fully
hydrodynamic code.
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APPENDIX A Fi!
11
COEFFICIENT MATRIX )
11
Equation (196) consists of a set of nonhomogeneous linear Fp
algebraic equations. If we use A to represent the coefficient matrix Fil
and use B to represent the nonhomogeneous term, this equation
can be written down as :
Fi!
A-dw =B, (A1) FM
P
where F%“
F?
or,| Fi2
oLy, F?
6Py FZ
5T},
B=- 2 (A3)
orin FM2
8L} Fl+12
6P, FM+12
5T}
ow = (A2) FIv
oriy FIN
6[11 N FIZ’N
6Py F2N
5T}y
PN
iy FMN
0L}y pMFIN
OP} FM+IN
6Ty . . .
The coefficient matrix A has elements OF? /Owy,. Only those ele-
ments with/ =i — 1,iand k = j — 1,j may be nonzero, as shown
is a column matrix. The B term is also a column matrix, in Figure 2. We work out these nonzero elements in this appendix.

Al. USEFUL PARTIAL DERIVATIVES

The partial derivatives of the differential equations are required for the linearization. By defining the shorthand notation dyY =
0Y/0log X, we can calculate the useful derivatives as follows.

The following derivatives are almost the same as in the one-dimensional case (see Prather 1976, his Appendix A), except for those
terms due to p/p,,. These derivatives are nonzero for/ =i — 1,iand k = . If k =j — 1, they vanish:

OrP = — 4P,
OLP=0rP=0,
0pP = —P,
R = — 3R,
IR =0,

OpR = — au'R,

OrR = omR,



No. 1, 2006 TWO-DIMENSIONAL STELLAR EVOLUTION CODE. L 241

M, Oe aS p
=1 (o), * (o) 2

OrRL =0,L =0,

M, Oe dS P
ot = Lo me)ﬁ <alnT>P/At] P’

In the convective zone, we have

ORT.=(0InV,./0Inr—4)T,
oT.=0,
0pT.=(0InV,./0lnPr—1)T,,
OrT.=(0V./0InT)T..

In the radiative zone, we have

OrT, =—4T,,

oT, =T,/L,

0pT, = (0Ink/0InPr);T,,
T, =[0lmk/0InT), —4T,.

The formulae for the various partial derivatives of the physical quantities are presented in the following sections. The equation
of state calculates p, a, 6, c,, Vg, and the pressure and temperature derivatives of these quantities (see § B1). The energy
generation rate € is a function of p and T, too. Thus, (0¢/0T), and (Oe/OP) can be expressed by (9e/0InT), and (9e/01n p)p (see

§ B2) as

(0e/0InT)p = (0¢/OInT),+ (0e/0Inp)r(Olnp/OInT)p,
(0e/OInPr); =(0e/O1n p)(Olnp/dInT)p.
The derivatives of the convective gradient V, are presented in § B4.

The entropy term contains the only explicit reference to any time dependence in the stellar structure equations. It can be re-
formulated as

S =— (Pré/p) (AT /Vag — AP'),
(08/0InT), =864 (0In8/0InT),| — (P§/pVaa)[1 — (01n Vg /O In T),AT'],
(08/0InPr),=8[1 —a+ (0In6/0InPr);| + (P§/p)[1 + (0InVeg/OIn Pr) ;AT /Vad],

where (AP’, AT') are the changes between successive models.
The following derivatives are new. Similarly, these derivatives are nonzero for/ =i — 1, i and k =j. When £ = 1, we have

orB' = — 4B,

oB' = orB' =0,

opB' = - B,

ORT) = T'0InV./0Inr — 4],
aT! =0,

OpT. =T0InV./0InPr — 1],
T =TH OV, /0InT),

ORT! = — 4T,

T =T!/L,

OpT) =T OInk/dInPr),,
0T = T! [(a Ink/dInT), —4|.



242

When ¢ = 2, we have

When ¢ = 3, we have

When ¢ = 10, 11, 13, and 14, we have

LI ET AL.
oRB* = - B,

Bt =08 =0,

opB* = — B,

ORT? = T*(@InV,./dInR - 1),
T =0,

OpT* = T*(OInV,./0InP — 1),
OrT: =T*0InV,./dInT),
RT> = -T2,

aT;=T}/L,

OpT? = T2(9nk/dInPr),,
0;T? = T2 [(a Ink/dIn T)PT—4] .

oRB® =—38,

B =0,

opB® = — B oy,

orB® = B4,

KT =T°(@InV,./0InR - 3),
T, =0,

opT} =T>0InV,./0lmP - ay,),

T =T0InV,/dInT +6,),

RT? = — 377,

T ="T/L,

T, =T,;[0(Ink/0InPr)p—ay, + 1],
0T} =1T° [(a Ink/O1n T)p, +8 — 4} .

orB' = .8 =0,

opB' = B(a— 1),

orB" = — B',

KT =TY(9InV,/dInr),
aT =0,

T =T OMV,/OIP +a—1),
T =TIV, /dInT —§),

RT' =0,

oT,=T,/L,
pTL=T.[(0Ink/dInPr),+al,
T, = TL|(@In /O T), ~6 — 4],

Vol. 164



No. 1, 2006 TWO-DIMENSIONAL STELLAR EVOLUTION CODE. L 243

When ¢ = 12, 15, and 17, we have

B =—38,

B = orB =0,

opB' = - B,

KT = THOIV,./dInr - 3),
T =

opT = TY(9InV,/dInPr — 1),

T =TV, /dInT),

RT" = - 3T,

T =TYL,

T =T (9 nk/dInPr),,

OrT! = T{[(0Inw/0InT),,~4].
When k = — 1, all derivatives of B and 7 parameters vanish.

We also need similar derivatives of D parameters. When / = i — 1, k = j, all derivatives of D!, D?, D3, D2, D5 and D' are zero.
The nonzero derivatives are

ap D]O 8 D13 DZO(I;U/ASI‘,
Op, D' = — 0p, , _Dlo(r,i ry_ I)Ae,,

i—1j

Op D" =Dloy 1/ Asi,

i—1j

87 DIO 67‘. ljD13 = Dz i—li/ASiy

i—1j
aT: 1/D11 _a: “DIO(F _rl] 1)/A0j7
83.71_/.2)]4 = — D 5i71j/ASi~
When / = i, k =, the nonzero derivatives are
2 -2 _
1 _ [ cotb; b _cotl o, ) cot [ cotb s,
On D" = (maj (=i ) 1 210, (i =ri)] et 286, ||~ 2n, (ri=ria)| on

-2

,_ cotl; [ cotl
O/ D" = 209 ! 206, (r,:,. rl?f—1> Ok,

= (357) (Fi=rin) [~ 35t Ciri)] e
00,0 = 5590, (3= xtas) + (o= ) + (3= o))

11 10 0
8RijD :_A—Gjp —EﬁR Dl (r —I’lj 1)

1
00, D = <700, D | (3 = Xjr ) + (o = pis ) + (3 =54
J

8R,./.D13 = : aR,-jDZ |:(X;/j - X;—lj)

— —+
+
A~ :
>
=~
=
|
<

Or, D' = = <—0r, D' I:(Xllj = Xi-1y
1

Or, D" = — O, D7,

-1
BP:D3: cot §; [1 cot 0; ( - )} 5.
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O, D" = = 095, D" (v = rf, ) /20,
9p,D'? = D,/ AY,

8p,/D13 = Dzaij/Asia

(9P,,D14 = — Dla,»j/As,-,

)
0p DS = D> S0 s
Pi 200, 1O

Or, D" = — D*8;/As;,

6@,@11 =— 83/1710 (ré — ri;'—|>/A9-/’
07, D" = — D66,/ A,

Or, D" = — D*§;/As;,

Or, D' = D'6;;/As;,

15 oo cot 0; )
or,D”=-D —2A0j 80,

where 6z = 1 when r;; — 71 # 0 and g = 0 when r;; —r;;_1 = 0, and 0p and 6, have similar meanings. When [ =i, k =j — 1,
the nonzero derivatives are

g, D' = —0k, D'

ij—1
for/=1,2,3,10,..., 15, and 17,

Op, D' = —0p,D"

ii—1

for £ = 3, 12, and 15, and
or, D' = —0r, D'

for £ =12 and 15.
We calculate the derivatives of 72 and 3 by taking the advantage of /,,v¢ony ~ const. The nonzero derivatives are listed as fol-
lows forl=i—1,iand k =:

RrF' = —2F",
AF =0,
pF' = —F'[(0Ink/dInPr); + o+ an),

orF = F! [4 — (@Ink/OInT), +5+ 5,,,} :

OrF? = —2F,

OF?=0,

OpF2 = F2{(9In C,/dInPr) ,—B2a+ (dnk/dIn Pr); +(dInC,/dIn Pr), ]},

0rF> = P{14 (00 G fOInT),, +B[3+26 — (@ /0InT),, ~ (00 /0 T), |},
RF> = —2F,

OLF> =0,

OpF? = — 0pF Vg + F*(01InVag/OIn Pr)p,

OrF> = = 0rF Vg + F(0InVa/OInT)p

GmpV, N (aln Ve

— 1)3’-‘4, convective,

P |
RF* = RF! Gr - dlnr
m T . .
# - F4, radiative,
rer
5 74— 0, convective,
A o /L, radiative,
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\V/ InV,
GmpV. (8 N Ve oo 1)]—‘4, convective,
8f4:6f1 rPT 81nPT
P r GmpViag i (6111“) +a|F* radiative
I”PT L alnPT T 7 7
\V4 A\
9t — o F! GTPpT o <8611r; T 6>f4’ Fomeetve
roe =T GmpViag n _(aln”‘> 5 4} F*  radiative
_5— v
rPT L 811’1T P ’ ’
5 _ > c c 1 5
RF* = onF> =5 +< Sy )f )
aLFS = 07
5 2 c = — 3
6P.7: *6P}— VPT +(81HPT+Q 1>‘7: ’
s 5 ¢ c 5
O F = 0rF? — o +(alnT 6)f ’
OrF*© ZaR]ﬁ%_]:é
I’PT ’
aLfé - Oa
G
OpF® = 0pF> 2L 4 (a = )F",
T
Gmp
6 _ 3P sE6
OrF® = 0rF P, oF 7,

where 5 = (veony/v0)/(1 + Veony/v0)-
A2. NUMERICAL INTEGRALS
The quantities p,,, «,, and §,, are integrals over 6:

RS .
725/0 dfr=(m,0)p(m,0) sin 6,

() = Olnp,\  Jo dOr*(m,0)p(m,0)ca(m,0)sinb
T \olnpr ) o d0r2(m,0)p(m,0) sin 6

Pm(m,0) =

b () = 0ln py Jo d0r*(m,0)p(m,0)6(m,0) sin 6
m\M) = — = T "
omlnT Jp Jo d0r2(m,0)p(m,0) sin 6

Of course, the luminosity L is an integral, too:

e l ™
L(m) = zﬂ/ d@rz(m,O)F,(m,G)sinHZE/ do L' (m, 0)L. sin 0,
0 0

where L' = 47rr2Fr/L@. In the one-dimensional case, we know the relationship on the solar surface,
L =4nR*oTg;. (A4)
If we define

1 K
R = 5/ dOr* (Mo, 0) sin 6,
0

1 [ .
4= W/o dOr*T* (M, 0) sin 6,

equation (A4) holds well in the two-dimensional case, where M, is the total mass of the star.
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We use the trapezoidal rule to compute these integrals. For example,

o

(1/75-) S0l (1/2)(rpir sin 6 + 73 pio—1 sin 0;1) (60 — 0,1)

" Z;V ,(1/2)(sin 0y + sin Op_1)(0y — Op—1)
L Zk ,(1/2) (L3, sin0p + L}, sin 1) (0 — 0,—1)
Le 24:2(1/2)(sm O+ sinbp_1)(0 — 0o—1) ’
R — > iia(1/2) (ri sin O + iy sin 0r-1) (6 — Ge-1)

9

S, (1/2)(sin 6 + sin 6;_1) (6, — 6,_1)

)
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where N is the total grld number in the second dimension 6. We have introduced the normalization factor [Z?’ZZ%(sin 00+

sin 9[ 1)(9( 9[ 1)]

" S (1/2)(r2pie sin O + 12, pi—1 sin 01 ) (0, —
S (1/2) (r2 pidio sin 6y + 13 pio—18-1 sin 0,_1) (6 — 0,-1)

i

to remove the discrete error. The other three integrals do not need the normalization factor,

2522(1/2)(1’,%/),[04,1 sin by + 73 pi—1Qip—1 sin 0,1 ) (6p — Op_1)

)

0r-1)

)

" S (1/2)(r2 pie sin O + 73 pie—y sin 0,_1) (0, — 0,—1)
T4 — Etz 2(1/2)(’/M//T]\j/ Smo@""’M{ 1Tzéuf ysin b1 )(0p — 0p)
T XL (/) sin b+ sinb) (00— 0i1)

because they have already had their own normalization factors.

A3. INTERIOR POINTS

A3.1.w=P

There are three blocks in this group. They are

block,/=i—1and k =
block II, / =i and k = j; and

block I, / =iand k =j — 1.

We present the results block by block using the derivatives given above.

For block I,
8Fij 1 3,12,15,17
aF;; o
OLi—j ’
8Fij 1 15,17 , ,
o =~ 5 AsO Py~ 1 -5 S Bl,,D 3 (Bl 1,+B)ap,
i—1j (=1,23,10 (=10,11,13,14
OFY 1 1
== AsOrPiy —5As| > OB, D (BL., +B)or.,D|.
i—1j 3,10,11,13,14 ¢=10,11,13,14
For block II,
8FU 1 1 3,12,15,17 15,17
GRf = — 5 AsidgPy — 5 As; > BLD'+ > (BLy;+ Bk, Df]
ij (=1 (=1,2,3,10
OF)
= 07
8Ll‘j
oFY 1 1 15,17 oty , ,
aPI’D :_EASiaPPif+ 1 —EAS[[ 8pBUD Z i 1]+B 819 D
g ¢=1,2,3,10 1=3,10
OF! 1 1 pl . .
an; = — 5 AsidrPy — 5 As; oy 14&3373 Z i1+ B)or, D
ij =3,10,11,13,
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For block III,

There are three blocks in this group, too.

For block I,

For block 1II,

For block III,

OF}

OR;_y;

OFY
OLi_y;

OFY
0P,y

OFY
Ty

OFf

OR!;

Y

oFy _
oL;

OF

oP;

OF
oty

aFij 1 15,17
=——As; (Bf_\;+ B,)Or, , D
8R,’j 1 2 15:1722,;710 Y a
oF)
Ly 1
OF N ,
== +B 8])
l 1 ij—
apllj 1 2 e 3,12, 15 g P
OFY
7 :_—Asi (Bf_y; + B,)r, , D"
TU 1 2 (=12.15
A32.w=T
1 1 15,17
:_EASiaRTi_U_EASi Z 8}3 i ]/DZ
(=1,2,3,10
1 15,17
EASiaLTFIj Z oT i 1/
é 1,2,3,10
1 | 15,17
— S D80Ty =5 As; OpT' |, D (Tf LT ) dp, D
0=123,10 0=10,11,13,14
1 1 15,17
== 3850 Tiy—1 -5 As orT! |, D (Tf LT )aTH,.D‘*] .
=123,10 (=10,11,13,14
1 1 15,17 15,17
— S AsORT ;=5 As, RTLD + Y ( L +T”)6R D,
0=1,23.10 0=123,10
1 1 15,17
fEAS,@LT,-j faAs,- > TP,
(=1.223,10 )
1 1 15,17 15
— S AsOpTy — 5 As FTED + > (T, +T})on,D' |,
0=123,10 (=310
| 1 15,17
— 3850 Ty+1 -5 As orT! D' + Z( L+ T0)on, D |.
(=123,10 ‘ '
aFij 15,17
o :_—As, Z (Tl 1/+7/>6va7)£
Ru 1 (=1,23,10
OF o
L,
OFY 1
=—5As Z ( i—1 +TZ)8P:/
8Pl(jfl 2 0=3,12,15 g ]
OFf 1 0 0 ¢
A= =2 As > (T, +7T})on, D

ij—1 (=12,15
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A3.3. w=R
In this group only the first two blocks are nonzero.
For block 1,
OF} 1
=——As5;rRi—1; — 1,
R, 27 Ry
oFi
OLi_y;
OFy 1
=——As;0pRi_1;,
P~ 2Tty
8F,’{ 1
=——As5;0rRi_1;.
aTil—lj 2 §ior 1j
For block 1I,
OF}] 1
— — ~AsRRy+ 1,
8R,fj 3 N 812 ij +
OFY
R _ o,
OF}] 1
=——As;0pRyj,
op, — 2 TNOP
OF} 1
87{; = — EAs,@TR,j.
A3 4 w=1L
Similar to §§ A3.1 and A3.2, all three blocks are nonzero.
For block I,
OF] 1 As, cot9
OR!_ y Y lZaR]:l 11( Ty 1) +8R}-t IJ( Py l) ZaR]:I 11(1/ T 1)1
oFY 1 As, As; cot
__ oL F? ( v )
OLi_y; 2 A, VANV
OF) 1 1 As, cot9 s J
pr =~ 3 As0rkiy =3 = g [Zapf, (T =Ty ) + opFy, (P = Py ) +;a u(r=ri) |
OF" 1 1 As, cot@ 6
/L :__AsfaT‘Cfflj £y Zanl 11( z/ 1)+8T‘7:z 1/( 11 1)—’_287'“7:1 1]( ri;’—l) :
ot 4, 2 2 —

For block II,

OS5 (1) o (7)o (o) (770

=4

OFY B 1 As, As; cot b; 4 ,
oL, T2 ag i ( ’fH)’
OF) 1

api/j = — EASiaP’CU

_%Asl cotf [Zapf (7= 1) + 0075 (Py - Py ) + (P + 7L 1,)5p+gapffj (ré—ff}l)],
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OF} _
or);

1
— 5 AS,‘@TC,‘J'

;As,cotﬂ {i[wg (T, . 1) (fe + 7L 1/)5@ +OrF (P' ~ P 1) +Zarf ( T 1)}

=1

where 0p = 1 when P;; # P;—1 and 6p = 0 when P;; = P;_;. The definition of 07 is similar.
For block III,

OFf _ 1Ay COtafz(ﬂ + 7 u)‘SR’

oR,_, 2

oF) _,

oLy,

8F£j 1 As;cott /5

oPl 2 A, (75 + 7)o
8F’7 1 As, cot 01 p

5" 2 Z(f +FLy)ér,

where g = 1 when r;; # ry_; and 6g = 0 when r;; = ry_;.

A4. BOUNDARY POINTS

A4.1. Center: w=r
Central boundary points have only block II for w = r:

oFy
OR;,
oFy
Ly,
OFf 1
oPy; 3
OFy 1
ory, 3

A4.2. Center: w =L

Central boundary points have blocks II and III for w = L.
For block II,

S ) ) Sl ) ]
J

—4
OF) L
oLy '
oF) 9
ap?j oy Za,,f (71— 71 ) + 0p S, (P = Pl 1)+]:1j6p+28p}"1] (vt =t 1)]

= °z;ff{i[w@< ) i o (i)« S ) )

=1
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For block III,

oF) c0t9j
.7: OR;

OR}_; A ;
oF, o
OLyj— ’
OF)/ _ cot;

S )
oP|_, — A VT
oF) cot@l

8T{/.L_1 - Z Fijb

A4.3. Surface

A4.3.1. Standard
The surface boundary conditions are linearized as

8ryy; + 0(8Lag) — a18P}y; — ard Ty, = — F ™Y

)

O((SFAI@) + (SLMJ - LMa46Pj’wj - LMj aS(STA/@’ — _ FQJ+1j.

A4.3.2. Deupree’s
His surface boundary equations are simpler:

0(8ry) +0(8Lug) +1(6Py) +0(8Ty) = — Fa™,
0(6riy) +0(6Lag) +0(6Py, ) +1(8T35) = = £,

where
Fy*V =P, P

ref
M+1j _ g
F TM+1} Tref’

A4.4. Pole
The polar boundary equations are extremely simple:
6P}, — 6P, =0,
0Ty — 6Ty =0,
orfy — érjy =0,
0Ly — 6Lpn = 0.
APPENDIX B

INPUT PHYSICS
B1. THE EQUATIONS OF STATE

When a magnetic field is present, the equation of state relates the density p to the pressure P, temperature 7, magnetic energy per unit
mass Y, the ratio of specific heats v, and the chemical composition:

p= p(PT7TJX;X7Z)7
where P = Py + P, + P,, is the total pressure, P is the gas pressure, P, = aT 4/3 is the radiative pressure, P,, = xp is the magnetic

pressure, X is the mass fraction of hydrogen, and Z is the mass fraction of elements heavier than helium (the so-called metal mass
fraction). Its differential form is
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where

a = (0Inp/d1n P) at constant T, ,
6=—(0lnp/dInT) at constant P, x,
v=—(0lnp/dIny) at constant P, T.

Here X and Z are assumed to be constant.

Since it is tedious to accurately calculate the equation of state from first principles, the equations of state are usually provided by the
numerical tables as functions of (p, 7', X, Z) for P, S (entropy), U (internal energy), (9U/0p)r, ¢, = (OU/OT) ,, x, = (0 In Po/Op),
xr = (0InPy/OT) ,I'y = (01In Py/dIn p)g> Ty =Ta2/(1 =T3) = 1/Vyg,and Ty = (0 In T/ 1n p),, — 1. The equation of state (EOS)
for the gas is taken from Rogers et al. (1996). In order to take into account a magnetic field based on the EOS tables, one can use the
following correction method:

1. Use the total pressure P = Py + P, + P,,, the total internal energy U = Uy + 3P,/p + X, and the total entropy S = S +
4P,/pT + x/T to replace the gas pressure Py, the gas internal energy U, and the gas entropy S, respectively, when interpolating to
obtain the density for the given P and T.

2. Use (P + P,,)/P to rescale x,.

3. Use P, /P to rescale y from the EOS tables and add 4P,./P.

4. Add 12P,/T to c, from the EOS tables.

5. Compute I'; = Pxr/c,pT, T'y = x, + xrT'3, and Ty = T')/T5.

Taking these as known, we can calculate
a=1/x,, 8= xX1/Xp» v=P,/P, Vaa = 1/T5, ¢p = P/ pTV .

These quantities are used in calculating the convective gradient V..

B2. ENERGY GENERATION

The calculation of the energy generation includes the individual rates for the PP chain (PPI, PPII, PPIII), the CNO cycle with a
simplified NO approach to equilibrium. The coefficients of all of the reaction rates and the formulae for most of them are taken from
Fowler et al. (1975).

The reaction rate for the PP chain is actually that for the 'H( p, e"v)’D reaction and assumes that all the other reactions in the chain
are relatively instantaneous. The burning rate is then

(dX /di)gp = 4181 x 107 5px>T; 2 exp(=3.380/ 73 ) 6(a') (1.0 + 0.12375 + 10973 + 0.93875 ) 57",
where Ty = T/10° K, the screening factor f; is set equal to 1,
da’) =1+ a'[(l +2/a')1/2—1},
o' =1.93x107(¥/2X) exp(—lO.O/Tgl/3>.
The total energy of the PP chain (subtracting the energy of the neutrinos that are produced) is
epp = 6.398 x 10'8¢)(dX /dt)pp ergs g ' 57,
where

¥ =0.979f; + 0.960f;; + 0.721 fin,
fi=[(1+2/a)"? = 1]/[(1 +2/a")/* + 3],
fu=(1-f)/1+T),

S =1-A—f,

T =10"568%7[x /(1 +X)]T9_1/6 exp(—10.262/T91/3)-

The derivatives of epp can be found directly by
(Olnepp/O1n p); = epp,
(@Inepp/DInT), = cpp [ —2/3 411267/} + (90 ¢/0InT), + (DIn9p/dIn T),

+ (0041757 4072777 + 09387, ) /(1 + 0.1237, 4 109737 + 0.9387, ) |,
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(@I g/dInT), =(2/6— 1)(1+2/a’)"/*3333/T",
(0Iny/dInT), =4 {[o 258 — 0.239/(1 +T))(9/0In T), — 0.239%u /(1 +1“)(81n1“/81nT)p},
(0InT/dInT), = —1/6+3.4207/T,"°,

(9/0InT), = { a +2/0/)1/2[(‘1+2/a')1/2+3]2}713.333/T91/3.

In the calculation of the CNO bi-cycle, CN equilibrium is assumed and the CN cycle is assumed to be the only source of energy.
The hydrogen-burning rate due to the CN cycle is then

Henw = 1. x 10" pXXNTy *'" exp( —15. s,
dX /df) ey =1.202 x 107 pXXN Ty */? 15.228/Ty/*) 57!

and the energy produced is
ecn = 5.977 x 10"8(dX /dt) oy ergs g ' s
The value of Xy ('*N abundance by weight) assumes that all the carbon and nitrogen is in the form of N,
XN =Z—Zy — Xo,

where Z is the total metal abundance by weight, Z,, is the weight abundance of all non-CNO metals, and Xg is the weight
abundance of !°O. The approach to NO equilibrium is taken as a simple burning rate of '%0 assuming '’O equilibrium,

dXo/dt = 9.54 % 107 pXXo T, /! exp(—16.693/T;/3) — 1.6 x 1073 (dX /dt) oy s~

Between successive models the value of X is decreased at a rate of (dXp/dt) per second, and thus the value of Xy is corre-
spondingly increased. The derivatives of the CN energy production are

(Oecn/01n p); = ecn,

(Decn/DInT), = ECN(—z/s + 5.076/T91/3>‘

B3. RADIATIVE OPACITIES

An estimate of magnetic effects on the radiative opacities [k = (T, p, X, Z)] can be found in Li & Sofia (2001). Since they are
small, we use only the OPAL opacity tables (Iglesias & Rogers 1996) together with the low-temperature opacities from Alexander &
Ferguson (1994). For X and Z the linear interpolation is used, but for 7'and p the cubic spline interpolation is used. The cubic spline
interpolation scheme allows one to obtain the derivatives of x with respect to 7and p. These derivatives are needed in the linearization
of the equations of energy transport.

B4. THE CONVECTIVE GRADIENT AND ITS LINEARIZATION

The calculation of the convective temperature gradient V. in the envelope of the stellar models employs the mixing-length theory
(Henyey et al. 1965; Lydon & Sofia 1995) when magnetic fields are taken into account.

Defining ' = Vg — Vad, the Schwarzschild (1906) criterion is used to determine convection: 6 > 0 means convective. In the deep
interior convection zones V., is set equal to the adiabatic gradient V..

In the envelope the evaluation of V. is more complex, and we solve

FX)=aw’ +x*+ax—1=0
for y > 0 such that F(y) = 0, where
a1 =V = a30(kT°/C)) (Hp/g88')"/?,
ay = 3wV
We have defined 6’ = (Vg — V;d), p=(1+ %wz)fl, w = pkl,, and a3 = 16v/20. The root y is guaranteed to lie in the interval
(0,41), since F(0) = —1 < 0and F(1) = a; + a, > 0. Furthermore, this root y is unique, since the derivative of F, F'(x) = 3a;x> +

2x + ay, is positive definite for x > 0. An initial estimate of the root y is made, and a second-order Newton-Raphson correction is
applied:

Ay = —F(y)/F'(y) =3 [F()/F' (0] F" () /F'(5).
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The initial estimate of y is y = 1/ay, unless a3 > 10°, in which case y = (l/ag)” 3, which follows the asymptotic behavior of the
solution in either limit. Given the solution y, the convective gradient is computed by

vc = v;d + (vrad - v;d)y(y + al)-

The linearization of the convective gradient is cumbersome but can be calculated. We consider derivatives with respect to In Pr,
InT, InR and L:

OVe OV o5’ Oy Olna
dlnx 8lnx+y(y+a1)8lnx+5 (2y+al)8lnx+a1y Olnx |

where

' Vi, OV

rad

Olnx Idlnx Olnx’

The derivatives of V., come from the equation of state and are nonvanishing only for x = Pr or T. The derivatives of
Viad = (3/16mac)(kLLoPr) | (GMT*)

are nonvanishing for x = Py, T, or L:

OV1aa vrad(l+ c'?lnn) ’
T

81HPT 611’1PT
OVia Olnk
1n Py —v”‘d(_4+ dln T),,’
avrad o vrald

oL L~

In the radiative zone, the actual temperature gradient is equal to the radiative temperature gradient V = V,,q; its derivatives are
given here. The opacity tables provide log k versus (log p, log T'). In order to calculate

(OInk/0InT)p=(0k/0InT),+ (0Ink/IInp);(0lnp/0InT)p,
(Olnk/0InP); =0Ink/OInp);(Olnp/dInT)p,

one needs (O Inx/OInT) , and (01nk/01n p); (see Iglesias & Rogers 1996; Alexander & Ferguson 1994). The derivatives of y are
functions of @; and a3,

ay _ 1 p 8lna1+a 3 Oas
Olnx  F'(y) Y omx “ 9mx)

which need the derivatives of a; and as,

dlna;  dln¢ Jlnk OlnT 0InC, 10WInHp 1 o8 10lng 10Iné

dlnx ~ dlnx 61nx+ dlnx Olnx +E Olnx 28'0lnx 20Inx 2dInx’
alna3_ Olnw Odln¢g Jdlna

dlnx ~Olnx  dlnx Olnx

The derivatives of 6 = —(0In p/OT ), and C, are computed by the equation of state. By calculating the derivative of ¢,

Olng¢ 2 2¢8Inw
olnx 3% ?Omx’

and by expressing Hp and g explicitly, one can obtain

Olna 2 ,, 0w OmlnC, 1 06 190Iné Pr OlnT dlnr Olnk 19dInp
onx  3Y ?9mmx  Olnx _2_68lnx_§81nx_m+ é’lnx+261nx+8lnx_§81nx7
81na3:2¢w781na1'
Olnx Odlnx Jlnx
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The derivatives of w with respect to Py, T, and r are straightforward,

81nw_1+ Olnk
81nPT_ 8]1‘1PT T’
Olnw (Olnk
OlnT \0InT),
Ohnw

=2.
Olnr
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