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ABSTRACT

A high-precision two-dimensional stellar evolution code has been developed for studying solar variability due to
structural changes produced by varying internal magnetic fields of arbitrary configurations. Specifically, we are in-
terested in modeling the effects of a dynamo-type field on the detailed internal structure and on the global parameters
of the Sun. The high precision is required to model both very small solar changes (of the order of 10�4) and short
timescales (of the order of 1 yr). It is accomplished by using the mass coordinate to replace the radial coordinate, by
using fixed and adjustable time steps, a realistic stellar atmosphere, and element diffusion, and by adjusting the grid
points. We have also built into the code the potential to subsequently include rotation and turbulence. The current
code has been tested for several cases, including its ability to reproduce the one-dimensional results.

Subject headings: stars: evolution — stars: variables: other — Sun: interior — Sun: oscillations

1. INTRODUCTION

Modern standard solar models are known to yield the solar
structure to an amazing degree of precision (see e.g., Guenther &
Demarque 1997; Basu et al. 2000; Winnick et al. 2002). These
models, however, cannot explain the solar cycle, and other solar-
cycle-related variability. The reason for this shortcoming is that
these models do not include the dynamo magnetic fields and rel-
evant temporal variability.

Following the suggestion by Sofia et al. (1979) that any
change in the solar luminosity L must be accompanied by a
change in the radiusR, a number of theoretical investigations have
attempted to establish the relationship between these changes
(denoted asW ¼ � ln R /� ln L), by including internal processes
designed to mimic the effects of dynamo fields. We classify them
into three broad categories:

1. perturbation calculation (see Endal et al. 1985 for a review
of the early work; Balmforth et al. 1996 for subsequent work),

2. approximation analysis (see Spruit 1991, 2000 for refer-
ence), and

3. stellar evolution with magnetic fields (this method was ini-
tiated by Lydon & Sofia [1995], updated by Li & Sofia [2001],
generalized to include turbulence by Li et al. [2002], and further
generalized to include the interaction between turbulence and
magnetic fields by Li et al. [2003]).

The first two are illustrative, but not conclusive. The third can
model the effects of arbitrary magnetic field configurations. Li
et al. (2003) attempted to produce the observed cycle variations
of all global solar parameters and the p-mode oscillation frequen-
cies. The result is promising (e.g., Sofia et al. 2005), but it is not
final both because the one-dimensional approximation is used and
because not all global parameter data exist for the same time span.
The one-dimensional approximation only allows us to use a shell-
like magnetic field configuration. This approximation is relatively
limiting. For example, in one-dimensional codes the energy flux
can only advance to the surface by penetrating the magnetic field

shell. If the magnetic field were toroidal, as most dynamo mod-
els require, energy flow could circumvent the field. The aim of
this paper is to describe a mathematical technique that can model
arbitrary magnetic field configurations by generalizing our one-
dimensional technique into the two-dimensional case.

In order to match the observed variations of solar global pa-
rameters and helioseismic frequencies, two-dimensional solar mod-
els should fulfill at least the following precision requirements:

1. a luminosity resolution equal or better than 10�2% per year,
because the observed cyclic variation of total solar irradiance is
about 0.1% per cycle;

2. a radius resolution equal or better than 10�5% per year, be-
cause the observed cyclic variation of solar radiusmay be as small
as 10�4% per cycle;

3. a realistic atmosphere model, because the helioseismic fre-
quencies are sensitive to it;

4. suitable boundary conditions, because the model is sensi-
tive to them;

5. element diffusion, because the helioseismic frequencies are
sensitive to composition;

6. a magnetic field, because there is no cyclic variation with-
out magnetic field;

7. turbulence, because helioseismic observations require it;
and

8. the interaction between turbulence andmagnetic fields, be-
cause helioseismic observations require it.

Our one-dimensional code, which is based on the Yale Stellar
Evolution Code YREC (Guenther et al. 1992), meets all these
requirements, which is a nontrivial accomplishment. It is dif-
ficult tomodify the other existing two- or three-dimensional codes
(e.g.,Deupree 1990; Turcotte 2001), since each of themwas devel-
opedwith specific objectives not requiring this degree of precision.

We attempted to include magnetic fields in Deupree’s two-
dimensional stellar evolution code (Deupree 1990), but we were
unable to compare the model results with solar observations and
our one-dimensional results, probably because

1. the two-dimensional model has different center and surface
boundary conditions than the one-dimensional model,

2. the two-dimensional model does not include an atmo-
sphere model, and
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3. the numerical accuracy is not high enough to match the
solar observations.

This experience convinced us that it would be easier to develop a
high-precision two-dimensional stellar structure and evolution
code by straightforwardly generalizing our one-dimensional code
rather than modifying an existing two-dimensional code. Our ex-
perience shows that this conviction was well founded.

The highest precision requirement is that the cyclic variation
of solar radius should be better than 10�5% per year, because the
observed cyclic variation of solar radius may be as small as
10�4% per cycle. There are various uncertainties in the input
physics (e.g., Boothroyd & Sackmann 2003; Sackmann &
Boothroyd 2003). Although these uncertainties affect the interior
structure of the Sun, they have little influence on the cyclic vari-
ations of solar global parameters such as solar radius, solar lumi-
nosity, and solar effective temperature because of calibration and
subtraction of the same parameter at two different times, which
remove various possible uncertainties in the cyclic variations of
global solar parameters. Such a high precision for the cyclic vari-
ations of global solar parameters is thus achievable.

We outline here the basic schematic of the method in order to
prevent the readers from getting lost in the detailed derivations.

As is common practice, the starting points are the conserva-
tion laws of mass, momentum, energy, and composition, as well
as the Newtonian universal gravitational law. Both momentum
conservation equations and the Poisson equation are second-
order differential equations.We use the radiation transport equation
to relate the temperature gradient to the energy flux in the radiative
zone and use the mixing-length theory to calculate the temperature
gradient in the convective zone. We include magnetic fields in this
paper and include in the code the potential to subsequently include
turbulence and rotation.

The main relation is the coordinate transformation from the
radial coordinate r to themass coordinatem. Regardingmass, we
should specify the spatial range that the mass occupies. We use
the equipotential surface S� on which

�ðr; �; tÞ ¼ �c ð1Þ

to indicate the spatial range, where we have assumed that the
system is azimuthally symmetric or axisymmetric and that�cmay
vary with time. The time coordinate t is taken as a parameter.
Solving equation (1) for r, we obtain the equipotential surface

r ¼ Rð�c; �; tÞ: ð2Þ

This equipotential surface encloses volume V�, which is de-
fined by

V� �
�2½0; 2��;
�2½0; ��;
r2½0;Rð�c; �; tÞ�:

8><
>: ð3Þ

The mass contained in V� is defined by

m¼ mð�c; tÞ �
Z V�

� dV

¼
Z 2�

0

d�

Z �

0

d� sin �

Z Rð�c;�;tÞ

0

ds �ðs; �; tÞs2

¼ 2�

Z �

0

d� sin �

Z Rð�c;�;tÞ

0

ds �ðs; �; tÞs2; ð4Þ

where � ¼ �ðr; �; tÞ is the density. Solving equation (4) for �c,
we obtain

�c ¼ �cðm; tÞ: ð5Þ

Substituting equation (5) into equation (2), we obtain the coor-
dinate transformation relation from ðr; �; tÞ to ðm; �; tÞ:

r ¼ Rð�cðm; tÞ; �; tÞ ¼ r ðm; �; tÞ; � ¼ �; t ¼ t: ð6Þ

For any dependent variable X, for example, P, T, Fr, or �, we
have

@X

@�

� �
m

¼ @X

@�

� �
r

þ @X

@r

� �
�

@r

@�

� �
m

: ð7Þ

In order to achieve a high precision that is comparable to the
one-dimensional solar model in the two-dimensional case, using
limited computational resources, we cannot directly numerically
solve those conservation equations and the Poisson equation. For
example, even in the hydrostatic case, we have five dependent
variables such as pressure (P), temperature (T ), radius (r), gravi-
tational potential (�), and flux (Fr orL ¼ 4�r 2Fr). The coefficient
matrix of the linearized difference equations with gridsM ; N has
N ¼ 5MN ; 5MN elements, where M (N ) is the number of grid
points for the mass (colatitude) coordinate. The one-dimensional
solar model has M � 2000. If we take N ¼ 20, we obtain N �
4 ; 1010. Since 232 ¼ 4 ; 10243, a 32 bit computer can handle
only 2 ; 10243� 2 ; 109 elements, noting that 1 bit is used to
represent the sign of a number. Of course, a 64 bit computer does
not impose such constraint, but the computation speed will be-
come an obstacle.
Analytical solutions are accurate, but such solutions are hard

to obtain in the general case. The one-dimensional case is accur-
ate because we do not need to numerically solve the second-order
Poisson equation for the gravitational potential�0. It is well known
that the gravitational acceleration in the spherically symmetric case
is

g ¼ d�0=dr ¼ Gm=r 2: ð8Þ

In order to take a similar advantage in the two-dimensional
case, we show in this paper that equation (8) can be generalized
as

@�

@r
¼ Gm

r 2
þ 2�Grð�� �mÞ �

cot �

2r

@�

@�
þ Oð2Þ; ð9Þ

whereO(2) represents a much smaller correction than the retained
terms and �m is defined by

�mðm; �; tÞ �
1

2r 2

Z �

0

d�R2ð�c; �; tÞ�ðRð�c; �; tÞ; �; tÞ sin �:

ð10Þ

Like equation (8) in the one-dimensional case, equation (9) substan-
tially simplifies the two-dimensional stellar structure equations.
In the two-dimensional case, the radial component of the en-

ergy flux vector F, Fr , and the �-dependent luminosity, L �
4�r 2Frðr; �; tÞ, are equivalent to each other, but the actual lumi-
nosity L� is different from the �-dependent luminosity L because

L� � 2�

Z �

0

r 2Frðr; �; tÞ sin � d�: ð11Þ
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The basic equations are described in x 2, and then the coor-
dinate transformation from the radial coordinate to the mass co-
ordinate is performed in x 3. Various possible magnetic field
configurations are converted into suitable expressions that appear
in the stellar structure equations in x 4. Boundary conditions are
equally important, so we use a whole section (x 5) to elaborate
them. The method of solution is detailed in x 6. The coefficient
matrix and input physics used in x 6 are presented inAppendicesA
and B, respectively. The evolution sequences without any mag-
netic field andwith a shell-like magnetic field are presented in xx 7
and 8 to test the method.

2. BASIC EQUATIONS

The basic equations consist of the time-dependent conserva-
tion laws of mass, momentum, energy, and composition and the
Poisson equation (Deupree 1990), as well as the radiative trans-
fer equation (Unno & Spiegel 1966):

@�

@t
þ:= ð�vÞ ¼ 0; ð12aÞ

�
dv

dt
¼�:P � �:�þ 1

4�
ð:< BÞ < B; ð12bÞ

�T
dST

dt
¼���:=Frad; ð12cÞ

d�i
dt

¼Qi; ð12dÞ

92� ¼ 4�G�; ð12eÞ
:=Frad ¼� 4��ðJ � BÞ; ð12f Þ

where v is the velocity of a fluid element,B is the magnetic field, �
is the nuclear energy generation rate per unit mass, Frad is the ra-
diative energy flux, �i is the density of species i, Qi is the creation
rate of species i, G is the universal gravitational constant, J is the
mean radiative intensity, � is the absorption coefficient, and B is
the Kirchhoff-Planck function. The total derivative is defined by
d/dt � @/@t þ v =:.

The specific entropy ST includes both nonmagnetic and mag-
netic components, as shown in the first law of thermodynamics
(Callen 1966, p. 242; Lydon & Sofia 1995),

T dST ¼ dU þ P dV � d�; ð13Þ

where U is the nonmagnetic specific internal energy, V ¼ 1/�
is the specific volume, � ¼ jBj2/8�� is the specific magnetic
energy, and P is the nonmagnetic pressure. Since the magnetic
work d� is taken from the nonmagnetic internal energy, the total
internal UT energy decreases:

UT ¼ U � �: ð14Þ

The isotropic magnetic pressure component Pm can be expressed
by � and �:

Pm ¼ ��: ð15Þ

The total isotropic pressure component PT can thus be defined
as

PT ¼ P þ Pm: ð16Þ

Using PT , T, and � as independent thermodynamic variables, the
equation of state and the first law of thermodynamics read (Lydon
& Sofia 1995)

d�=� ¼ � dPT=PT � 	 dT=T � 
 d�=�; ð17aÞ
T dST ¼ CP dT � ð	=�Þ dPT þ ðPT	
=Pm�Þ d�; ð17bÞ

where

� � ð@ ln �=@ ln PT ÞT ;�; t; 	 � �ð@ ln �=@ ln TÞPT ;�; t
; ð18aÞ


 � �ð@ ln �=@ ln �ÞPT ;T ; t
; CP � ð@UT=@TÞPT ;�; t

: ð18bÞ

From the first law of thermodynamics (eq. [17b]), we can define
two adiabatic gradients. One fixes the specific magnetic energy,

9ad �
@ ln T

@ ln PT

� �
ST ;�

¼ PT	

�CPT
; ð19Þ

and another does not fix the specific magnetic energy,

90
ad �

@ ln T

@ ln PT

� �
ST

¼ 9ad 1� 
9�

�

� �
; ð20Þ

where the magnetic energy gradient 9� is defined as

9� �
@ ln �

@ ln PT

: ð21Þ

In order to close the radiative transfer equation (eq. [12f]), we
use the Eddington approximation (Unno & Spiegel 1966),

Frad ¼ � 4�

3��
:J : ð22Þ

Unlike Deupree (1990), we do not directly solve these equa-
tions. We first perform some analytic work to make some ap-
proximations in advance.

2.1. Mass Conservation Equation

Deupree (1990) uses the constancy of the total mass during the
model evolution to determine the radius at the equator. In con-
trast, we want to determine the equipotential surface S�, r ¼
Rð�c; �; tÞ ¼ rðm; �; tÞ, as in the one-dimensional case.

Mass conservation can be expressed by either equation (4) or
its differential form,

@m

@r
¼ @m

@R
¼ 4�r 2ðm; �; tÞ�mðm; �; tÞ; ð23Þ

where

r 2ðm; �; tÞ�mðm; �; tÞ �
1

2

Z �

0

d�R2ð�c;�;tÞ�ðRð�c; �; tÞ;�; tÞ sin �

¼ f ðm; tÞ: ð24Þ

It should be pointed out that in general,

�mðm; �; tÞ 6¼ �ðRð�c; �; tÞ; �; tÞ: ð25Þ

Nevertheless, in the spherically symmetric case, �mðm; tÞ is in-
deed equal to �ðRð�cÞ; tÞ. Since f ðm; tÞ is an integral, the two-
dimensional case is much more complicated (i.e., nonlocal)
than its one-dimensional counterpart ( local). This complexity
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may be the price we have to pay to go from one dimension to
two dimensions.

2.2. Gravitational Acceleration

Wewant to show here that the last two terms [excludingO(2)]
on the right-hand side of equation (9) are due to the two-dimensional
corrections to the gravitational acceleration. To this end,we should
start from the Poisson equation, equation (12e), which can be ex-
panded as follows in the spherical polar coordinate system:

1

r 2
@

@r
r 2
@�

@r

� �
þ 1

r 2 sin �

@

@�
sin �

@�

@�

� �
¼ 4�G�; ð26Þ

where we have assumed that � ¼ �ðr; �; tÞ does not vary with
the � coordinate. We expand � around its spherically symmet-
ric state:

�ðr; �; tÞ ¼ �0ðr; tÞ þ 	�ðr; �; tÞ; ð27Þ

where 	� is a small correction and

@�0

@r
¼ Gm

r 2
: ð28Þ

Substituting equations (27) and (28) into equation (26), we
obtain

@�

@r
¼ Gm

r 2
þ 2�Grð�� �mÞ �

cot �

2r

@�

@�
þ Oð2Þ; ð29Þ

where

Oð2Þ ¼ � r

2

@ 2	�

@r 2
þ 1

r 2
@ 2�

@�2

� �
: ð30Þ

2.3. Momentum Conservation Equation

Generally, we can decompose the total velocity v in the basic
equations into three components:

v ¼ V0 þ Vrot þ v0; ð31Þ

where V0 is a secular evolution velocity, Vrot is the rotation ve-
locity, and v0 is the turbulent convection velocity. We neglect
the secular expansion and rotation velocity components in the
momentum conservation, i.e., we assume

v ¼ v0 ð32Þ

in equation (12b). We checked in the one-dimensional case that
the term dV0 /dt in the momentum equation is negligible. Sub-
stituting equation (32) into equation (12b) and averaging the
resulting equation over the time t and azimuthal angle �, we
obtain

�:v02 ¼ �:P � �:�þ 1

4�
ð:< BÞ < B; ð33Þ

where v02 ¼ v02x þ v02y þ v02z is computed by solving the basic equa-
tions in the three-dimensional convection simulations of the outer
layers of the Sun (Robinson et al. 2003), in which the average is
taken over the time t and the horizontal coordinates x and y in
a sample box. We have shown how to include turbulence in the
one-dimensional case (Li et al. 2002). We neglect the turbulent
contribution to the momentum equation here so as to stress the

two-dimensional effects due to magnetic fields, i.e., we simply
set

v02 ¼ 0 ð34Þ

in this paper.
We assume that the system is azimuthally symmetric. Under

this assumption, the vector equation (33) is equivalent to the two
scalar equations

@PT

@r
¼� �

@�

@r
þHr; ð35aÞ

1

r

@PT

@�
¼� �

r

@�

@�
þH�; ð35bÞ

where PT ¼ P þ Pm is the total pressure, including the magnetic
pressure Pm ¼ B2/8�, and

H� 1

4�
ðB = :ÞB; ð36Þ

noticing that

1

4�
ð:< BÞ< B ¼�:

B2

8�

� �
þ 1

4�
ðB = :ÞB: ð37Þ

In the one-dimensional case, we have only a single scalar equa-
tion to describe the momentum conservation, i.e., equation (35a).
In contrast, we need three scalar equations for themomentum con-
servation in the two-dimensional case, i.e., equations (29), (35a),
and (35b). It would be much better if we could combine these
three equations into a single scalar equation. Fortunately, we can.
To this end, solving equation (35b) for @�/@�, we obtain

@�

@�
¼ � 1

�

@PT

@�
þ r

�
H�: ð38Þ

Then substituting this into equation (29), we obtain

@�

@r
¼ Gm

r 2
þ 2�Gr ð�� �mÞ þ

cot �

2r�

@PT

@�
� cot �

2�
H� þ Oð2Þ:

ð39Þ

Substituting equation (39) into equation (35a), we finally obtain

@PT

@r
¼� Gm�

r 2
þHr � 2�Gr�ð�� �mÞ

� cot �

2r

@PT

@�
þ 1

2
H� cot �þOð2Þ: ð40Þ

This is our momentum conservation equation. The last three
right-hand-side terms represent the two-dimensional effects.

2.4. Energy Conservation Equation

The energy conservation equation (eq. [12c]) depends on the
velocity in the total derivative:

dST

dt
¼ @ST

@t
þ ðV0 þ v0Þ = :ST : ð41Þ

The secular expansion velocity V0 cannot be neglected, and from
now on we define

dST

dt
� @ST

@t
þ V0 =:ST : ð42Þ
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The statistical average of �Tv0 =:ST , namely, h�Tv0 =:ST i, will
determine the divergence of the convective flux Fconv:

:=Fconv � �Tv0 =:STh i: ð43Þ

By defining the total energy flux to be the sum of both the convec-
tive and radiative flux,F ¼ Frad þ Fconv, equation (12c) becomes

:=F ¼ � �� T
dST

dt

� �
; ð44Þ

where

T
dST

dt
¼ CPT

d ln T

dt
�9ad 1� 
9�

�

� �
d ln PT

dt

� �
: ð45Þ

In the azimuthal case, equation (44) is equivalent to the equation

1

r 2
@ðr 2FrÞ
@r

¼ � �� T
dS

dt

� �
� 1

r sin �

@ðsin �F�Þ
@�

: ð46Þ

We work out both the radial flux component Fr and polar flux
component F� in the next subsections.

2.5. Energy Transport by Radiation

The radiative flux is given by equation (22), in which themean
radiative intensity J is governed by the radiative transfer equa-
tion (eq. [12f ]). The Planck function B is known:

B ¼ ac

4�
T 4; ð47Þ

where a is the radiative constant and c is the speed of light in vac-
uum. In stellar interior, local thermodynamic equilibrium is a good
approximation, which leads to

J � B ¼ ac

4�
T 4: ð48Þ

Themore accurate solution of equations (12f) and (22) is (see
Unno & Spiegel 1966)

J ¼ Bþ
l 2p

3
92Bþ

l 4p

5
94Bþ : : :; ð49Þ

where lp ¼ 1/�� is the mean free path of photons. Since

92B ¼ 1

r 2
@

@r
r 2
@B

@r

� �
; ð50Þ

using equation (47) in equation (50), we obtain

92B ¼ 49s 49s�1þ �� 	9s þ
@ ln9s

@ ln PT

� 4�r 2HP�m
m

� �
B

H 2
P

;

ð51Þ

where HP � �dr/d ln PT ¼ P/�g is the pressure scale height
and 9s is the actual temperature gradient. Substituting equa-
tion (51) into equation (49), we obtain the mean radiative in-
tensity that goes beyond the local thermodynamic equilibrium
approximation with one more term correction:

J ¼ 1þ k0
l 2p

H 2
P

 !
B; ð52Þ

where

k0 ¼
4

3
9s 49s � 1þ �� 	9s þ

@ ln9s

@ ln PT

� �
: ð53Þ

Wewant to note that the term ð4�r 2HP�m/mÞðl 2p /H 2
P ÞT1 is neg-

ligible in the whole star. Using this solution in equation (22), we
obtain

Frad ¼ � 4acT3

3��
ð1þ kÞ:T ; ð54Þ

where

k � k0

(
1� 1

2

�
@ ln �

@ ln T

�
PT

� 1

2

1

9s

"
1þ
�
@ ln �

@ ln PT

�
T

� 2HP

r

#

þ 1

4

@ ln k0
@ ln T

)
l 2p

H2
P

: ð55Þ

Since lp is much smaller than HP in the optically thick region,
we know k � 0, so that equation (54) reduces to the widely used
approximation expression without k. However, lp can be com-
parable to or larger than HP near the surface, and the correction
factor k cannot be neglected.

2.6. Energy Transport by Convection

Without solving the turbulent convection problem, equa-
tion (43) only tells us that the convective flux may depend on the
convective velocity vconv and the entropy ST, where the convec-
tive velocity vconv has only the statistical meaning. We use the
mixing-length theory to obtain an analytic expression for Fconv

in terms of vconv and ST (e.g., Stix 1989; Lydon & Sofia 1995).
Since the convective velocity has only the statistical meaning,
we assume that the turbulent convection is isotropic, so that
Fconv depends on the amplitude of the convective velocity vconv:

Fconv ¼�1
2
�Tlm f ðvconvÞ:ST ; ð56Þ

where f (v) will be determined by the mixing-length theory and
lm is the mixing length. It is well known that f ðvÞ ¼ v when the
radiative loss of the convective element and the magnetic fields
are neglected (e.g., Stix 1989).

The starting point of the mixing-length theory (MLT) is to
calculate the excess heat flux in the radial direction:

Fr
conv ¼�vconvDQ ¼ �vconvðQe � QsÞ

¼�vconv
�
CPðTe � TsÞ � ð	=�Þ PTe � PTsð Þ

þ ðPT	
=Pm�Þð�e � �sÞ
�
; ð57Þ

where we have used the first law of thermodynamics DQ ¼
TDST . The subscripts e and s stand for a convective eddy and its
surroundings. If the eddy is always assumed to be in pressure
equilibrium (DPT ¼ PTe ¼ PTs ¼ 0) and magnetic equilibrium
(D� ¼ �e � �s ¼ 0) with its surroundings, we have

F r
conv ¼ �vconvCPðTe�TsÞ ¼

lm

2HP

�vconvCPTð9s �9eÞ; ð58Þ

where the mixing-length approximation in MLT is used to
calculate the temperature (or density) difference:

Te � Ts ¼
lm

2

@Te
@r

� @Ts
@r

� �
¼ lmT

2HP

ð9s �9eÞ: ð59Þ

TWO-DIMENSIONAL STELLAR EVOLUTION CODE. I. 219No. 1, 2006



We have also defined the eddy and surrounding temperature
gradients and the pressure scale height as

9e �
@ ln T

@ ln PT

� �
e

; 9s �
@ ln T

@ ln PT

� �
s

; HP � � @r

@ ln PT

:

ð60Þ

The convective velocity vconv is generated by the radial buoy-
ancy. The radial buoyancy acceleration is related to the density
difference by

d 2r

dt2
¼ �g D�

�

� �
; ð61Þ

where g is the gravitational acceleration. For standard MLT, the
density difference is related to the temperature difference via the
equation of state with DPT ¼ 0 and D� ¼ 0 (see eq. [17a]):

D�

�
¼ � DT

T

� �
	 ¼ lm	

2HP

ð9e �9sÞ: ð62Þ

We also use the mixing-length approximation to calculate buoy-
ancy acceleration

d 2r

dt 2
¼ 1

2

@

@r

dr

dt

� �2
¼ 1

2

dr

dt

� �2
max

2

lm
¼ 4v2conv

lm
; ð63Þ

where we have assumed that the convective velocity vconv equals
half of the maximum velocity (dr/dt)max. Substituting equa-
tions (62) and (63) into equation (61), we obtain

v2conv ¼ g	ð9s �9eÞðl 2m=8HPÞ: ð64Þ

This gives

9s �9e ¼
8HP

gl 2m	
v2conv: ð65Þ

Substituting this into equation (58), we obtain

F r
conv ¼ ð4�CPT=glm	 Þv3conv: ð66Þ

Equation (54) yields

F r
rad ¼

4acT 4

3��HP

ð1þ kÞ9s: ð67Þ

Defining a ‘‘radiative’’ gradient

9rad ¼
3��HPFr

4acT4
; ð68Þ

we obtain

Fr ¼
4acT 4

3��HP

ð1þ kÞ9rad: ð69Þ

We use the energy flux conservation law F r
conv þ F r

rad ¼ Fr to
constrain the convective velocity by

1

1þ k
4�CPT

glm	

3��HP

4acT4
v3conv þ9s ¼ 9rad: ð70Þ

2.6.1. Nonmagnetic Adiabatic Approximation

When the convective eddy is adiabatic, its temperature gra-
dient equals the adiabatic gradient. The nonmagnetic approxi-
mation implies � ¼ 0. Therefore, the temperature gradient in a
nonmagnetic adiabatic eddy is determined by

9e ¼ 90
ad ¼ 9ad: ð71Þ

Equation (58) thus becomes

F r
conv ¼ � 1

2
�Tlmvconv

@S

@r

� �
s

; ð72Þ

where we have used the equality

@S

@r

� �
s

¼ � CP

HP

ð9s �9adÞ: ð73Þ

Comparing equation (72) with the radial component of equa-
tion (56), we find

f ðvÞ ¼ v; ð74Þ

as stated above.
Using equations (65) and (71) in equation (70), we obtain the

cubic equation of the convective velocity,

1

1þ k
4�CPT

glm	

3��HP

4acT4
v3conv þ

8HP

gl 2m	
v2conv ¼ 9rad �9ad: ð75Þ

The convective instability condition in the adiabatic approxi-
mation is

9rad � 9s > 9e ¼ 9ad; ð76Þ

according to equation (64).

2.6.2. Nonmagnetic Nonadiabatic Approximation

During its rise the eddy radiates energy into its environment.
For this reason the eddy gradient 9e differs from the adiabatic
gradient 9ad. We decompose the convective flux (eq. [58]) into
the adiabatic (the first right-hand-side term) and nonadiabatic
(the second right-hand-side term) fluxes:

F r
conv ¼

1

2

lmvconv
HP

�TCPð9s �9eÞ

¼ 1

2

lmvconv
HP

�TCPð9s �9adÞ

þ 1

2

lmvconv
HP

�TCPð9ad �9eÞ: ð77Þ

If the effective cross section of the convective eddy is q, the heat
energy-loss rate of the eddy due to radiation can be expressed by

dQr

dt
¼ 1

2

lmvconv
HP

�TCPð9ad �9eÞq: ð78Þ

We can also use equation (54) to calculate the radiative loss by

dQr

dt
¼ � 4acT 3

3��

Te � Ts

d
� ¼ � 1

2

lm�

HPd

4acT 4

3��
ð9s �9eÞ;

ð79Þ
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where d is the effective radius of the eddy and� is the eddy sur-
face. Comparing equation (79) with equation (78), we obtain

9e �9ad ¼ ðv0=vconvÞð9s �9eÞ; ð80Þ

where

v0 ¼
lm�

qd

4acT3

3�CP

1

lm��
: ð81Þ

Substituting equation (80) into equation (77), we can express
9s �9e by 9s �9ad:

9s �9e ¼
1

1þ v0=vconv
ð9s �9adÞ

¼ � 1

1þ v0=vconv

HP

CP

@ST
@r

� �
s

; ð82Þ

where we have used equation (73). Finally, using equation (82)
in equation (77) we obtain

F r
conv ¼� 1

2
�Tlm

vconv
1þ v0=vconv

@S

@r

� �
s

: ð83Þ

This shows that

f ðvÞ ¼ v

1þ v0=v
: ð84Þ

Using equation (65) in equation (82), we obtain

9s �9ad ¼
8HP

gl 2m	
v2conv 1þ v0

vconv

� �
: ð85Þ

Substituting this into equation (70), we obtain the cubic equa-
tion of the convective velocity,

4�CPT

glm	

3��HP

4acT4
v3conv þ

8HP

gl 2m	
v2conv 1þ v0

vconv

� �
¼ 9rad �9ad:

ð86Þ

The convective instability condition in the nonmagnetic non-
adiabatic approximation is

9rad � 9s > 9e > 9ad; ð87Þ

according to equation (64).

2.6.3. General Case

When magnetic fields are present, we have

@ST
@r

� �
s

¼ � CP

HP

ð9s �90
adÞ: ð88Þ

We decompose the convective flux (eq. [58]) into the adiabatic
(the first right-hand-side term) and nonadiabatic (the second
right-hand-side term) fluxes:

F r
conv ¼

1

2

lmvconv
HP

�TCPð9s �9eÞ

¼ 1

2

lmvconv
HP

�TCPð9s �90
adÞ

þ 1

2

lmvconv
HP

�TCPð90
ad �9eÞ: ð89Þ

The heat energy-loss rate of the eddy due to radiation now can
be expressed by

dQr

dt
¼ 1

2

lmvconv
HP

�TCPð90
ad �9eÞq: ð90Þ

The radiation loss rate calculated by equation (54) is the same as
that given in equation (79). Comparing equation (79) with equa-
tion (90), we obtain

9e �90
ad ¼ ðv0=vconvÞð9s �9eÞ: ð91Þ

Substituting equation (91) into equation (89), we can express
9s �9e by 9s �90

ad:

9s �9e ¼
1

1þ v0=vconv
ð9s �90

adÞ

¼ � 1

1þ v0=vconv

HP

CP

@ST
@r

� �
s

; ð92Þ

where we have used equation (88). Finally, substituting equa-
tion (92) into equation (89), we obtain

F r
conv ¼ � 1

2
�Tlm

vconv
1þ v0=vconv

@ST
@r

� �
s

; ð93Þ

which leads up to equation (84).
Using equation (65) in equation (92), we obtain

9s �90
ad ¼

8HP

gl 2m	
v2conv 1þ v0

vconv

� �
: ð94Þ

Substituting this into equation (70), we obtain the cubic equa-
tion of the convective velocity in a magnetic system,

4�CPT

glm	

3��HP

4acT4
v3conv þ

8HP

gl 2m	
v2conv 1þ v0

vconv

� �
¼9rad �90

ad:

ð95Þ

The convective instability condition in the magnetic nonadia-
batic case is

9rad � 9s > 9e > 9ad; ð96Þ

according to equation (64).
Equation (95) can be rewritten as

2A0y
3 þ Vy2 þ V 2y� V ¼ 0; ð97Þ

where we have defined the dimensionless variable

y ¼ V vconv=v0 ð98Þ

and the dimensionless parameters

v0 ¼ 6acT3=�CPlm��;

C ¼ gl 2m	

8Hp

;

V ¼ v0=
h
C1=2ð9rad �90

ad Þ
1=2
i
;

A0 ¼
9

8

1

1þ k
:
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We choose lm�/qd ¼ 9/2 for spherical eddies and d/lm ¼ 8/9.
The convective gradient can be expressed by y as

9conv ¼ 9s ¼ 90
ad þ ð9rad �90

adÞyð yþ V Þ; ð99Þ

according to equation (94).
When magnetic fields are neglected, 90

ad ¼ 9ad, all formulae
automatically reduce to their counterparts in x 2.6.2.

2.7. Energy Flux Vector

In the radiative zone, the total energy flux vector equals the
radiative flux (eq. [54]),

F ¼� 4acT3

3��
ð1þ kÞ:T : ð100Þ

In the convective zone, the total energy flux vector equals the
sum of the radiative (eq. [54]) and convective (eq. [56]) fluxes,

F ¼� 4acT 3

3��
ð1þ kÞ:T � 1

2

�Tlmvconv
1þ vconv=v0

:ST

¼� 4acT3

3��
ð1þ kÞ þ 1

2

�CPlmvconv
1þ vconv=v0

� �
:T

þ 1

2

�CPT 90
adlmvconv

1þ vconv=v0

1

PT

:PT ; ð101Þ

where we have used the formula

:ST ¼ ðCP=TÞ:T � ðCP9
0
ad=PT Þ:PT : ð102Þ

2.8. Composition Conservation

Equation (12d) describes the composition conservation law,
which can be rewritten as

�
@Xi

@t
þ Xi

@�

@t
þ:= ð�Xiv

0Þ ¼ Qi; ð103Þ

where we have used equation (32) and have used the mass frac-
tion Xi � �i/� to replace density �i. We have also assumed
:= v0 ¼ 0. Equation (103) involves two timescales: one is the
thermonuclear reaction timescale �nucl, which determines Qi

and is quite long, and another is the convection timescale � conv,
which determines the convection mixing and is much shorter
than the former.

As before, taking the statistical average over equation (103),
we obtain

�
@Xi

@t
þ 1

�
:= �Xiv

0h i ¼ qi; ð104Þ

where we have used the assumption h@�/@ti ¼ 0 and defined
qi � Qi /�. Using the mixing-length theory, we can express the
mass flux Fi � h�Xiv

0i as

Fi ¼�1
2
�vconvlm:Xi: ð105Þ

Substituting equation (105) into equation (104), we obtain

@Xi

@t
¼ qi þ

1

2�
:= ð�vconvlm:XiÞ: ð106Þ

In the radiative zone, the element diffusion velocity wi (e.g.,
Thoul et al. 1994) changes the local composition in addition to

the thermonuclear reactions. Element diffusion in stars is driven
by pressure gradients (or gravity), temperature gradients, com-
position gradients, and radiation pressure. Gravity tends to con-
centrate the heavier elements toward the center of the star.
Temperature gradients lead to thermal diffusion, which tends
to concentrate more highly charged and more massive species
toward the hottest region of the star, its center. Concentration
gradients oppose the above two processes. Radiation pressure
causes negligible diffusion in the solar core. Element diffusion
affects the element abundances, the mean molecular weight, and
the radiative opacity in the radiative zone, and therefore affects the
calculated neutrino fluxes and oscillation frequencies, on which
observations impose strict constraints on the solar model.
The characteristic time for elements to diffuse a solar radius

under solar conditions is of the order of 6 ; 1013 yr, much longer
than the age of the Sun. Element diffusion therefore introduces
only a small correction. Many authors have studied this topic
carefully (see Thoul et al. 1994 and references therein), and both
portable subroutine and analytic formulae for element diffusion
calculations are available. In particular, the formulae for the ele-
ment diffusion velocity fit our theoretical framework developed
in this paper. We use the formula given by Thoul et al. (1994)
with qi included,

@Xi

@t
¼ qi �

1

r 2�

@

@r
ðr 2�XiwiÞ; ð107Þ

where

wiðrÞ ¼
T5=2

�
Ai
p

@ ln PT

@r
þ Ai

T

@ ln T

@r
þ Ai

H

@ ln CH

@r

� �
: ð108Þ

See Thoul et al. (1994) for the expansion coefficients, which are
actually computed by numerically solving the multifluid equa-
tions for all species. These formulae just give readers the main
idea. We use the portable subroutine provided by the authors to
compute the element diffusion correction. Diffusion in the polar
direction is negligible.

3. COORDINATE TRANSFORMATION FROM r TO m

So far, all derivatives with respect to � assume r to be constant.
What we need is to obtain the corresponding derivatives at the
constant m. This can be done by using the so-called implicit-
function rule, that is,

@

@�

� �
m

¼ @

@�

� �
r

þ @r

@�

� �
m

@

@r
¼ @

@�

� �
r

þ @ ln r

@�

� �
m

@

@ ln r
:

ð109Þ

From now on, we use the following shortcuts to save writing:

r 0 ¼ ln r; �0 ¼ ln �; P 0 ¼ ln PT ;

T 0 ¼ ln T ; s ¼ lnm: ð110Þ

We note that ln is the natural logarithm.
Another formula we need for this purpose is the mass con-

servation equation, equation (23), which can be rewritten as

@r 0

@s
¼ m

4�r3�m
: ð111Þ
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3.1. Momentum Conservation Equation

We perform the necessary coordinate transformation from r to
m in equation (40). The only term that needs to be transformed is
the term that contains @PT /@�, which is equivalent to ð@PT /@�Þr.
Using equation (109), we obtain

@PT

@�
¼ @PT

@�

� �
m

� @PT

@r 0
@r 0

@�

� �
m

: ð112Þ

Consequently, equation (40) becomes

@PT

@r
¼ 1� cot �

2

@r 0

@�

� �
m

� ��1
"
� Gm�

r 2
� 2�Gr� �� �mð Þ

� cot �

2r

@PT

@�

� �
m

þHr þ
1

2
H� cot �

#
þ Oð2Þ: ð113Þ

The first factor on the right-hand side is caused by the coordi-
nate transformation from r to m.

Since@PT /@r ¼ ðPT /rÞð@s/@r 0Þð@P 0/@sÞ, using equation (111),
we can rewrite equation (113) as

@P 0

@s
¼ � Gm2

4�r 4PT

�

�m
þ�þMþ Oð2Þ; ð114Þ

where

� ¼� Gmð�� �mÞ
2rPT

�

�m
1� cot �

2

@r 0

@ cot �

� �
m

� ��1

� m

4�r 3�m

cot �

2

@P 0

@�

� �
m

1� cot �

2

@r 0

@�

� �
m

� ��1

� Gm2

4�r 4PT

�

�m

cot �

2

@r 0

@�

� �
m

1� cot �

2

@r 0

@�

� �
m

� ��1

;

M ¼ m

4�r 2�mPT

1� cot �

2

@r 0

@�

� �
m

� ��1

Hr þ
1

2
H� cot �

� �
:

3.2. Energy Conservation Equation

The starting equation is equation (46). The only term that
needs to be transformed is the term that contains the derivative of
ðsin �F�Þwith respect to �. This term is a small two-dimensional
correction to the energy conservation equation, since F� , which
is given in equation (101), is already a combination of the first-
order derivatives of T and PT ,

F�¼� 4acT4

3��
ð1þ kÞ þ 1

2

�CPTlmvconv
1þ vconv=v0

� �
1

r

@T 0

@�

þ 1

2

�CPTlmvconv
1þ vconv=v0

90
ad

r

@P 0

@�
: ð116Þ

Therefore, after neglecting the higher-order corrections as we
did above, the energy conservation equation becomes

1

r 2
@ðr 2FrÞ
@r

¼ � �� T
dST

dt

� �
� F� cot �

r
þ Oð2Þ: ð117Þ

This shows that we only need to transform F� from r to m. Ap-
plying equation (109) to ð@T 0/@�Þr and ð@P 0/@�Þr in equa-
tion (116), we obtain

F�¼� 4acT 4

3��
ð1þ kÞ þ 1

2

�CPTlmvconv
1þ vconv=v0

� �
1

r

;
@T 0

@�

� �
m

� @T 0

@r 0
@r 0

@�

� �
m

� �

þ 1

2

�CPTlmvconv
1þ vconv=v0

90
ad

r

@P 0

@�

� �
m

� @P 0

@r 0
@r 0

@�

� �
m

� �

¼� 4acT 4

3��
ð1þ kÞ þ 1

2

�CPTlmvconv
1þ vconv=v0

� �
1

r

;
@T 0

@�

� �
m

þ Gm�

rPT

9
@r 0

@�

� �
m

� �

þ 1

2

�CPTlmvconv
1þ vconv=v0

90
ad

r

@P 0

@�

� �
m

þ Gm�

rPT

@r 0

@�

� �
m

� �
; ð118Þ

where 9 is the temperature gradient.
The second step is to use equation (111) to replace @r by @s in

equation (46). Unlike r 0, P 0, and T 0, which are the natural loga-
rithms, we define

L0 � 4�r 2Fr=L�; ð119Þ

which is not a logarithm at all. The resulting equation is

@L0

@s
¼ 1

L�
m �� T

dST

dt

� �
�

�m
� 1

L�

mF� cot �

r�m
þ Oð2Þ: ð120Þ

3.3. Composition Conservation

Equation (106) involves the derivatives with respect to � at
constant r. Since what we need are the corresponding derivatives
at constant m, this equation needs a coordinate transformation
from r to m. To this end, we first expand it as

@Xi

@t
¼ qi þ

1

2r 2�

@

@r
r 2�vconvlm

@Xi

@r

� �

þ 1

2r 2� sin �

@

@�
sin ��vconvlm

@Xi

@�

� �
: ð121Þ

The last right-hand-side term needs the transformation. We retain
its most important part. The resulting equation is

@Xi

@t
¼ qi þ 1þ 1

2

@�0

@r 0

� �
vconvlm

@Xi

@r

þ cot �vconvlm
2r 2

@Xi

@�

� �
m

þOð2Þ; ð122Þ

where

Oð2Þ ¼ 1

2

@ 2Xi

@r 2
þ vconvlm

2r 2
@�0

@�

@Xi

@�
þ vconvlm

2r 2
@ 2Xi

@�2

� cot �vconvlm
2r 2

@Xi

@r 0
@r 0

@�

� �
m

: ð123Þ

Wehave taken advantage of the fact that vconvlm � constant in stars.
Since the convection timescale is much shorter than the evo-

lution timescale, the convection zone is well mixed on the evo-
lution timescale. As a result, the detailed expression for the
composition conservation equation in the convection zone does
not matter much. We do it here just for the sake of completeness.
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3.4. Two-dimensional Stellar Structure Equations

In summary, we obtain the two-dimensional stellar structure
equations with ðm; �Þ as independent variables:

@r 0

@s
¼ m

4�r 3�

�

�m

� �
; ð124aÞ

@P 0

@s
¼� Gm2

4�r 4PT

�

�m

� �
þ �f g þ Mf g þ Oð2Þ; ð124bÞ

@T 0

@s
¼ @P 0

@s

9rad; radiative;

9c; convective;

�
ð124cÞ

@L0

@s
¼ 1

L�
m �� T

dST

dt

� �
�

�m

� �
� 1

L�

mF� cot �

r�m

� �
þ Oð2Þ;

ð124dÞ

@Xi

@t
¼ qi þ

� 1

r 2�

@

@r
ðr 2�XiwiÞ; radiative;

1þ 1

2

@� 0

@r 0

� �
vconvlm

@Xi

@r

þ cot �

2r 2
vconvlm

@Xi

@�

� �
m

� �
þ Oð2Þ; convective:

8>>>>>>><
>>>>>>>:

ð124eÞ

Those terms or factors associatedwith two-dimensional effects are
indicated by curly braces in the equations. The symbols used
above are defined as

� ¼� m

4�r 3�m

cot �

2

@P 0

@�

� �
m

1� cot �

2

@r 0

@�

� �
m

� ��1

� Gmð�� �mÞ
2rPT

�

�m
1� cot �

2

@r 0

@�

� �
m

� ��1

� Gm2

4�r 4PT

�

�m

cot �

2

@r 0

@�

� �
m

1� cot �

2

@r 0

@�

� �
m

� ��1

;

ð125aÞ

M¼ m

4�r 2�mPT

1� cot �

2

@r 0

@�

� �
m

� ��1

Hr þ
1

2
H� cot �

� �
;

ð125bÞ

F� ¼� 4acT 4

3��
ð1þ kÞ þ 1

2

�CPTlmvconv
1þ vconv=v0

� �
1

r

;
@T 0

@�

� �
m

þ Gm�

rPT

9
@r 0

@�

� �
m

� �

þ 1

2

�CPTlmvconv
1þ vconv=v0

90
ad

r

@P 0

@�

� �
m

þ Gm�

rPT

@r 0

@�

� �
m

� �
:

ð125cÞ

From now on, we drop the subscriptm in the derivatives such as
ð@r 0/@�Þm,

@r 0

@�

� �
m

¼) @r 0

@�
: ð126Þ

Wherever needed,we specify the subscriptm or r to avoid confusion.

4. MAGNETIC FIELDS

Our strategy is to take advantage of analytical results as much
as possible. For this purpose, in this section we work out the

explicit expressions for the terms associated with magnetic
fields.
Generally, a magnetic field has three components. Using the

spherical coordinate system, it can be expressed by

B ¼ ðBr;B�;B�Þ: ð127Þ

All three components are functions of m and � in the azimuth-
ally symmetric case treated in this paper. The B-related terms
are expressed by H (see eq. [36]), which can be expanded as

4�rH¼ er rB =:Br � B�B� � B�B�
	 


þ e� rB = :B� � B�B� cot �þ B�Br

	 

þ e� rB =:B� þ B�Br � B�B� cot �

	 

: ð128Þ

Consequently, we see

4�rHr ¼ rB = :Br � B�B� � B�B�; ð129aÞ
4�rH� ¼ rB = :B� � B�B� cot �þ B�Br; ð129bÞ
4�rH� ¼ rB = :B� þ B�Br � B�B� cot �: ð129cÞ

WeuseB to define three stellar magnetic parameters, in addition
to the conventional stellar parameters such as pressure, temper-
ature, radius, and luminosity. The first magnetic parameter is the
magnetic kinetic energy per unit mass, �,

� ¼ B2=ð8��Þ: ð130Þ

The second is the heat index due to the magnetic field, or the
ratio of the magnetic pressure in the radial direction to the mag-
netic energy density, � � 1,

� ¼ 1þ ðB2
� þ B2

�Þ=B2: ð131Þ

Lydon & Sofia (1995) introduced the first two in the one-
dimensional case. Here we introduce the third one, the ratio of
the magnetic pressure in the colatitude direction to the magnetic
energy density, #� 1,

# ¼ 1þ ðB2
� þ B2

r Þ=B2: ð132Þ

We can use these three magnetic parameters to express three
components of a magnetic field as

Br ¼ ½8�ð2� �Þ���1=2; ð133aÞ

B� ¼ ½8�ð2� #Þ���1=2; ð133bÞ

B� ¼ ½8�ð� þ #� 3Þ���1=2: ð133cÞ

We discuss below various possible cases. Note that any case
should satisfy the restriction

:=B ¼ 0: ð134Þ

4.1. B ¼ ð0; 0; 0Þ
In this case,

� ¼ 0; # ¼ 1; � ¼ 1; H ¼ 0: ð135Þ

Consequently, the term associated with magnetic fields vanishes,
namely,

M ¼ 0: ð136Þ
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Defining

B1 ¼� Gm2

4�r 4PT

�

�m
; ð137aÞ

B2 ¼� Gmð�� �mÞ
2rPT

�

�m
; ð137bÞ

B3 ¼� m

4�r 3�m
; ð137cÞ

we can rewrite � as

�¼ B1 cot �

2

@r 0

@�
1� cot �

2

@r 0

@�

� ��1

þB2 1� cot �

2

@r 0

@�

� ��1

þ B3 cot �

2

@P 0

@�
1� cot �

2

@r 0

@�

� ��1

: ð138Þ

Solving this case will provide us with a standard two-
dimensional stellar model.

4.2. B ¼ ð0; 0;B�Þ
SinceB� is assumed to depend on only r and �, equation (134) is

satisfied for any arbitrary functionB� ¼ B�ðr; �Þ. In this case, since

� ¼ B2
�=ð8��Þ; # ¼ 2; � ¼ 2;

we have

Br ¼ 0; ð139aÞ
B� ¼ 0; ð139bÞ

B� ¼ ð8���Þ1=2: ð139cÞ

Substituting these into equations (129a) and (129b), we obtain

Hr ¼� 2��=r; ð140aÞ
H� ¼ Hr cot �: ð140bÞ

Substituting them into equation (125b), we obtain

M¼�B 4 1þ 1

2
cot2�

� �
1� cot �

2

@r 0

@�

� ��1

; ð141Þ

where

B 4 ¼ m

2�r 3�m

��

PT

: ð142Þ

4.3. B ¼ ð0;B�; 0Þ
Equation (134) requires

@ðsin �B�Þ
@�

¼ 0: ð143Þ

This leads to

B� ¼ BðrÞ=sin �; ð144Þ

where B(r) is an arbitrary function of r.
In this case, since

�¼ B2
�=ð8��Þ; # ¼ 1; � ¼ 2;

we have

Br ¼ 0; ð145aÞ

B� ¼ ð8���Þ1=2; ð145bÞ
B� ¼ 0: ð145cÞ

Equation (144) requires thatB ¼ ð8���Þ1=2 sin � does not depend
on �.

In order to calculateM, we have to calculateHr andH� first.
Substituting equations (145a)–(145c) into equations (129a) and
(129b), we obtain

Hr ¼� 2��=r; ð146aÞ

H� ¼
1

4�r

1

2

@B2
�

@�

� �
r

ð146bÞ

¼ ��

r

@� 0

@�
þ @�0

@�

� �
m

� 4�r 3�m
m

@�0

@s
þ @�0

@s

� �
@r 0

@�

� �
m

� �
:

ð146cÞ

Substituting them into equation (125b), we obtain M,

M¼� B 4 1� cot �

4

@�0

@�
þ @�0

@�

� �� �
1� cot �

2

@r 0

@�

� ��1

�B5 @�
0

@s
þ @�0

@s

� �
cot �

2

@r 0

@�
1� cot �

2

@r 0

@�

� ��1

; ð147Þ

where

B5 ¼��=PT : ð148Þ

4.4. B ¼ ðBr; 0; 0Þ
In this case, since

�¼ B2
r=ð8��Þ; # ¼ 2; � ¼ 1;

we have

Br ¼ ð8���Þ1=2; ð149aÞ
B� ¼ 0; ð149bÞ
B� ¼ 0: ð149cÞ

Equation (134) requires

@ðr 2BrÞ
@r

¼ 0: ð150Þ

This leads to

Br ¼ Bð�Þ=r 2; ð151Þ

where B(� ) is an arbitrary function of �. Therefore, we know

B ¼ ð8���Þ1=2r 2 ð152Þ

varies with only �.
Substituting equations (149a)–(149c) into equations (129a)

and (129b), we obtain

Hr ¼
4�r 3�m

m

��

r

@�0

@s
þ @�0

@s

� �
;

H� ¼ 0:

Substituting them into equation (125b), we obtain M,

M ¼ B5 @�0

@s
þ @�0

@s

� �
1� cot �

2

@r 0

@�

� ��1

: ð153Þ
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4.5. B ¼ ð0;B�;B�Þ
In this case, since

� ¼
B2
� þ B2

�

8��
; # ¼ 1þ

B2
�

B2
� þ B2

�

; � ¼ 2;

we have

Br ¼ 0; ð154aÞ

B� ¼ ½8�ð2� #Þ���1=2; ð154bÞ

B� ¼ ½8�ð#� 1Þ���1=2: ð154cÞ

Equation (134) requires

@ðsin �B�Þ
@�

¼ 0: ð155Þ

This leads to

B� ¼ BðrÞ= sin �; ð156Þ

where B(r) is an arbitrary function of r. Therefore, we have the
constraint that ½8�ð2� #Þ���1/2 sin � depends only on r.

Substituting equations (154a)–(154c) into equations (129a)
and (129b), we obtain

Hr ¼� 2��=r; ð157aÞ

H� ¼� 2��

r
ð#� 1Þ cot �þ 1

r

@

@�
½ð2� #Þ���

� �
r

¼� 2��

r
ð#� 1Þ cot �þ 1

r

@

@�
½ð2� #Þ���

� �
m

� 1

r

4�r 3�m
m

@r 0

@�

� �
m

@

@s
½ð2� #Þ���: ð157bÞ

Substituting these expressions into equation (125b), we obtain

M ¼� B 6 1� cot �

2

@r 0

@�

� ��1

þ B7 cot �

2

@�0

@�
þ @�0

@�
þ @# 00

@�

� �
1� cot �

2

@r 0

@�

� ��1

� B8 @�0

@s
þ @�0

@s
þ @#00

@s

� �
cot �

2

@r 0

@�
1� cot �

2

@r 0

@�

� ��1

;

ð158Þ

where

B6 ¼ B4 1þ 1
2
ð#� 1Þ cot2�

� �
;

B7 ¼ t1
2
B4ð2� #Þ;

B8 ¼ B5ð2� #Þ;
@#00

@s
¼ @

@s
log ð2� #Þ;

@#00

@�
¼ @

@�
log ð2� #Þ:

4.6. B ¼ ðBr;B�; 0Þ
In this case, since

� ¼ B2
r þ B2

�

8��
; # ¼ 1þ B2

r

B2
r þ B2

�

; � ¼ 1þ B2
�

B2
r þ B2

�

;

we have

Br ¼ ½8�ð2� �Þ���1=2; ð159aÞ

B� ¼ ½8�ð2� #Þ���1=2; ð159bÞ
B� ¼ 0: ð159cÞ

We have used the fact that

� þ # ¼ 3: ð160Þ

A meaningful magnetic field should satisfy equation (134). For
example, r2Brdoes not varywith r, and sin �B� does not varywith �.
Substituting equations (159a)–(159c) into equations (129a)

and (129b), we obtain

Hr ¼�ð2� #Þ 2��
r

þð2� �Þ 4�r
3�m
m

��

r

@�0

@s
þ @� 0

@s
þ @ � 00

@s

� �

þ ½ð2� �Þð2� #Þ�1=2 ��
r

@�0

@�
þ @� 0

@�
þ @ � 00

@�

� �

�½ð2��Þð2�#Þ�1=2��
r

4�r 3�m
m

@r 0

@�

@�0

@s
þ @�0

@s
þ @� 00

@s

� �
;

H�¼½ð2� �Þð2� #Þ�1=2 2��
r

þ ½ð2� �Þð2� #Þ�1=2 4�r
3�m
m

��

r

@�0

@s
þ @�0

@s
þ @#00

@s

� �

þ ð2� #Þ ��
r

@�0

@�
þ @�0

@�
þ @#00

@�

� �

� ð2� #Þ ��
r

4�r 3�m
m

@r 0

@�

@�0

@s
þ @�0

@s
þ @#00

@s

� �
:

Substituting these expressions into equation (125b), we obtain

M ¼� B9 1� cot �

2

@r 0

@�

� ��1

þ B10 @�0

@s
þ @�0

@s
þ @� 00

@s

� �
1� cot �

2

@r 0

@�

� ��1

� B11 @r
0

@�

@�0

@s
þ @�0

@s
þ @ � 00

@s

� �
1� cot �

2

@r 0

@�

� ��1

þ B12 @�0

@�
þ @�0

@�
þ @� 00

@�

� �
1� cot �

2

@r 0

@�

� ��1

þ B13 @�0

@s
þ @�0

@s
þ @#00

@s

� �
1� cot �

2

@r 0

@�

� ��1

� B14 @�0

@s
þ @�0

@s
þ @#00

@s

� �
cot �

2

@r 0

@�
1� cot �

2

@r 0

@�

� ��1

þ B15 cot �

2

@�0

@�
þ @�0

@�
þ @#00

@�

� �
1� cot �

2

@r 0

@�

� ��1

;

ð162Þ
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where

B9 ¼ B 4 2� #ð Þ � cot �

2
2� �ð Þ 2� #ð Þ½ �1=2

� �
;

B10 ¼ B5 2� �ð Þ;

B11 ¼ B5 2� #ð Þ 2� �ð Þ½ �1=2;

B12 ¼ 1
2
B4 2� #ð Þ 2� �ð Þ½ �1=2;

B13 ¼ 1
2
B5 cot � 2� #ð Þ 2� �ð Þ½ �1=2;

B14 ¼ B8;

B15 ¼ B7;

@ � 00

@s
¼ @

@s
log 2� �ð Þ;

@ � 00

@�
¼ @

@�
log 2� �ð Þ:

4.7. B ¼ ðBr; 0;B�Þ
In this case, since

� ¼ B2
r þ B2

�

8��
; # ¼ 2; � ¼ 1þ

B2
�

B2
r þ B2

�

;

we have

Br ¼ ½8�ð2� �Þ���1=2; ð163aÞ
B� ¼ 0; ð163bÞ

B� ¼ ½8�ð� � 1Þ���1=2: ð163cÞ

Ameaningful magnetic field should satisfy equation (134), which
requires r2Br not to vary with r.

Substituting equations (163a)–(163c) into equations (129a)
and (129b), we obtain

Hr ¼�ð� �1Þ2��
r

þ 4�r 3�m
m

��

r
ð2� �Þ @�

0

@s
þ @�0

@s
þ @� 00

@s

� �
;

H� ¼� ð� � 1Þ 2��
r

cot �:

Substituting these expressions into equation (125b), we obtain

M¼� B16 1� cot �

2

@r 0

@�

� ��1

þ B10 @�0

@s
þ @�0

@s
þ @ � 00

@s

� �
1� cot �

2

@r 0

@�

� ��1

; ð164Þ

where

B16 ¼ B 4ð� � 1Þ 1þ 1
2
cot2�

	 

:

4.8. B ¼ ðBr;B�;B�Þ
This is the general case, in which all magnetic field parameters

�, #, and � are variables. Therefore, we use the general expres-
sions for Br, B�, and B� given at the beginning of this section.

Substituting equations (133a)–(133c) into equations (129a) and
(129b) to calculate Hr and H�, we obtain

Hr ¼�ð� �1Þ2��
r

þ ð2� �Þ 4�r
3�m
m

��

r

@�0

@s
þ @�0

@s
þ @� 00

@s

� �

þ ½ð2� �Þð2� #Þ�1=2 ��
r

@�0

@�
þ @� 0

@�
þ @ � 00

@�

� �

�½ð2� �Þð2�#Þ�1=2 4�r
3�m
m

��

r

@r 0

@�

@�0

@s
þ @�0

@s
þ @� 00

@s

� �
;

H� ¼½ð2� �Þð2� #Þ�1=2 2��
r

� ð� þ #� 3Þ 2��
r

cot �

þ ½ð2� �Þð2� #Þ�1=2 4�r
3�m
m

��

r

@�0

@s
þ @�0

@s
þ @#00

@s

� �

þ ð2� #Þ ��
r

@� 0

@�
þ @�0

@�
þ @#00

@�

� �

� ð2� #Þ 4�r
3�m
m

��

r

@r 0

@�

@� 0

@s
þ @�0

@s
þ @#00

@s

� �
:

Substituting these expressions into equation (125b), we obtain

M ¼� B17 1� cot �

2

@r 0

@�

� ��1

þ B10 @�0

@s
þ @�0

@s
þ @� 00

@s

� �
1� cot �

2

@r 0

@�

� ��1

� B11 @r
0

@�

@�0

@s
þ @�0

@s
þ @ � 00

@s

� �
1� cot �

2

@r 0

@�

� ��1

þ B12 @�0

@�
þ @�0

@�
þ @� 00

@�

� �
1� cot �

2

@r 0

@�

� ��1

þ B13 @�0

@s
þ @�0

@s
þ @#00

@s

� �
1� cot �

2

@r 0

@�

� ��1

� B14 @�0

@s
þ @�0

@s
þ @#00

@s

� �
cot �

2

@r 0

@�
1� cot �

2

@r 0

@�

� ��1

þ B15 cot �

2

@�0

@�
þ @�0

@�
þ @#00

@�

� �
1� cot �

2

@r 0

@�

� ��1

;

ð165Þ

where

B17 ¼ B4
n
� � 1� 1

2
cot �½ð2� �Þð2� #Þ�1=2

þ ð� þ #� 3Þ1
2
cot2�

o
: ð166Þ

Realistic magnetic fields in the stellar interior should satisfy
the Maxwell equations. One of them is the divergence-free condi-
tion specified by equation (134). Using the coordinate ðm; �Þ, this
equation reads

4�r�m sin �

m

@ðr 2BrÞ
@s

þ @ðsin �B�Þ
@�

¼ Oð2Þ: ð167Þ

Assuming Br ¼ CðmÞ cos �/r 2, by solving this equation for
B�ðr; �Þ we obtain

B�ðr; �Þ ¼� 2�r�m
m

dCðsÞ
ds

sin �: ð168Þ

So far, we have finished the coordinate transformation from
ðr; �Þ to ðm; �Þ. This allows us to use the analytical formulae, for
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instance, � and M, to describe the two-dimensional effects.
This effort has at least the following rewards:

1. Wecancontrol the approximations byneglecting certain terms.
2. We can understand whether a certain factor or factors play

an important role by including or excluding the corresponding
term or terms in the numerical calculations.

3. We can use the existing technique to numerically solve the
two-dimensional stellar structure equations.

4. We can use the analytical expressions to calculate the matrix
element coefficients for the linearization correction equations.

We make use of these advantages below.

5. BOUNDARY CONDITIONS

As usual in mathematical physics, the boundary conditions
constitute a serious part of the whole problem, and their influence
on the solutions is not easy to foresee. In the one-dimensional stel-
lar model calculations, the boundary conditions cannot be speci-
fied at one end of the interval ½0;Mtot� only, but rather are split into
some that are given at the center and some near the surface of the
star. The central conditions are simple, whereas the surface condi-
tions involve observable quantities. The boundaries in the angular
direction are located at � ¼ 0 and either � ¼ �/2 or � ¼ �. We fol-
low Deupree (1990) in using symmetry conditions to determine
them. Otherwise, the treatment of the boundary conditions is as
described in Prather (1976, his Appendix A) and as implemented
in YREC (Pinsonneault 1988).

5.1. Central Conditions

Two boundary conditions can be specified for the center, de-
fined by

m ¼ 0 : r ¼ 0; L ¼ 0: ð169Þ

Rewriting equation (124a) as

dr 3 ¼ 3

4��m
dm; ð170Þ

we can integrate it over a small mass interval ½0;m� in which
�m ¼ �mc can be considered to be constant. The result

r ¼ 3

4��mc

� �1=3

m1=3 ð171Þ

can be considered to be the first term in a series expansion of r
around m ¼ 0. Taking the logarithm, we obtain

r 0 ¼ 1
3
½s� log ð4��m=3Þ�: ð172Þ

A corresponding integration of equation (124d) yields

L0 ¼ m

L�
�� T

dST

dt

� �
�

�m
� m

L�

F�

r�m
cot �: ð173Þ

In both cases we have used the proper boundary conditions
(eq. [169]) by taking the lower limit of integration to be zero.

Equations (172) and (173) are two central boundary condi-
tions that are equivalent to equation (169).

5.2. Surface Boundary Conditions

5.2.1. One-dimensional Surface Boundary Conditions

Nothing is a priori known about the central values of pressure
Pc and temperature Tc, so we need to define the surface and spec-
ify the surface values of pressure and temperature.

In principle, we can use a definition for the surface such as

m ¼ Mtot: ð174Þ

However, since near the surface m does not change much, this
definition is not accurate enough. The theory of stellar atmo-
spheres suggests the use of the photosphere, from which the
bulk of the radiation is emitted into space:

T ¼ TeA; ð175Þ

where Teff is the effective temperature. The optical depth � s of
the overlying layers,

� ¼
Z 1

R

�� dr;

is equal to 2/3 for the Eddington approximation,

T 4 ¼ 3
4
T 4
eA � þ 2

3

	 

; ð176Þ

where R is the total stellar radius. In contrast, the optical depth
�s ¼ 0:312155 of the overlying layers is different from 2/3 if
the atmosphere is assumed to obey a scaled solar T(�) relation
given by Krishna Swamy (1966),

T 4ð�Þ ¼ 3
4
T 4
eA½� þ 1:39� 0:815 exp ð�2:54�Þ

� 0:025 exp ð�30:0�Þ�: ð177Þ

Since Teff is the temperature of that blackbody that yields the
same surface flux of energy as the star, then

m ¼ Mtot : Ls ¼ 4�R2
T 4
eA; ð178Þ

where 
 ¼ ac/4 is the Stefan-Boltzmann constant of radiation
and Ls is the total luminosity. This is one of two surface bound-
ary conditions.
The second surface boundary condition is the hydrostatic equi-

libriumcondition: the pressure at the surface is given by theweight
of thematter above.We can well approximate the gravitational ac-
celeration by the constant value g0 ¼ GMtot/R

2, since the bulk of
the matter above the surface is very close to the photosphere any-
way. We hence have

m ¼ Mtot : Ps ¼
Z 1

R

g� dr ¼ GMtot

R2
I ; ð179Þ

where the integration

I ¼
Z �s

0

1

�
d�

is calculated in the following way: The starting values of (P0, �0)
are chosen by selecting a small density �0 and then computing

P0 ¼ ða=3ÞT 4
0 þ �0RT0;

where T0 � Tð� ¼ 0Þ. Then (P0, �0) gives �1, which gives
�0ð�1; T0Þ, which gives �1 ¼ �0P0/g or 	� ¼ �1 � �0. Thus, we
have I0 ¼ 	� /�0. Then we redefine �0 ¼ �1 and �0 ¼ �1. This
method could be iterated upon by redefining T0 ¼ Tð�0Þ and so
forth:

I ¼ I0 þ
1

2

1

�0
þ 1

�1

� �
	� þ : : : :

Sufficient accuracy was achieved in the atmosphere integration
by choosing a small enough �0 (e.g., �0 ¼ 10�10) such that
� < 10�4.
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From the calculation description, we can see that I ¼
IðPs; TeAÞ. However, we do not know the explicit expression.
Therefore, we cannot directly use equations (178) and (179) as
our surface boundary conditions. Instead, we solve the system
(Kippenhahn 1967)

P 0
1 T 0

1 1

P 0
2 T 0

2 1

P 0
3 T 0

3 1

0
B@

1
CA

a1 a4 a7

a2 a5 a8

a3 a6 a9

0
B@

1
CA ¼

R0
1 ln L1 T 0

eA1

R0
2 ln L2 T 0

eA2

R0
3 ln L3 T 0

eA3

0
B@

1
CA

ð180Þ

for the ai that are used for the surface boundary conditions,

R0 ¼ a1P
0 þ a2T

0 þ a3; ð181aÞ
ln L ¼ a4P

0 þ a5T
0 þ a6; ð181bÞ

and for the calculation of the effective temperature,

T 0
eA ¼ a7P

0 þ a8T
0 þ a9: ð182Þ

Here, the (P 0, T 0 ) refer to the values at the outermost mass point in
themodel. The last three equations can be considered to be the first
term in the series expansions of equations (178) and (179).

The initial model with an estimated ( ln L�, T 0�
eA) is triangulated

in the ( ln L, T 0
eA)-plane by constructing three atmospheres of the

form

A1; ln L� � 1
2
�L; T

0�
eA þ 1

2
�T

	 

;

A2; ln L� � 1
2
�L; T

0�
eA � 1

2
�T

	 

;

A3; ln L� þ 1
2
�L; T

0�
eA

	 

:

If subsequent models or the model itself during convergence
move significantly out of the triangle, the triangle is flipped until it
once again constrains themodel. The decision as towhich point of
the triangle should be flipped (if any) can be made by testing

ci ¼ f
h
ln Liþ1 � ln Liþ2ð Þ T 0

eA � T 0
eAiþ1

� �
þ T 0

eAiþ2
� T 0

eAiþ1

� �
ln L� ln Liþ1ð Þ

i
;

where f ¼ 	1 is the orientation of the triangle (e.g., in the ex-
ample given, f ¼ þ1) and fi; iþ 1; iþ 2g is {123}, {231}, or
{312}. The value of ci is tested against ��L�T, where set-
ting � ¼ 0 gives exact triangulation and � > 0 allows the point
ð ln L; T 0

eAÞ to be at most � outside of a triangle. We begin test-
ing with i ¼ 1–3; if ci < ���L�T , then we flip point i,

ln Li R ln Liþ1 þ ln Liþ2 � ln Li;

T 0
eAi

R T 0
eAiþ1

þ T 0
eAiþ2

� T 0
eAi
;

f R� f ;

and repeat the testing again starting with i ¼ 1 until ci passes for
i ¼ 1–3. The atmospheres that have been flipped are then re-
computed, as are all the coefficients ai.

This treatment of the surface boundary conditions is the same
as that in one-dimensionalmodel calculation, except thatwemove
the fitting point to the surface where T ¼ TeA. Therefore, we do
not need an envelope integration. This has been tested for the one-
dimensional model calculations, and it turns out to be acceptable.
This saves much computation time in the two-dimensional case.

Our surface boundary conditions are much more complicated
than Deupree’s (1990), because our applications to the Sun are
very sensitive to the surface conditions.

5.2.2. Deupree’s Two-dimensional Surface Boundary Conditions

In his two-dimensional rotational models, Deupree (1990) uses
the surface boundary conditions

� ¼ �ref ; T ¼ Tref ;

where �ref and Tref are the reference density and temperature,
respectively. The most difficult part of using these surface bound-
ary conditions is how to select the reference density and tempera-
ture at the surface.

Unlike Deupree (1990), we use PT and T as independent ther-
modynamical variables. Since � ¼ �ðPT ; T Þ, the equivalent sur-
face boundary condition is

PT ¼ Pref ; T ¼ Tref : ð183Þ

In order to compare this with the standard surface boundary condi-
tion given above, we use the surface values of PT and T obtained
by using the standard surface boundary condition for the current
Sun as the reference. Figure 1 shows the reference values as func-
tions of age and their polynomial fits. The fitting formulae are

Pref ¼

73695:514� 9004:5498t

þ13898:511t 2; 0 
 t 
 0:27;

72777:060� 2211:7088t

�49:075155t 2; 0:27 
 t 
 4:55;

8>>><
>>>:

ð184aÞ

Tref ¼

5647:8836þ 266:07365t

�539:35360t 2; 0 
 t 
 0:27;

5673:6126þ 28:625469t

�1:1516435t 2; 0:27 
 t 
 4:55;

8>>><
>>>:

ð184bÞ

The age t is in gigayears.

Fig. 1.—Reference values of pressure and temperature at the surface as func-
tions of age. The dotted lines are polynomial fits to the calculated model (solid
lines) using the standard surface boundary condition.
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5.3. Polar Boundary Conditions

Equations (124b)–(124e) are singular at the poles (� ¼ 0 and
�) because of�,M,F �, and u�. However, if @r

0/@�¼ 0, the sin-
gularity due to�will disappear. In order to guarantee @r 0/@� ¼ 0,
we also need to zero the other derivatives. Therefore, we require

@r 0

@�
¼ @L0

@�
¼ @P 0

@�
¼ @T 0

@�
¼ 0 ð185Þ

at the poles. In order to remove the singularity due toM, we have
to zero � at the poles, namely,

� ¼ 0 ð186Þ

at the poles. Equations (185) and (186) are the polar boundary
conditions. Equation (185) is similar to Deupree’s (1990) polar
boundary conditions, which are the symmetry conditions.

5.4. Equatorial Conditions

Equations (124a)–(124d) show that the two-dimensional stel-
lar structure equations are not singular at the equator. Therefore,
there are no special constraints there. If we neglectO(2) in equa-
tions (124b) and (124c), the two-dimensional stellar structure
equations are a set of first-order differential equations. Since we
have already specified four boundary conditions at the north pole
(� ¼ 0), we do not need extra boundary conditions at the equator.
If we want to include those terms that contain the second-order
derivatives inO(2), we have to specify four equatorial boundary
conditions or five polar boundary conditions at the south pole
(� ¼ �). We do not include those second-order derivatives in
O(2) in this paper for the following reasons:

1. They are much smaller corrections than the retained terms.
2. They may cause a much bigger numerical error than the

actual corrections.
3. They require a totally different method of solution (e.g.,

Deupree 1990).

6. METHOD OF SOLUTION

6.1. Linearization of the Two-dimensional
Stellar Structure Equations

The dependent variables to be solved for are pressure PT, tem-
perature T, radius r, and luminosity L (hereafter we use L to re-
place L0, but remember that L is in solar units); the independent
variables are chosen to be mass m (or s ¼ lnm) and angular co-
ordinate �. The magnetic field variables �, #, and � are also de-
pendent variables. However, since we do not introduce their
governing equations (such as the dynamo equations), we con-
sider them to be given. All units are in cgs, except for the lumi-
nosity, which is in solar units.

The construction of a two-dimensional stellar model begins
by dividing the star intoMmass shells and N angular zones. The
mass shells are assigned a value si ¼ logmi, where mi is the
interior mass at the midpoint of shell i. The angular zones are as-
signed a value �j. A starting (or previous in evolutionary time)
model is supplied with a run of (P 0

ij, T
0
ij, r

0
ij, Lij, �

0
ij, #ij, �ij) for

i ¼ 1–M and j ¼ 1–N.
Here we take the general caseB ¼ ðBr;B�;B�Þ as the example

to show how to solve the two-dimensional stellar structure equa-
tions. In order to write down the linearization equations, we
introduce the notations

P �� Gm2

4�r 4PT

�

�m
; ð187aÞ

R � m

4�r 3�

�

�m
; ð187bÞ

T � P9; ð187cÞ

L � 1

L�
m �� T

dST

dt

� �
�

�m
; ð187dÞ

T ‘ � Bi9; ‘ ¼ 1; 2; 3; 10; : : :; 15; 17; ð187eÞ

D1 � cot �

2

@r 0

@�
1� cot �

2

@r 0

@�

� ��1

; ð187f Þ

D2 � 1� cot �

2

@r 0

@�

� ��1

; ð187gÞ

D3 � cot �

2

@P 0

@�
1� cot �

2

@r 0

@�

� ��1

; ð187hÞ

D10 � D2 @�0

@s
þ @� 0

@s
þ @� 00

@s

� �
; ð187iÞ

D11 � �D10 @r
0

@�
; ð187jÞ

D12 � D2 @�0

@�
þ @� 0

@�
þ @� 00

@�

� �
; ð187kÞ

D13 � D2 @�0

@s
þ @� 0

@s
þ @#00

@s

� �
; ð187lÞ

D14 � �D1 @�0

@s
þ @�0

@s
þ @#00

@s

� �
; ð187mÞ

D15 � D2 cot �

2

@�0

@�
þ @�0

@�
þ @#00

@�

� �
; ð187nÞ

D17 � �D2; ð187oÞ

F 1 � 4ac

3L�

mT 4

r 2���m
ð1þ kÞ; ð187pÞ

F 2 � 1

2 L�

m

r 2�m

�CpTlmvconv
1þ vconv=v0

; ð187qÞ

F 3 � � F 290
ad; ð187rÞ

F 4 � F 1 Gm�9

rPT

; ð187sÞ

F 5 � F 2 Gm�9

rPT

; ð187tÞ

F 6 � F 3 Gm�

rPT

: ð187uÞ

Consequently, the stellar structure equations in the general case
can be rewritten as

@P 0

@s
¼P þ

X15;17
i¼1;2;3;10

BiD i þ Oð2Þ; ð188aÞ

@T 0

@s
¼ T þ

X15;17
i¼1;2;3;10

T iD i þ Oð2Þ; ð188bÞ

@r 0

@s
¼R; ð188cÞ

@L

@s
¼Lþ

X2
‘¼1

F ‘ @T
0

@�
þ F 3 @P

0

@�
þ
X6
‘¼4

F ‘ @r
0

@�

 !
cot �þ Oð2Þ;

ð188dÞ
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where9 ¼ 9rad in the radiative zone and9 ¼ 9c in the convec-
tive zone.

We calculate the derivatives of the dependent variables with
respect to s by the central difference scheme, e.g.,

P 0
ij � P 0

i�1 j

si � si�1

¼ 1

2

@P 0

@s

� �
ij

þ @P 0

@s

� �
i�1j

" #
; ð189Þ

but we simply use the difference scheme

r 0ij � r 0ij�1

�j � �j�1

¼ @r 0

@�

� �
ij

ð190Þ

to calculate the derivatives with respect to �, because the first
two of the two-dimensional stellar structure equations are sin-
gular at the poles. Thus, we can define a set of functions that
should vanish at the solution of the stellar structure equations,

F
ij
P � ðP 0

ij � P 0
i�1jÞ

� 1

2
�si ðPij þ Pi�1jÞ þ

X15;17
‘¼1;2;3;10

ðB‘ij þ B‘i�1jÞD‘

" #
;

ð191aÞ
F
ij
T � ðT 0

ij � T 0
i�1jÞ

� 1

2
�si ðT ij þ T i�1jÞ þ

X15;17
‘¼1;2;3;10

ðT ‘
ij þ T ‘

i�1jÞD‘

" #
;

ð191bÞ

F
ij
R � ðr 0ij � r 0i�1 jÞ �

1

2
�siðRi j þRi�1 jÞ; ð191cÞ

F
ij
L � ðLij � Li�1jÞ �

1

2
�si

"
ðLij þ Li�1jÞ

þ
X2
‘¼1

ðF ‘
ij þ F ‘

i�1jÞ
cot �j
��j

ðT 0
ij � T 0

ij�1Þ

þ ðF 3
ij þ F 3

i�1jÞ
cot �j
��j

ðP 0
ij � P 0

ij�1Þ

þ
X6
‘¼4

ðF ‘
ij þ F ‘

i�1jÞ
cot �j
��j

ðr 0ij � r 0ij�1Þ
#
; ð191dÞ

where �si � ðsi � si�1Þ and i ¼ 2–M, j ¼ 2–N. The D1
ij,

D10
ij ; : : : ;D14

ij are defined as

D1 ¼ cot �j
2��j

r 0ij � r 0ij�1

� �
1� cot �j

2��j
r 0ij � r 0ij�1

� �� ��1

; ð192aÞ

D2 ¼ 1� cot �j
2��j

r 0ij � r 0ij�1

� �� ��1

; ð192bÞ

D3 ¼ cot �j
2��j

P 0
ij � P 0

ij�1

� �
1� cot �j

2��j
r 0ij � r 0ij�1

� �� ��1

;

ð192cÞ

D10 ¼ D2

�si
�0
ij � �0

i�1j

� �
þ �0ij � �0i�1j

� �
þ � 00

ij � � 00
i�1j

� �h i
;

ð192dÞ

D11 ¼ � D10

��j
r 0ij � r 0ij�1

� �
; ð192eÞ

D12 ¼ D2

��j
�0
ij � �0

ij�1

� �
þ �0ij � �0ij�1

� �
þ � 00ij � � 00

ij�1

� �h i
;

ð192f Þ

D13 ¼ D2

�si
�0
ij � �0

i�1j

� �
þ �0ij � �0i�1j

� �
þ #00

ij � #00
i�1j

� �h i
;

ð192gÞ

D14 ¼ � D1

�si
�0
ij � �0

i�1j

� �
þ �0ij � �0i�1j

� �
þ #00

ij � #00
i�1j

� �h i
;

ð192hÞ

D15 ¼ D2 cot �j
2��j

�0
ij � �0

ij�1

� �
þ �0ij � �0ij�1

� �
þ #00

ij � #00
ij�1

� �h i
;

ð192iÞ
D17 ¼�D2: ð192jÞ

We want then to solve for the set of (P 0
ij, T

0
ij, r

0
ij, Lij) such that

F
ij
P ¼ F

ij
T ¼ F

ij
R ¼ F

i j
L ¼ 0 with �0, #, and � specified.

The linearization of equations (191a)–(191d) with respect to
(	P 0

i j, 	T
0
i j, 	r

0
i j, 	Lij) yields 4MN � 4ðN � 1Þ � 4M equations

for the 4MN unknowns. The 2ðN � 1Þ additional equations are
supplied by the boundary conditions at the center. From equa-
tions (172) and (173), we can define

F
1j
R � r 01j � 1

3
½s1� log ð4��m1j=3Þ�; ð193aÞ

F
1j
L � L1j � L1j �

cot �j
��j

"X2
‘¼1

F ‘
1jðT

0
1;j � T 0

1j�1Þ

þ F 3
1jðP 0

1j � P 0
1j�1Þ þ

X6
‘¼4

F ‘
1;jðr 01j � r 01j�1Þ

#
; ð193bÞ

where j ¼ 2–N. Another 2ðN � 1Þ additional equations are sup-
plied by the boundary conditions at the surface. From equa-
tions (181a) and (181b), we can define

F
Mþ1j
R � R0

Mj � a1P
0
Mj � a2T

0
Mj � a3; ð194aÞ

F
Mþ1j
L � L0

Mj ln LMj � a4P
0
Mj � a5T

0
Mj � a6

� �
; ð194bÞ

where j ¼ 2–N. The 4M additional equations are supplied by
the polar boundary conditions,

F i1
P � P 0

i1 � P 0
i2; ð195aÞ

F i1
T � T 0

i1 � T 0
i2; ð195bÞ

F i1
R � R0

i1 � R0
i2; ð195cÞ

F i1
L � Li1 � Li2; ð195dÞ

where i ¼ 1–M. The F equations are linearized,

XM
l¼1

XN
k¼1

 
@Fij

w

@R0
lk

	R0
lk þ

@Fij
w

@Llk
	Llk þ

@Fij
w

@P 0
lk

	P 0
lk þ

@Fij
w

@T 0
lk

	T 0
lk

!

¼ �Fij
w; ð196Þ

where w ¼ P, T, R, and L; i ¼ 1–M; and j ¼ 1–N. The sum-
mation over l has nonzero terms only for l ¼ i� 1, i; the
summation over k has nonzero terms only for k ¼ j� 1, j. See
Appendix A for the matrix coefficients.
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6.2. Solution of the Linearized Equations

Rather than solving the (4MN )2 system of equations directly,
we take advantage of the specific form of the equations and es-
pecially of the large number of zero elements in the matrix. From
Figure 2 we can see that only 12 by 4MN elements are nonzero at
most.

The matrix is reduced in a forward direction (i ¼ 2–M ) as the
coefficients are defined and is then solved in the backward direc-
tion (i ¼ M –1) for the corrections (	P 0

i j, 	T
0
i j, 	R

0
i j, 	Lij) for j ¼

2–N. The reduction procedure begins as follows: (1) For j ¼ 2,
we use the polar conditions at � ¼ 0 to eliminate those elements
with subscripts l ¼ i, k ¼ j� 1 (i.e., block III defined in Appen-
dix A), which can be done by simply adding block III to block II.
At the end of this step, the matrix equation for a specified j looks
like Figure 3a for a four-point star in the mass coordinate (in-
cluding the center and surface boundaries). (2) We use the cen-
tral boundary conditions to eliminate the first two columns in
block I for i ¼ 2. (3) We continue diagonalizing the four bottom
rows for i ¼ 2. (4) We store the right-hand side and the elements
in the rightmost columns (see Fig. 3b). After this reduction is
completed, the bottom two rows of the first part of the coefficient
matrix become the ‘‘central boundary equations’’ for the F equa-
tions of the next pair of mass points. The method is repeatedly
applied until the surface is reached, whereupon the surface bound-
ary conditions complete the set of 4M equations (see Figs. 3b and
3c). For the back solution (1) the values of (	P 0

M2, 	T
0
M2) are first

calculated, then (2) the values of (	R0
i2, 	Li2, 	P

0
i�12, 	T

0
i�12) for

i ¼ M –2 are calculated using the stored elements of the array and
(	P 0

i2, 	T
0
i2), and finally (3) the values of (	R

0
12, 	L12) are computed

from the central boundary conditions and the values of (	P 0
12,

	T 0
12) (see Figs. 3d–3f ). Since the submatrix with j ¼ 2 has been

diagonalized, we can use it to diagonalize the submatrix with
j ¼ 1 and 3. For j ¼ 3, we use j ¼ 2 as the ‘‘polar boundary con-
ditions,’’ and so forth. Finally, we solve the matrix equation, and
the results are stored in the right column.

6.3. Advancing the Model

These routines are based on the work of Prather (1976, his Ap-
pendixA) and their revised implementations inYREC(Pinsonneault
1988; Guenther et al. 1992; Guenther & Demarque 1997).

6.4. Time Steps

In this section we use the cgs units for luminosity L (ergs s�1)
and useX (Y ) to represent themass fraction of hydrogen (helium).
The angular zone index (i.e., j ) is 2.
The timing routine calculates the time steps based on a hydrogen-

or helium-burning source. Let LH (ergs s
�1) be the total hydrogen-

burning luminosity, and LHe, the helium luminosity. There are two
time steps,

�tH, the hydrogen-burning time step, and
�tt, the total time step (i.e., for entropy and helium),

Fig. 2.—Linearization equation for a 4 ; 4 point star.
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where �tt 6¼ �tH only if the hydrogen shell is being shifted
outward. If LH ¼ 0, the following section for hydrogen burning is
skipped.

For hydrogen-core burning (X core > X min
c ), a time step corre-

sponding to a set of reduction in X core is calculated. Let i be the
innermost point if the core is radiative (i ¼ 1) or the outermost
convective point if the core is convective. Then, the change in
Xcore is computed,

�Xcore ¼ minf�X max
sc ;� f max

X X ig;

and the time step is

�ti ¼ �tH ¼ 6 ; 1018�Xcorem
i=Li;

where mi is the mass of the core (g) and Li is the luminosity of
the core (ergs s�1, assumed to be mainly hydrogen burning).

When the core-burning criterion no longer applies (X core <
X min
c ), a limit is placed on the total amount of mass that may be

burned,

�m ¼� fmM�Xenv;

� t mH ¼ 6 ; 1018�m=LH:

If there is a hydrogen-burning shell (Xcore ¼ 0), the timing rou-
tine locates it. Let the subscript 0 denote the inner edge of the
shell (first point where X > 0), let subscript 1/2 denote the mid-
point of the shell (X ¼ 1

2
Xenv); and let subscript 1 denote the end

of the shell (Li � Li�1 < 10�4L or X ¼ Xenv or �H ¼ 0). There
is a limitation set on the maximum depletion at the midpoint of
the shell,

� t
1=2
H ¼ �X1=2:

With the exception of the core-burning phase, the new hydro-
gen burning time step is limited by the previous total time step,

� tHðnewÞ ¼ min 1:5� ttðoldÞ;� t mH ;� t
1=2
H

n o
:

If there is to be no shell shifting, then one sets�tt ¼ �tH. If the
hydrogen shell is to be shifted outward through�ms in mass, then
the shift time step is computed as

� tshift ¼ 6 ; 1018X1�ms=LH;

and the total time step is

�tt ¼ �tH þ�tshift:

If there is a hydrogen shell (Xcore ¼ 0), the helium burning is
examined. For helium-core burning (Ycore > X min

c and Lcore >
0:1 L�), the maximum helium depletion is

�Ycore ¼ minf�Y min
c ;� f max

Y Ycoreg;

and the helium time step is

� tHe ¼ 5:85 ; 1017�YcoreM�=Lcore:

For helium-shell burning (Ycore < X min
c ), the amount of mass

burned through by the helium shell is limited,

�tHe ¼ 5:85 ; 1017� fsmM�=LHe:

The helium time step places an upper limit on the previously
computed hydrogen time step,

�tt ¼ minf�tt;�tHeg;
�tH ¼ minf�tt;�tHg:

Fig. 3.—Schematic Henyey solution for a four-point star. The matrix block is denoted by 0s, 1s, and X’s, which are nonzero. The right-hand side is denoted by A,
and the elements changed through pivoting, by Y and B. The final reduction to the identity matrix is not shown.
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The following parameters used in the determination of the
time step are read in at the beginning of each model run. Their
typical values are given as

X min
c ¼ 0:001; �X max

c ¼ 0:04; �Y max
c ¼ 0:02;

�f max
X ¼ 0:5; �f max

Y ¼ 0:3; �fm ¼ 0:0015 M�;

�X max
1=2 ¼ 0:10; �ms ¼ 5 ; 10�4 M�:

Of course,we can also use a fixed time step to advance themodel.

6.5. Composition Advance

Themixing routine performs all the operations on themodel that
are needed by the application of the time step to increase the age of
the model. The routine first checks that there is no mixing within
the hydrogen shell if the shell is supposed to be shifted. If there is
such mixing, the shifting is suppressed (i.e., set�tt ¼ �tH).

Each mass element (the mass contained in the zone defined by
m2½mi�1;mi� and �2½�j�1; �j�) is burned individually by com-
puting the energy generation rates for the physical conditions
existing in that mass element from the previously converged
model. Since the program stores only the values of hydrogen, to-
tal metal, and oxygen abundance, the change in these quantities
is computed as

X ðnewÞ ¼ X ðoldÞ � ðdX=dtÞ�t;

ZðnewÞ ¼ ZðnewÞ þ ðdY=dtÞ�t;

X16ðnewÞ ¼ X16ðoldÞ � ðdXO=dtÞ�t;

where �t ¼ �tt inside the hydrogen shell (X ¼ 0) and �t ¼
�tH elsewhere.

The routine then mixes those zones that it is instructed to by
being given a set of indices (i ¼ i1 i2 and j ¼ j1 j2),

Xij ¼
Xk¼i2

k¼i1

Xl¼j2

l¼j1

aklXkl

 ! Xk¼i2

k¼i1

Xl¼j2

l¼j1

akl

 !�1

:

The weights akl are proportional to the amount of mass associated
with zone kl and are set up in the point readjustment routine.

If the hydrogen shell is to be shifted, the routine calculates

�sshift ¼ ð	 � 	2=2þ 	3=3� 	4=4Þ= ln 10;

where 	 � �ms/m1/2T1. The points in the hydrogen shell are
shifted by �sshift ,

s0 
 si 
 s1 ! siðnewÞ ¼ siðoldÞ þ�sshift;

where si ¼ logmi. The points up to a distance fs�sshift in front
of the shell are squeezed together,

s1< si < send ! siðnewÞ ¼ siðoldÞ þ send � siðoldÞ½ �=fs;

where send � si þ fs�sshift.
For all of these shifted and squeezed points, the changes in P 0

and T 0 must be preserved for the calculation of the entropy energy
term in the subsequentmodel. Thus, for every si(new), onemust lo-
cate sl(old) such that slðoldÞ
 siðnewÞ< slþ1ðoldÞ and then inter-
polate linearly in s to get the old values ofP 0 andT 0 that correspond
to the new value of s. Then the effective changes are stored,

�P 0
ij ¼ P 0

ijðnew sÞ � P 0
ijðpreshift sÞ;

�T 0
ij ¼ T 0

ijðnew sÞ � T 0
ijðpreshift sÞ:

For the region in front of the shell that is squeezed, it is desirable
to preserve the original composition gradient if such a gradient
exists. The values of X, Z, and X16 are interpolated linearly in s,
as are P 0 and T 0. Note that the shifting process affects only the
value of s and not the values of (P, T, R, L, X, Z, X16) with the
exception of (X, Z, X16) in the squeezed region.
The mixing routine finally checks on the physical sense of the

new composition at all of the points,

X ¼ max fX ; 0g;
Z ¼ minfZ; 1� Xg;

X16 ¼ max fX16; 0:99 ; 10�3ZCNOg:

The first two requirements are obvious; the third requirement
brings the value of X16 up to the approximate equilibrium value
while turning off the X16 burning rate that is calculated if X16 >
10�3ZCNO. The value of ZCNO ¼ Z � Z 0

m, where Z
0
m is the original

weight abundance of all non-CNOmetals. This method allows for
the enrichment of CNO elements from the helium burning.

6.6. Mixing Zones

Consecutive mass shells, which are determined to be convec-
tive (9rad > 9ad) in the previously converged model, are mixed
together.
If there is a helium-burning convective zone, the semiconvec-

tive instability is treated as an overshooting (Castellani et al.1971).
The composition is first burned and mixed according to the stan-
dard convection zones. At the first radiative point outside a helium
convective zone, the quantity f �9 int

rad/9
ext
rad is defined, where the

radiative gradient is computed with the (s, P, T, r, L) values of the
radiative point andwith the composition of both the radiative point
(superscript ext) and the interior convective zone (superscript int).
The original convective zone is extended outward through the
radiative region for all the points at which f 9rad >9ad.
This overshooting region is restricted to the helium core

(X ¼ 0) and is limited by the condition of Castellani et al. (1971)
that defines a maximum radius Rmax of the overshooting mixing,

Z Rmax

Rc

1� �ðrÞ
�intc

� �
dr < 1�

9 int
adc

9 int
radc

 !
Lc�t

40�PcR2
c

;

where the subscript c refers to the (s,P, T, r, L) values at the edge of
the original convective zone.Here� is themeanmolecular weight.
The composition is then remixed from the beginning of the con-
vective zone to the maximum extent of the overshoot region.

6.7. Point Readjustment

The point readjustment routine reflects all of the points be-
tween successivemodels. This routine starts with the central point
and places each subsequent new point i so that all of the following
criteria are met:

si � si�1 
 �smax;

P 0
i2 � P 0

i�12 
 �P 0
max;

Li2 � Li�12 
 � fLLM2:

All of the new values are interpolated linearly in s by locating
the old point l such that slðoldÞ 
 siðnewÞ < slþ1ðoldÞ. The fun-
damental variables (s, PT, T, R, L), the composition (X, Z, X16),
and the density and entropy terms (�P 0,�T 0 ) are relocated be-
tween the center and outermost points for all angular zones. These
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variables are stored in temporary arrays and are transferred to the
original arrays once the process is completed. In addition to the
first andMth points remaining fixed, other points may be retained:

1. the first radiative point (outer edge of convective zone),
2. the innermost point of the convective envelope,
3. the edge of the helium core (X ¼ 0), and
4. composition discontinuities, Xl 2 � Xl�12 > �Xdisk or Zl2�

Zl�12 > �Zdisk.

The point routine then recalculates the weights assigned to
each mass shell based on the mass values at the preceding and
following midpoints,

mi ¼ 10 si ;

a1 ¼ 1
2
ðm1 þ m2Þ;

ai ¼ 1
2
ðmiþ1 � mi�1Þ; for i ¼ 2 to M � 1;

aM ¼ Mtot � 1
2
ðmM þ mM�1Þ:

The value mi defines the location of the ith shell, and ai is the
number of grams contained in the shell.

In addition, the point routine adjusts the temperature of the
outermostMth point by adding a new point or deleting some old
points. Given the desired temperature range Tmin to Tmax, if TM <
Tmin, then the outermost point j < M such that Tl > T �
1
2 ðTmin þ TmaxÞ is selected as the new surface point. The points
l þ 1 toM are deleted. If TM2 > Tmax the process is more compli-
cated. The last atmosphere that was integratedwill have stored the
values of (satm, Patm j, Tatm j, ratm j) for the first inward integration
step in which Tatmj > T . The new point M þ 1 is added with the
values

sMþ1 ¼ satm; P 0
Mþ1j ¼ P 0

atm j;

T 0
Mþ1j ¼ T 0

atm j; r 0Mþ1j ¼ r 0atm j;

LMþ1j ¼ Latm j; XMþ1j ¼ XMj;

ZMþ1j ¼ ZMj; X16Mþ1 j
¼ X16Mj

:

6.8. Model Calculation Sequence

The following list describes the sequence of calculations that
is used in computing a series of stellar models. This sequence is
the same for both one- and two-dimensional model calculations.

0. Input a model and compute a time step.
1. Locate the mixing zones and advance the composition and

hydrogen shell for the given time step.
2. Calculate element diffusion for the given time step.
3. Readjust the points in the mass coordinate in the model.

This step is the main source of numerical errors and should be
switched off for high-precision calculations such as solar vari-
ability applications.

4. Calculate the entropy terms (�P 0 and�T 0 ). Just zero them
at the beginning, and give an estimate using their temporal
change rate times the given time step.

5. Add the predictable corrections to (P 0, T 0, r 0, L) if their
temporal change rates are available (after advancing one time
step). This allows us to use a much larger time step and save a lot
of computation time.

6. Specify the magnetic field configuration by selecting the
functions �ðm; �Þ, #ðm; �Þ, and �ðm; �Þ.

7. Retaining the old surface (or envelope) triangle and surface
boundary conditions, do two iterations for corrections to the de-
pendent variables (P 0,T 0, r 0, L) and apply a given fraction (
100%)
of the corrections.

8. If necessary, relocate the surface triangle for the partially
converged model and compute new atmospheres and surface
boundary conditions.

9. Iterate until the model converges.
10. Refine the composition and iterate until the model con-

verges for solar applications that need a high precision.
11. Repeat step 9 once for solar applications.
12a. If the corrections are excessively large at any time or if the

model does not converge after many iterations (say, 20), then re-
tain the previous model that has been stored on the disk and stop.

12b. If the model has converged,

(i) compute a new time step,
(ii) perform the requested printing,
(iii) store the model temporarily on the disk, overwrite the

previous model, and
(iv) return to step 1.

7. TEST 1: TWO-DIMENSIONAL STANDARD
SOLAR MODEL

In this test, we investigate how different resolutions and differ-
ent boundary conditions affect the two-dimensional solar mod-
els in the standard case (zero magnetic field).

Starting from a one-dimensional ZAMS (zero-age main se-
quence) model, we move the fit point to the surface where the
mass coordinate s ¼ 1 ; 10�14 from the usual location s ¼ 1 ;
10�5 in a stair-stepping way. The (ZAMS and the advanced)
models are determined by the following parameters: theminimum
and maximum change in s between Henyey grid points, 1 ;
10�12 
 �s 
 8 ; 10�2, and the maximum change in w 0 (¼ P 0,
T 0, r 0, and L/L�) between Henyey grid points, j	w 0j 
 5:2834 ;
10�3. The convergence criteria for the stellar parameters are
j	P 0j 
 6 ; 10�7, j	T 0j 
 4:5 ; 10�7, j	r 0j 
 3 ; 10�7, and
j	ðL/L�Þj 
 9 ; 10�7. The convergence tolerance on the right-
hand sides of the P and r equations is 3 ; 10�7, and the conver-
gence tolerance on the right-hand sides of the L and T equations is
2:5 ; 10�7.We also require j	P 0/P 0j 
 9, j	T 0/T 0j 
 5, j	r 0/r 0j 

5, and j	L/Lj 
 90. All these requirements must be satisfied si-
multaneously when we apply the correction to the model. This is
why we have to move the fit point in a stair-stepping way. Other-
wise, the correction is too large, and the solution will diverge. The
model has about 2401 grid points in the mass coordinate s, i.e.,
M ¼ 2401. We also test the cases withM ¼ 1201, 601, and 301.

When this one-dimensional convergence has been obtained,
the angular part of the two-dimensional grid is selected. Unlike
the mass coordinate s, which is not uniform, we simply equally
divide the angular coordinate � in the range �2½0; �/2�, �j ¼
ð�/2Þð j� 1Þ/ðN � 1Þ, where j ¼ 1–N. We use the converged
one-dimensional model for every angular zone. We use N ¼ 10,
19, and 37 in this test.

The solar mass is M� ¼ 1:9891 ; 1033 g. The initial metal
mass fraction is assumed to be Z ¼ 0:022 at ZAMS. The model
will evolve from ZAMS to the current age of the Sun (4.55 Gyr).
The hydrogen mass fraction and mixing-length parameter (ratio
of themixing length over the pressure scale height) are determined
by the requirement that the solar model at present reproduce the
observed radius (R� ¼ 6:9598 ; 1010 cm) and luminosity (L� ¼
3:8515 ; 1033 ergs s�1). We first use the one-dimensional code
to generate a one-dimensional standard solar model as the refer-
ence. We then use the two-dimensional code to generate the two-
dimensional zero-magnetic-field solar models with different M
and N and different surface boundary conditions and compare
them with the reference. Our aim is to investigate whether we can
get a two-dimensional high-precision solar model.
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7.1. Convergence

First of all, convergence is the most important requirement in
model calculations. There is an intrinsic divergence at the poles
in equations (188a), (188b), and (188d), which results from the
terms that contain cot �. In order to solve this intrinsic divergence
problem, we require both equations (185) and (186) at and near
the poles. In practice, we zero equations (195a)–(195d), where
subscript 1 indicates the pole (� ¼ 0) and subscript 2 means the
point adjacent to the pole. The denser the grid in the second dimen-
sion, the more severe the intrinsic divergence problem. Therefore,
it is desirable to use fewer grid points in the second dimension for
the sake of convergence.

Since we have neglected the second-order derivatives with re-
spect to � that are believed to be smaller corrections to equations
(188a), (188b), and (188d) than the first-order derivatives with
respect to �, we neglect those second-order derivatives to remove
the divergence due to the numerical errors caused by them.

There is a numerical divergence problem due to the possible
equality between rij, Tij, and Pij and rij�1, Tij�1, and Pij�1, respec-
tively. When, say, rij equals rij�1, the difference between them,
R0 � rij � rij�1, vanishes. In this case, the derivative of the dif-
ference with respect to rij (@R0/@rij) or rij�1 (@R0/@rij�1) should
also vanish (i.e., @R0/@rij ¼ 0, or @R0/@rij�1 ¼ 0, when rij ¼
rij�1). If one sets @R0/@rij ¼ 1 and @R0/@rij�1 ¼ �1 no matter
whether rij equals rij�1 or not, one will run into a numerical di-
vergence problem. We introduce the 	R , 	P, and 	T functions in
Appendix A to solve this divergence problem.

The fourth divergence problem is due to the numerical error
caused by numerical integration of �m that affects the ratio �/�m,

which is a two-dimensional correction factor that appears in all the
stellar structure equations, equations (188a)–(188d), noticing that the
intrinsic singularity requires that the fewer the grid points at � the bet-
ter. The numerical integral is usuallymade in terms of the trapezoidal
rule, which is of the second order in accuracy. Deupree (1990) adds
more grid points to increase the integration precision when the
numerical integral is performed.We find that it is more efficient to
introduce a normalization factor in the integral, as shown in x A2.
When the radiative diffusion approximation (i.e., k ¼ 0) is used,

the code converges verywell. This approximation is not valid near
the surface. If we use the temperature gradient at the surface to
replace the actual gradient9s, the code also converges well. How-
ever, if we use the exact expression given in equation (55), we
cannot get a converged model. The main cause is due to the nu-
merical errors in the numerical derivatives associated with k0.

7.2. Resolution

If the convergence solves the internal- or self-consistency prob-
lem, then model resolution will address the external-consistency
issue. Our reference model, i.e., the one-dimensional standard
solar model, is almost the same as the best model described by
Winnick et al. (2002), who emphasize its comparisonwith various
observations.
From numerical experiments using different resolutions in

both dimensions, we find that the model is not sensitive to the res-
olution in the angular coordinate, but very sensitive to the mass
coordinate (see Fig. 4). This figure compares four mass resolu-
tions, in which the lower resolution is obtained by taking out one
mass point for every two points from the adjacent higher resolution

Fig. 4.—Relative changes of pressure P, temperature T, radius R, luminosity L, density �, nuclear energy generation rate �, opacity �, and sound speed C in two-
dimensional solar models with different mass-coordinate resolutions (M ¼ 2401, 1201, 601, and 301) with respect to a one-dimensional standard solar model as
functions of mass coordinate.

LI ET AL.236 Vol. 164



model. Figure 5 zooms in to compare the models with the highest
and second-highest resolutions.

We compare different angular zones in Figure 6 to make sure
that the two-dimensional model is self-consistent in the angular
direction. Figure 7 shows that the two- and one-dimensional solar
modelswith the samemass resolution are in very good agreement.

7.3. Surface Boundary Conditions

Until now we have used only the standard surface boundary
condition used in YREC (Pinsonneault 1988; Guenther et al.
1992). If we use these standard model surface values of pressure
and temperature as Deupree’s (1990) reference values, as indi-
cated in x 5.2.2, we obtain the same results, as seen in Figure 8.
The solid lines use equations (184a) and (184b). In order to in-
vestigate how errors in the reference pressure and temperature
affect the result, we add 1% to Pref given in equation (184a) and
0.1% to Tref given in equation (184b). The result is shown by the
dotted lines in Figure 8. From the dotted lines we can see that
errors in the surface boundary condition have a larger influence
on the outer layer than on the deep part of the model.

It is inevitable that some errors are introduced when Pref and
Tref are selected in model calculations. Nevertheless, Deupree
(1990) did not need to worry much about it, since his interest fo-
cused on the core convection. In contrast, we should be cautious
about using Deupree’s surface boundary condition, because we
want to apply our model to solar variability that takes place in the
convective envelope.

The model is less sensitive to the error in the reference pres-
sure than to that in the reference temperature.

8. TEST 2: SHELL-LIKE MAGNETIC FIELDS

Shell-like magnetic fields depend on only the radial coordi-
nate r. Any physical magnetic field should be free of divergence.
The following magnetic fields are both radius dependent and
divergence-free:

B ¼ ð0; 0; f ðrÞÞ;
B ¼ ðC=r 2; 0; 0Þ;
B ¼ ðC=r 2; 0; f ðrÞÞ;

where f (r) is an arbitrary function of r and C is an arbitrary con-
stant. If we assume that there is no magnetic field in the radiative
zone of the Sun, then we have C ¼ 0. Consequently, the unique
physical shell-like magnetic field is

B ¼ ð0; 0; f ðrÞÞ: ð197Þ

This is the case described in x 4.2, in which

M ¼� B 4 1þ 1

2
cot2�

� �
1� cot �

2

@r 0

@�

� ��1

;

B 4 ¼ m

4�r 3�m

��

PT

:

Comparing the two-dimensional stellar structure equations
(eqs. [124a]–[124d]) with their one-dimensional counterparts
(e.g., Li et al. 2003), we can see that the terms and/or factors
in the curly braces are due to two-dimensional effects.

Fig. 5.—Same as Fig. 4, but only for M ¼ 2401 and 1201.
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Fig. 6.—Pressure P, temperature T, radius R, luminosity L, density �, nuclear energy generation rate �, opacity �, and sound speed C at different angular coordinates
as functions of mass coordinate.

Fig. 7.—Pressure P, temperature T, radius R, luminosity L, density �, nuclear energy generation rate �, opacity �, and sound speed C in both one- and two-
dimensional solar models that have the same mass resolution as functions of mass coordinate.



In the solar variability applications, we use a standard solar
model at the current age (t ¼ 4:55 Gyr) as the initial model. We
apply a cyclic magnetic field to themodel and use 1 yr as the time
step to advance the model.

As in the one-dimensional case, we specify � as a function of
time t (or sunspot number RZ) and the mass depth mD ¼
log ð1� m/M�Þ as

�ðmD;RZÞ ¼ �0ðRZÞ exp �1
2
ðmD � mDcÞ2=
2

h i
; ð198Þ

where mDc specifies the location and 
 specifies its width. Here
�0 is determined by

�0 RZð Þ ¼ B2
0

8��c
140þ 1þ log 1þ RZð Þ½ �5
n o2

; ð199Þ

where B0 is an adjustable parameter (in gauss) and �c is the den-
sity at themass depth ofmDc. In this case themagnetic variable–
related derivatives reduce to


 ¼ ��=PT ;

9� ¼ @ ln �

@ lnmD

@ lnmD

@ lnm

@ lnm

@ ln PT

¼ � mDðmD � mDcÞ

2 ln 10

1� 10mD

10mD

4�PTr
4

GM 2
�ð1� 10mDÞ2

:

In this test, � does not depend on the angular coordinate �, as
required by a shell-like field. The resulting models should be the
same aswe obtained in the one-dimensional counterparts (Li et al.

2003). The method of solution used in this study guarantees this
test, as confirmed by actual model calculations.

9. CONCLUSIONS

A high-precision two-dimensional framework for treating
stellar evolution with magnetic fields has been developed and
successfully tested. The required high precision is achieved by

1. using the mass coordinate to replace the radial coordinate,
2. including the convection instability,
3. including a stellar atmosphere,
4. allowing element diffusion,
5. using fixed and adjustable time steps, and
6. adjusting grid points.

The code has the potential to include rotation and turbulence,
but does not have the potential to generate them like a fully
hydrodynamic code.

We thank R. G. Deupree for many discussions and con-
structive suggestions during his stay in the department. We also
want to thank Christian Straka for helpful discussions on many
aspects of this paper. We wish to acknowledge the anonymous
referee, whose efforts have resulted in considerable improve-
ments to the paper. This work was supported in part by NSF
grants ATM 0206130 and ATM 0348837 to S. B. S. S. and P. D.
were supported in part by NASA grant NAG5-13299. P. V. was
supported by Regione Lazio funds.

Fig. 8.—Relative changes of pressure P, temperature T, radius R, luminosity L, density �, nuclear energy generation rate �, opacity �, and sound speed C in the two-
dimensional solar model with Deupree’s surface boundary conditions (solid line, eqs. [184a] and [184b]; dotted line, 1.01 times eq. [184a] and 1.001 times eq. [184b])
with respect to a one-dimensional standard solar model as functions of mass coordinate.
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APPENDIX A

COEFFICIENT MATRIX.

Equation (196) consists of a set of nonhomogeneous linear
algebraic equations. If we useA to represent the coefficient matrix
and use B to represent the nonhomogeneous term, this equation
can be written down as

A = 	w ¼ B; ðA1Þ

where

	w ¼

	r 011
	L0

11

	P 0
11

	T 0
11

..

.

	r 0M1

	L0
M1

	P 0
M1

	T 0
M1

..

.

	r 01N
	L0

1N

	P 0
1N

	T 0
1N

..

.

	r 0MN

	L0
MN

	P 0
MN

	T 0
MN

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðA2Þ

is a column matrix. The B term is also a column matrix,

B ¼ �

F11
R

F11
L

F11
P

F11
T

..

.

FM1
R

FM1
L

FM1
P

FM1
T

F12
R

F12
L

F22
P

F22
T

..

.

FM2
R

FM2
L

FMþ12
P

FMþ12
T

..

.

F1N
R

F1N
L

F2N
P

F2N
T

..

.

FMN
R

FMN
L

FMþ1N
P

FMþ1N
T

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: ðA3Þ

The coefficient matrix A has elements @Fij
w /@wlk . Only those ele-

ments with l ¼ i� 1, i and k ¼ j� 1, jmay be nonzero, as shown
in Figure 2. We work out these nonzero elements in this appendix.

A1. USEFUL PARTIAL DERIVATIVES.

The partial derivatives of the differential equations are required for the linearization. By defining the shorthand notation @X Y ¼
@Y /@ log X , we can calculate the useful derivatives as follows.

The following derivatives are almost the same as in the one-dimensional case (see Prather 1976, his Appendix A), except for those
terms due to �/�m. These derivatives are nonzero for l ¼ i� 1, i and k ¼ j. If k ¼ j� 1, they vanish:

@RP ¼ � 4P;
@LP ¼ @TP ¼ 0;

@PP ¼ � P;
@RR ¼ � 3R;
@LR ¼ 0;

@PR ¼ � �mR;
@TR ¼ 	mR;
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@PL ¼ Mr

L�

@�

@ ln P

� �
T

þ @S̃

@ ln P

� �
T

=�t

� �
�

�m
;

@RL ¼ @LL ¼ 0;

@TL ¼ Mr

L�

@�

@ ln T

� �
P

þ @S̃

@ ln T

� �
P

=�t

� �
�

�m
:

In the convective zone, we have

@RT c ¼ ð@ ln9c=@ ln r � 4ÞT c;

@LT c ¼ 0;

@PT c ¼ ð@ ln9c=@ ln PT � 1ÞT c;

@TT c ¼ ð@9c=@ ln T ÞT c:

In the radiative zone, we have

@RT r ¼� 4T r;

@LT r ¼ T r=L;

@PT r ¼ ð@ ln �=@ ln PT ÞTT r;

@TT r ¼ ½ð@ ln �=@ ln T ÞP � 4�T r:

The formulae for the various partial derivatives of the physical quantities are presented in the following sections. The equation
of state calculates �, �, 	, cp, 9ad, and the pressure and temperature derivatives of these quantities (see x B1). The energy
generation rate � is a function of � and T, too. Thus, ð@�/@TÞP and ð@�/@PÞT can be expressed by ð@�/@ ln TÞ� and ð@�/@ ln �ÞT (see
x B2) as

ð@�=@ ln T ÞP ¼ ð@�=@ ln T Þ� þ ð@�=@ ln �ÞT ð@ ln �=@ ln T ÞP;
ð@�=@ ln PT ÞT ¼ð@�=@ ln �ÞT ð@ ln �=@ ln T ÞP:

The derivatives of the convective gradient 9c are presented in x B4.
The entropy term contains the only explicit reference to any time dependence in the stellar structure equations. It can be re-

formulated as

S̃ ¼� PT	=�ð Þ �T 0=9ad ��P 0ð Þ;
@S̃=@ ln T
	 


P
¼ S̃ 	 þ @ ln 	=@ ln Tð ÞP

� �
� P	=�9adð Þ 1� @ ln9ad=@ ln Tð ÞP�T 0� �

;

@S̃=@ ln PT

	 

T
¼ S̃ 1� �þ @ ln 	=@ ln PTð ÞT

� �
þ P	=�ð Þ 1þ @ ln9ad=@ ln PTð ÞT�T 0=9ad

� �
;

where ð�P 0;�T 0Þ are the changes between successive models.
The following derivatives are new. Similarly, these derivatives are nonzero for l ¼ i� 1, i and k ¼ j. When ‘ ¼ 1, we have

@RB1 ¼� 4B1;

@LB1 ¼ @TB1 ¼ 0;

@PB1 ¼ � B1;

@RT 1
c ¼ T 1 @ ln9c=@ ln r � 4½ �;

@LT 1
c ¼ 0;

@PT 1
c ¼ T 1

c @ ln9c=@ ln PT � 1½ �;
@TT 1

c ¼ T 1
c @ ln9c=@ ln Tð Þ;

@RT 1
r ¼ � 4T 1

r ;

@LT 1
r ¼ T 1

r=L;

@PT 1
r ¼ T 1

r @ ln �=@ ln PTð ÞT ;

@TT 1
r ¼ T 1

r @ ln �=@ ln Tð ÞPT
�4

h i
:
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When ‘ ¼ 2, we have

@RB2 ¼� B2;

@LB2 ¼ @TB2 ¼ 0;

@PB2 ¼ � B2;

@RT 2
c ¼ T 2 @ ln9c=@ ln R� 1ð Þ;

@LT 2
c ¼ 0;

@PT 2
c ¼ T 2 @ ln9c=@ ln P � 1ð Þ;

@TT 2
c ¼ T 2 @ ln9c=@ ln Tð Þ;

@RT 2
r ¼ � T 2

r ;

@LT 2
r ¼ T 2

r=L;

@PT 2
r ¼ T 2

r @ ln �=@ ln PTð ÞT ;

@TT 2
r ¼ T 2

r @ ln �=@ ln Tð ÞPT
�4

h i
:

When ‘ ¼ 3, we have

@RB3 ¼� 3B3;

@LB3 ¼ 0;

@PB3 ¼ � B3�m;

@TB3 ¼ B3	m;

@RT 3
c ¼ T 3 @ ln9c=@ ln R� 3ð Þ;

@LT 3
c ¼ 0;

@PT 3
c ¼ T 3 @ ln9c=@ ln P � �mð Þ;

@TT 3
c ¼ T 3 @ ln9c=@ ln T þ 	mð Þ;

@RT 3
r ¼ � 3T 3

r ;

@LT 3
r ¼ T 3

r=L;

@PT 3
r ¼ T 3

r @ ln �=@ ln PTð ÞT��m þ 1
� �

;

@TT 3
r ¼ T 3

r @ ln �=@ ln Tð ÞPT
þ	m � 4

h i
:

When ‘ ¼ 10, 11, 13, and 14, we have

@RB‘ ¼ @LB‘ ¼ 0;

@PB‘ ¼ B‘ �� 1ð Þ;
@TB‘ ¼ � B‘	;
@RT ‘

c ¼ T ‘
c @ ln9c=@ ln rð Þ;

@LT ‘
c ¼ 0;

@PT ‘
c ¼ T ‘

c @ ln9c=@ ln P þ �� 1ð Þ;
@TT ‘

c ¼ T ‘
c @ ln9c=@ ln T � 	ð Þ;

@RT ‘
r ¼ 0;

@LT ‘
r ¼ T ‘

r=L;

@PT ‘
r ¼ T ‘

r @ ln �=@ ln PTð ÞTþ�
� �

;

@TT ‘
r ¼ T ‘

r @ ln �=@ ln Tð ÞPT
�	 � 4

h i
:
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When ‘ ¼ 12, 15, and 17, we have

@RB ‘ ¼� 3B‘;
@LB ‘ ¼ @TB‘ ¼ 0;

@PB ‘ ¼ � B‘;
@RT ‘

c ¼ T ‘
c @ ln9c=@ ln r � 3ð Þ;

@LT ‘
c ¼ 0;

@PT ‘
c ¼ T ‘

c @ ln9c=@ ln PT � 1ð Þ;
@TT ‘

c ¼ T ‘
c @ ln9c=@ ln Tð Þ;

@RT ‘
r ¼ � 3T ‘

r;

@LT ‘
r ¼ T ‘

r=L;

@PT ‘
r ¼ T ‘

r @ ln �=@ ln PTð ÞT ;

@TT ‘
r ¼ T ‘

r @ ln �=@ ln Tð ÞPT
�4

h i
:

When k ¼ j� 1, all derivatives of B and T parameters vanish.
We also need similar derivatives ofD parameters. When l ¼ i� 1, k ¼ j, all derivatives ofD1,D2,D3,D12,D15, andD17 are zero.

The nonzero derivatives are

@Pi�1 j
D10 ¼ @Pi�1 j

D13 ¼ �D2�i�1 j=�si;

@Pi�1 j
D11 ¼ � @Pi�1 j

D10 r 0ij � r 0ij�1

� �
��j;

@Pi�1 j
D14 ¼ D1�i�1 j=�si;

@Ti�1 j
D10 ¼ @Ti�1 j

D13 ¼ D2	i�1 j=�si;

@Ti�1 j
D11 ¼ � @Ti�1 j

D10 r 0ij � r 0ij�1

� �
=��j;

@Ti�1 j
D14 ¼ �D1	i�1 j=�si:

When l ¼ i, k ¼ j, the nonzero derivatives are

@Ri j
D1 ¼ cot �j

2��j

� �2

r 0i j � r 0ij�1

� �
1� cot �j

2��j
r 0i j � r 0ij�1

� �� ��2

	R þ
cot �j
2��j

1� cot �j
2��j

r 0i j � r 0ij�1

� �� ��1

	R;

@Ri j
D2 ¼ cot �j

2��j
1� cot �j

2��j
r 0i j � r 0ij�1

� �� ��2

	R;

@Ri j
D3 ¼ cot �j

2��j

� �2

P 0
i j � P 0

ij�1

� �
1� cot �j

2��j
r 0i j � r 0ij�1

� �� ��2

	R;

@Ri j
D10 ¼ 1

�si
@Rij

D2 �0
i j � �0

i�1 j

� �
þ �0i j � �0i�1 j

� �
þ � 00

i j � � 00i�1 j

� �h i
;

@Ri j
D11 ¼ � 	R

��j
D10 � 1

��j
@Ri j

D10 r 0ij � r 0ij�1

� �
;

@Ri j
D12 ¼ 1

��j
@Rij

D2 �0
i j � �0

ij�1

� �
þ �0i j � �0ij�1

� �
þ � 00

i j � � 00
ij�1

� �h i
;

@Ri j
D13 ¼ 1

�si
@Rij

D2 �0
i j � �0

i�1 j

� �
þ �0i j � �0i�1 j

� �
þ #00

i j � #00
i�1 j

� �h i
;

@Rij
D14 ¼� 1

�si
@Rij

D1 �0
i j � �0

i�1 j

� �
þ �0i j � �0i�1 j

� �
þ #00

i j � #00
i�1 j

� �h i
;

@Rij
D15 ¼ cot �j

2��j
@Rij

D2 �0
i j � �0

ij�1

� �
þ �0i j � �0ij�1

� �
þ #00

i j � #00
ij�1

� �h i
;

@Rij
D17 ¼ � @Rij

D2;

@Pij
D3 ¼ cot �j

2��j
1� cot �j

2��j
r 0i j � r 0ij�1

� �� ��1

	P;

@Pij
D10 ¼ D2�i j=�si;

TWO-DIMENSIONAL STELLAR EVOLUTION CODE. I. 243No. 1, 2006



@Pij
D11 ¼ � @Pij

D10 r 0i j � r 0ij�1

� �
=��j;

@Pij
D12 ¼ D2�i j	�=��j;

@Pij
D13 ¼ D2�i j=�si;

@Pij
D14 ¼ �D1�i j=�si;

@Pij
D15 ¼ D2 cot �j

2��j
�i j	�;

@TijD10 ¼ �D2	i j=�si;

@TijD11 ¼ � @TijD10 r 0i j � r 0ij�1

� �
=��j;

@TijD12 ¼ �D2	i j	�=��j;

@TijD13 ¼ �D2	i j=�si;

@TijD14 ¼ D1	ij=�si;

@TijD15 ¼ �D2 cot �j
2��j

	i j	�;

where 	R ¼ 1 when rij � rij�1 6¼ 0 and 	R ¼ 0 when rij � rij�1 ¼ 0, and 	P and 	� have similar meanings. When l ¼ i, k ¼ j� 1,
the nonzero derivatives are

@Rij�1
D‘ ¼ �@Ri j

D‘

for ‘ ¼ 1, 2, 3, 10, : : :, 15, and 17,

@Pij�1
D‘ ¼ �@Pi j

D‘

for ‘ ¼ 3, 12, and 15, and

@Tij�1
D‘ ¼ �@TijD‘

for ‘ ¼ 12 and 15.
We calculate the derivatives of F 2 and F 3 by taking the advantage of lmvconv � const. The nonzero derivatives are listed as fol-

lows for l ¼ i� 1, i and k ¼ j:

@RF 1 ¼ � 2F 1;

@LF 1 ¼ 0;

@PF 1 ¼ � F 1 @ ln �=@ ln PTð ÞT þ �þ �m

� �
;

@TF 1 ¼ F 1 4� @ ln �=@ ln Tð ÞPT
þ 	 þ 	m

h i
;

@RF 2 ¼ � 2F 2;

@LF 2 ¼ 0;

@PF 2 ¼ F 2 @ ln Cp=@ ln PT

	 

T
�� 2�þ @ ln �=@ ln PTð ÞT þ @ ln Cp=@ ln PT

	 

T

� �
 �
;

@TF 2 ¼ F 2 1þ @ ln Cp=@ ln T
	 


PT
þ � 3þ 2	 � @ ln �=@ ln Tð ÞPT

� @ ln Cp=@ ln T
	 


PT

h in o
;

@RF 3 ¼ � 2F 3;

@LF 3 ¼ 0;

@PF 3 ¼ � @PF 290
ad þ F 3 @ ln9ad=@ ln PTð ÞT ;

@TF 3 ¼ � @TF 290
ad þ F 3 @ ln9ad=@ ln Tð ÞPT

;

@RF 4 ¼ @RF 1

Gm�9c

rPT

þ @ ln9c

@ ln r
� 1

� �
F 4; convective;

Gm�9rad

rPT

� F 4; radiative;

8>><
>>:

@LF 4 ¼
0; convective;

F 4=L; radiative;

�
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@PF 4 ¼ @PF 1

Gm�9c

rPT

þ @ ln9c

@ ln PT

þ �� 1

� �
F 4; convective;

Gm�9rad

rPT

þ @ ln �

@ ln PT

� �
T

þ �

� �
F 4; radiative;

8>>><
>>>:

@TF 4 ¼ @TF 1

Gm�9c

rPT

þ @ ln9c

@ ln T
� 	

� �
F 4; convective;

Gm�9rad

rPT

þ @ ln �

@ ln T

� �
P

�	 � 4

� �
F 4; radiative;

8>>><
>>>:

@RF 5 ¼ @RF 2 Gm�9c

rPT

þ @ ln9c

@ ln r
� 1

� �
F 5;

@LF 5 ¼ 0;

@PF 5 ¼ @PF 2 Gm�9c

rPT

þ @ ln9c

@ ln PT

þ �� 1

� �
F 5;

@TF 5 ¼ @TF 2 Gm�9c

rPT

þ @ ln9c

@ ln T
� 	

� �
F 5;

@RF 6 ¼ @RF 3 Gm�

rPT

� F 6;

@LF 6 ¼ 0;

@PF 6 ¼ @PF 3 Gm�

rPT

þ �� 1ð ÞF 6;

@TF 6 ¼ @TF 3 Gm�

rPT

� 	F 6;

where � ¼ ðvconv /v0Þ/ð1þ vconv /v0Þ.

A2. NUMERICAL INTEGRALS.

The quantities �m, �m, and 	m are integrals over �:

�mðm; �Þ �
1

r 2
1

2

Z �

0

d� r 2ðm; �Þ�ðm; �Þ sin �;

�mðmÞ �
@ ln �m
@ ln PT

� �
T

¼
R �
0
d� r 2ðm; �Þ�ðm; �Þ�ðm; �Þ sin �R �

0
d� r 2ðm; �Þ�ðm; �Þ sin �

;

	mðmÞ � � @ ln �m
@ ln T

� �
PT

¼
R �
0
d� r 2ðm; �Þ�ðm; �Þ	ðm; �Þ sin �R �
0
d� r 2ðm; �Þ�ðm; �Þ sin �

:

Of course, the luminosity L is an integral, too:

LðmÞ � 2�

Z �

0

d� r 2ðm; �ÞFrðm; �Þ sin � ¼
1

2

Z �

0

d� L0ðm; �ÞL� sin �;

where L0 ¼ 4�r 2Fr/L�. In the one-dimensional case, we know the relationship on the solar surface,

L ¼ 4�R2
T 4
eA: ðA4Þ

If we define

R2 � 1

2

Z �

0

d� r 2ðMtot; �Þ sin �;

T 4
eA � 1

2R2

Z �

0

d� r 2T 4ðMtot; �Þ sin �;

equation (A4) holds well in the two-dimensional case, where Mtot is the total mass of the star.
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We use the trapezoidal rule to compute these integrals. For example,

�i jm ¼
1=r 2i j

� �PN
‘¼2 1=2ð Þðr 2i‘�i‘ sin �‘ þ r 2i‘�1�i‘�1 sin �‘�1Þð�‘ � �‘�1ÞPN

‘¼2 1=2ð Þðsin �‘ þ sin �‘�1Þð�‘ � �‘�1Þ
;

L

L�
¼
PN

‘¼2 1=2ð ÞðL0
M‘ sin �‘ þ L0

M‘�1 sin �‘�1Þð�‘ � �‘�1ÞPN
‘¼2 1=2ð Þðsin �‘ þ sin �‘�1Þð�‘ � �‘�1Þ

;

R2 ¼
PN

‘¼2 1=2ð Þðr 2M‘ sin �‘ þ r 2M‘�1 sin �‘�1Þð�‘ � �‘�1ÞPN
‘¼2 1=2ð Þðsin �‘ þ sin �‘�1Þð�‘ � �‘�1Þ

;

where N is the total grid number in the second dimension �. We have introduced the normalization factor ½
PN

‘¼2
1
2
ðsin �‘ þ

sin �‘�1Þð�‘ � �‘�1Þ��1
to remove the discrete error. The other three integrals do not need the normalization factor,

�i
m ¼

PN
‘¼2 1=2ð Þðr 2i‘�i‘�i‘ sin �‘ þ r 2i‘�1�i‘�1�i‘�1 sin �‘�1Þð�‘ � �‘�1ÞPN

‘¼2 1=2ð Þðr 2i‘�i‘ sin �‘ þ r 2i‘�1�i‘�1 sin �‘�1Þð�‘ � �‘�1Þ
;

	im ¼
PN

‘¼2 1=2ð Þðr 2i‘�i‘	i‘ sin �‘ þ r 2i‘�1�i‘�1	i‘�1 sin �‘�1Þð�‘ � �‘�1ÞPN
‘¼2 1=2ð Þðr 2i‘�i‘ sin �‘ þ r 2i‘�1�i‘�1 sin �‘�1Þð�‘ � �‘�1Þ

;

T 4
eA ¼

PN
‘¼2 1=2ð Þðr 2M‘T 4

M‘ sin �‘ þ r 2M‘�1T
4
M‘�1 sin �‘�1Þð�‘ � �‘�1ÞPN

‘¼2 1=2ð Þðr 2M‘ sin �‘ þ r 2M‘�1 sin �‘�1Þð�‘ � �‘�1Þ
;

because they have already had their own normalization factors.

A3. INTERIOR POINTS.

A3.1. w ¼ P

There are three blocks in this group. They are

block I, l ¼ i� 1 and k ¼ j;
block II, l ¼ i and k ¼ j; and
block III, l ¼ i and k ¼ j� 1.

We present the results block by block using the derivatives given above.
For block I,

@Fij
P

@R0
i�1 j

¼� 1

2
�si@RPi�1 j �

1

2
�si

X3;12;15;17

‘¼1

@RB‘
i�1 j D‘;

@Fij
P

@Li�1 j

¼ 0;

@Fij
P

@P 0
i�1 j

¼� 1

2
�si@PPi�1 j � 1� 1

2
�si

X15;17
‘¼1;2;3;10

@PB‘
i�1 j D

‘ þ
X

‘¼10;11;13;14

B‘
i�1 j þ B‘

i j

� �
@Pi�1 j

D‘

" #
;

@Fij
P

@T 0
i�1 j

¼� 1

2
�si@TPi�1 j �

1

2
�si

X
3;10;11;13;14

@TB‘
i�1 j D‘ þ

X
‘¼10;11;13;14

B‘
i�1 j þ B‘

i j

� �
@Ti�1 j

D‘

" #
:

For block II,

@Fij
P

@R0
i j

¼� 1

2
�si@RPi j �

1

2
�si

X3;12;15;17

‘¼1

@RB‘
i j D

‘ þ
X15;17

‘¼1;2;3;10

ðB‘
i�1 j þ B‘

i jÞ@Rij
D‘

" #
;

@Fij
P

@Lij
¼ 0;

@Fij
P

@P 0
i j

¼� 1

2
�si@PPi j þ 1� 1

2
�si

X15;17
‘¼1;2;3;10

@PB‘
i j D

‘ þ
X15
‘¼3;10

ðB‘
i�1 j þ B‘

i jÞ@Pi j
D‘

" #
;

@Fij
P

@T 0
i j

¼� 1

2
�si@TPi j �

1

2
�si

X
‘¼3;10;11;13;14

@TB‘
i j D‘ þ

X15
‘¼10

ðB‘
i�1 j þ B‘

i jÞ@TijD‘

" #
:
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For block III,

@Fij
P

@R0
ij�1

¼� 1

2
�si

X15;17
‘¼1;2;3;10

ðB‘
i�1 j þ B‘

i jÞ@Rij�1
D‘;

@Fij
P

@Lij�1

¼0;

@Fij
P

@P 0
ij�1

¼� 1

2
�si

X
‘¼3;12;15

ðB‘
i�1 j þ B‘

i jÞ@Pij�1
D‘;

@Fij
P

@T 0
ij�1

¼� 1

2
�si

X
‘¼12;15

ðB‘
i�1 j þ B‘

i jÞ@Tij�1
D‘:

A3.2. w ¼ T

There are three blocks in this group, too.
For block I,

@Fij
T

@R0
i�1 j

¼� 1

2
�si@RT i�1 j �

1

2
�si

X15;17
‘¼1;2;3;10

@RT ‘
i�1 j D‘;

@Fij
T

@Li�1 j

¼� 1

2
�si@LT i�1 j �

1

2
�si

X15;17
‘¼1;2;3;10

@LT ‘
i�1 j D

‘;

@Fij
T

@Pi�1 j

¼� 1

2
�si@PT i�1 j �

1

2
�si

X15;17
‘¼1;2;3;10

@PT ‘
i�1 j D‘ þ

X
‘¼10;11;13;14

T ‘
i�1 j þ T ‘

i j

� �
@Pi�1 j

D‘

" #
;

@Fij
T

@Ti�1 j

¼� 1

2
�si@TT i�1 j � 1� 1

2
�si

X15;17
‘¼1;2;3;10

@TT ‘
i�1 j D‘ þ

X
‘¼10;11;13;14

T ‘
i�1 j þ T ‘

i j

� �
@Ti�1 j

D‘

" #
:

For block II,

@Fij
T

@R0
i j

¼� 1

2
�si@RT i j �

1

2
�si

X15;17
‘¼1;2;3;10

@RT ‘
i j D

‘ þ
X15;17

‘¼1;2;3;10

T ‘
i�1 j þ T ‘

i j

� �
@Ri j

D‘

" #
;

@Fij
T

@Lij
¼� 1

2
�si@LT i j �

1

2
�si

X15;17
‘¼1;2;3;10

@LT ‘
i j D‘;

@Fij
T

@Pij

¼� 1

2
�si@PT i j �

1

2
�si

X15;17
‘¼1;2;3;10

@PT ‘
i j D

‘ þ
X15
‘¼3;10

T ‘
i�1 j þ T ‘

i j

� �
@Pi j

D‘

" #
;

@Fij
T

@Tij
¼� 1

2
�si@TT i j þ 1� 1

2
�si

X15;17
‘¼1;2;3;10

@TT ‘
i j D‘ þ

X15
‘¼10

T ‘
i�1 j þ T ‘

i j

� �
@Ti jD‘

" #
:

For block III,

@Fij
T

@R0
ij�1

¼ � 1

2
�si

X15;17
‘¼1;2;3;10

T ‘
i�1 j þ T ‘

i j

� �
@Rij�1

D‘;

@Fij
T

@Lij�1

¼ 0;

@Fij
T

@P 0
ij�1

¼ � 1

2
�si

X
‘¼3;12;15

T ‘
i�1 j þ T ‘

i j

� �
@Pij�1

D‘;

@Fij
T

@T 0
ij�1

¼ � 1

2
�si

X
‘¼12;15

T ‘
i�1 j þ T ‘

i j

� �
@Tij�1

D‘:
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A3.3. w ¼ R

In this group only the first two blocks are nonzero.
For block I,

@Fij
R

@R0
i�1 j

¼� 1

2
�si@RRi�1 j � 1;

@Fij
R

@Li�1 j

¼ 0;

@Fij
R

@P 0
i�1 j

¼� 1

2
�si@PRi�1 j;

@Fij
R

@T 0
i�1 j

¼� 1

2
�si@TRi�1 j:

For block II,

@Fij
R

@R0
i j

¼� 1

2
�si@RRi j þ 1;

@Fij
R

@Lij
¼ 0;

@Fij
R

@P 0
i j

¼� 1

2
�si@PRi j;

@Fij
R

@T 0
i j

¼� 1

2
�si@TRi j:

A3.4. w ¼ L

Similar to xx A3.1 and A3.2, all three blocks are nonzero.
For block I,

@Fij
L

@R0
i�1 j

¼� 1

2

�si cot �j
��j

X2
‘¼1

@RF ‘
i�1 j T 0

i j � T 0
ij�1

� �
þ @RF 3

i�1 j P 0
i j � P 0

ij�1

� �
þ
X6
‘¼4

@RF ‘
i�1 j r 0i j � r 0ij�1

� �" #
;

@Fij
L

@Li�1 j

¼� 1� 1

2

�si cot �j
��j

@LF 4
i�1 j r 0i j � r 0ij�1

� �
;

@Fij
L

@P 0
i�1 j

¼� 1

2
�si@PLi�1 j �

1

2

�si cot �j
��j

X2
‘¼1

@PF ‘
i�1 j T 0

i j � T 0
ij�1

� �
þ @PF 3

i�1 j P 0
ij � P 0

ij�1

� �
þ
X6
‘¼4

@PF ‘
i�1 j r 0i j � r 0ij�1

� �" #
;

@Fij
L

@T 0
i�1 j

¼� 1

2
�si@TLi�1 j �

1

2

�si cot �j
��j

X2
‘¼1

@TF ‘
i�1 j T 0

i j � T 0
ij�1

� �
þ @TF 3

i�1 j P 0
i j � P 0

ij�1

� �
þ
X6
‘¼4

@TF ‘
i�1 j r 0i j � r 0ij�1

� �" #
:

For block II,

@Fij
L

@R0
i j

¼� 1

2

�si cot �j
��j

X2
‘¼1

@RF ‘
i j T 0

i j � T 0
ij�1

� �
þ @RF 3

i j P 0
i j � P 0

ij�1

� �
þ
X6
‘¼4

@RF ‘
i j r 0i j � r 0ij�1

� �
þ F ‘

i j þ F ‘
i�1 j

� �
	R

h i( )
;

@Fij
L

@Lij
¼ 1� 1

2

�si cot �j
��j

@LF 4
i j r 0i j � r 0ij�1

� �
;

@Fij
L

@P 0
i j

¼� 1

2
�si@PLi j

� 1

2

�si cot �j
��j

X2
‘¼1

@PF ‘
ij T 0

i j � T 0
ij�1

� �
þ @PF 3

i j P 0
i j � P 0

ij�1

� �
þ F 3

i j þ F 3
i�1 j

� �
	P þ

X6
‘¼4

@PF ‘
i j r 0i j � r 0ij�1

� �" #
;

LI ET AL.248 Vol. 164



@Fij
L

@T 0
i j

¼� 1

2
�si@TLi j

� 1

2

�si cot �j
��j

X2
‘¼1

@TF ‘
i j T 0

ij � T 0
ij�1

� �
þ F ‘

i j þ F ‘
i�1 j

� �
	T

h i
þ @TF 3

i j P 0
i j � P 0

ij�1

� �
þ
X6
‘¼4

@TF ‘
i j r 0i j � r 0ij�1

� �( )
;

where 	P ¼ 1 when Pij 6¼ Pij�1 and 	P ¼ 0 when Pij ¼ Pij�1. The definition of 	T is similar.
For block III,

@Fij
L

@R0
ij�1

¼ 1

2

�si cot �j
��j

X6
‘¼4

F ‘
ij þ F ‘

i�1 j

� �
	R;

@Fij
L

@Lij�1

¼ 0;

@Fij
L

@P 0
ij�1

¼ 1

2

�si cot �j
��j

F 3
i j þ F 3

i�1 j

� �
	P;

@Fij
L

@T 0
ij�1

¼ 1

2

�si cot �j
��j

X2
‘¼1

F ‘
ij þ F ‘

i�1 j

� �
	T ;

where 	R ¼ 1 when rij 6¼ rij�1 and 	R ¼ 0 when rij ¼ rij�1.

A4. BOUNDARY POINTS

A4.1. Center: ! ¼ r

Central boundary points have only block II for w ¼ r:

@F1j
R

@R0
1j

¼ 1;

@F1j
R

@L1j
¼ 0;

@F1j
R

@P 0
1j

¼ 1

3
�m1j;

@F1j
R

@T 0
1j

¼ � 1

3
	m1j:

A4.2. Center: ! ¼ L

Central boundary points have blocks II and III for ! ¼ L.
For block II,

@F1j
L

@R0
1j

¼� cot �j
��j

X2
‘¼1

@RF ‘
1j T 0

1j � T 0
1j�1

� �
þ @RF 3

1j P 0
1j � P 0

1j�1

� �
þ
X6
‘¼4

@RF ‘
1j r 01j � r 01j�1

� �
þ F ‘

1j	R

h i( )
;

@F1j
L

@L1j
¼1;

@F1j
L

@P 0
1j

¼� @PL1j �
cot �j
��j

X2
‘¼1

@PF ‘
1j T 0

1j � T 0
1j�1

� �
þ @PF 3

1j P 0
1j � P 0

1j�1

� �
þ F 3

1j	P þ
X6
‘¼4

@PF ‘
1j r 01j � r 01j�1

� �" #
;

@F1j
L

@T 0
1j

¼� @TL1j �
cot �j
��j

X2
‘¼1

@TF ‘
1j T 0

1j � T 0
1j�1

� �
þ F ‘

1j	T

h i
þ @TF 3

1j P 0
1j � P 0

1j�1

� �
þ
X6
‘¼4

@TF ‘
1j r 01j � r 01j�1

� �( )
:
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For block III,

@F1j
L

@R0
1j�1

¼ cot �j
��j

X6
‘¼4

F ‘
1j	R;

@F1j
L

@L1j�1

¼ 0;

@F1j
L

@P 0
1j�1

¼ cot �j
��j

F 3
1j	P;

@F1j
L

@T 0
1j�1

¼ cot �j
��j

X2
‘¼1

F ‘
1j	T :

A4.3. Surface

A4.3.1. Standard
The surface boundary conditions are linearized as

	r 0Mj þ 0 	LMj

	 

� a1	P

0
Mj � a2	T

0
Mj ¼� F

Mþ1j
R ;

0 	r 0Mj

� �
þ 	LMj � LMj a4	P

0
Mj � LMj a5	T

0
Mj ¼� F

Mþ1j
L :

A4.3.2. Deupree’s

His surface boundary equations are simpler:

0 	r 0Mj

� �
þ 0 	LMj

	 

þ 1 	P 0

Mj

� �
þ 0 	T 0

Mj

� �
¼� F

Mþ1j
R ;

0 	r 0Mj

� �
þ 0 	LMj

	 

þ 0 	P 0

Mj

� �
þ 1 	T 0

Mj

� �
¼� F

Mþ1j
L ;

where

F
Mþ1j
R ¼ P 0

Mþ1j � P 0
ref ;

F
Mþ1j
L ¼ T 0

Mþ1j � T 0
ref :

A4.4. Pole

The polar boundary equations are extremely simple:

	P 0
i1 � 	P 0

i2 ¼ 0;

	T 0
i1 � 	T 0

i2 ¼ 0;

	r 0i1 � 	r 0i2 ¼ 0;

	Li1 � 	Li2 ¼ 0:

APPENDIX B

INPUT PHYSICS

B1. THE EQUATIONS OF STATE

When amagnetic field is present, the equation of state relates the density � to the pressure P, temperature T, magnetic energy per unit
mass �, the ratio of specific heats �, and the chemical composition:

� ¼ �ðPT ; T ; �;X ; Z Þ;

where P ¼ P0 þ Pr þ Pm is the total pressure, P0 is the gas pressure, Pr ¼ aT 4/3 is the radiative pressure, Pm ¼ �� is the magnetic
pressure, X is the mass fraction of hydrogen, and Z is the mass fraction of elements heavier than helium (the so-called metal mass
fraction). Its differential form is

d�

�
¼ �

dPT

P
� 	

dT

T
� 


d�

�
;
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where

� ¼ ð@ ln �=@ ln PÞ at constant T ; �;
	 ¼ � ð@ ln �=@ ln T Þ at constant P; �;

 ¼ � ð@ ln �=@ ln �Þ at constant P; T :

Here X and Z are assumed to be constant.
Since it is tedious to accurately calculate the equation of state from first principles, the equations of state are usually provided by the

numerical tables as functions of ð�; T ;X ; Z Þ for P0, S (entropy), U (internal energy), ð@U /@�ÞT , cv ¼ ð@U /@T Þ�, �� ¼ ð@ ln P0/@�ÞT ,
�T ¼ ð@ ln P0/@T Þ�, �1 ¼ ð@ ln P0/@ ln �ÞS , �

0
2 ¼ �2/ð1� �2Þ ¼ 1/9ad, and �

0
3 ¼ ð@ ln T /@ ln �ÞP0

� 1. The equation of state (EOS)
for the gas is taken from Rogers et al. (1996). In order to take into account a magnetic field based on the EOS tables, one can use the
following correction method:

1. Use the total pressure P ¼ P0 þ Pr þ Pm, the total internal energy U ¼ U0 þ 3Pr/�þ �, and the total entropy S ¼ S0 þ
4Pr/�T þ �/T to replace the gas pressure P0, the gas internal energy U0, and the gas entropy S0, respectively, when interpolating to
obtain the density for the given P and T.

2. Use ðP0 þ PmÞ/P to rescale ��.
3. Use P0 /P to rescale �T from the EOS tables and add 4Pr /P.
4. Add 12Pr /T to cv from the EOS tables.
5. Compute �0

3 ¼ P�T /cv�T , �1 ¼ �� þ �T�
0
3, and �0

2 ¼ �1/�
0
3.

Taking these as known, we can calculate

� ¼ 1=��; 	 ¼ �T=��; 
 ¼ Pm=P; 9ad ¼ 1=�0
2; cp ¼ P	=�T9ad:

These quantities are used in calculating the convective gradient 9c.

B2. ENERGY GENERATION

The calculation of the energy generation includes the individual rates for the PP chain (PPI, PPII, PPIII), the CNO cycle with a
simplified NO approach to equilibrium. The coefficients of all of the reaction rates and the formulae for most of them are taken from
Fowler et al. (1975).

The reaction rate for the PP chain is actually that for the 1H( p, e+
)2D reaction and assumes that all the other reactions in the chain
are relatively instantaneous. The burning rate is then

dX=dtð ÞPP ¼ 4:181 ; 10�15�X 2T
�2=3
9 exp �3:380=T

1=3
9

� �
� �0ð Þ 1:0þ 0:123T

1=3
9 þ 1:09T

2=3
9 þ 0:938T9

� �
s�1;

where T9 ¼ T /109 K, the screening factor fs is set equal to 1,

�ð�0Þ ¼ 1þ �0 1þ 2=�0ð Þ1=2�1
h i

;

�0 ¼ 1:93 ; 1017ð Y=2X Þ2 exp �10:0=T
1=3
9

� �
:

The total energy of the PP chain (subtracting the energy of the neutrinos that are produced) is

�PP ¼ 6:398 ; 1018 ðdX=dtÞPP ergs g�1 s�1;

where

 ¼ 0:979 f I þ 0:960 f II þ 0:721 f III;

f I ¼
�
ð1þ 2=�0Þ1=2 � 1

�
=
�
ð1þ 2=�0Þ1=2 þ 3

�
;

f II ¼ ð1� fIÞ=ð1þ �Þ;
f III ¼ 1� fI � fII;

� ¼ 1015:6837½X=ð1þ X Þ�T�1=6
9 exp �10:262=T

1=3
9

� �
:

The derivatives of �PP can be found directly by

ð@ ln �PP=@ ln �ÞT ¼ �PP;

ð@ ln �PP=@ ln T Þ� ¼ �PP

h
� 2=3þ 1:1267=T

1=3
9 þ ð@ ln �=@ ln T Þ� þ ð@ ln  =@ ln T Þ�

þ 0:041T
1=3
9 þ 0:727T

2=3
9 þ 0:938T9

� �
= 1þ 0:123T

1=3
9 þ 1:09T

2=3
9 þ 0:938T9

� �i
;

TWO-DIMENSIONAL STELLAR EVOLUTION CODE. I. 251No. 1, 2006



ð@ ln �=@ ln T Þ� ¼ð2=�� 1Þð1þ 2=�0Þ�1=2
3:333=T1=3;

ð@ ln  =@ ln T Þ� ¼ 
�1 ½0:258� 0:239=ð1þ �Þ�ð@fI=@ ln T Þ� � 0:239fIII=ð1þ �Þð@ ln �=@ ln T Þ�
n o

;

ð@ ln �=@ ln T Þ� ¼� 1=6þ 3:4207=T
1=3
9 ;

ð@fI=@ ln T Þ� ¼� 4 �0ð1þ 2=�0Þ1=2
�
ðqþ 2=�0Þ1=2 þ 3

�2n o�1

3:333=T
1=3
9 :

In the calculation of the CNO bi-cycle, CN equilibrium is assumed and the CN cycle is assumed to be the only source of energy.
The hydrogen-burning rate due to the CN cycle is then

ðdX=dtÞCN ¼ 1:202 ; 107�XXNT
�2=3
9 exp �15:228=T

1=3
9

� �
s�1;

and the energy produced is

�CN ¼ 5:977 ; 1018ðdX=dtÞCN ergs g�1 s�1:

The value of XN (14N abundance by weight) assumes that all the carbon and nitrogen is in the form of 14N,

XN ¼ Z � Zm � XO;

where Z is the total metal abundance by weight, Zm is the weight abundance of all non-CNO metals, and XO is the weight
abundance of 16O. The approach to NO equilibrium is taken as a simple burning rate of 16O assuming 17O equilibrium,

dXO=dt ¼ 9:54 ; 107�XXOT
�17=21
9 exp �16:693=T

1=3
9

� �
� 1:6 ; 10�3ðdX=dtÞCN s�1:

Between successive models the value of XO is decreased at a rate of (dXO /dt) per second, and thus the value of XN is corre-
spondingly increased. The derivatives of the CN energy production are

ð@�CN=@ ln �ÞT ¼ �CN;

ð@�CN=@ ln T Þ� ¼ �CN �2=3þ 5:076=T
1=3
9

� �
:

B3. RADIATIVE OPACITIES

An estimate of magnetic effects on the radiative opacities [� ¼ �ðT ; �;X ; Z Þ] can be found in Li & Sofia (2001). Since they are
small, we use only the OPAL opacity tables ( Iglesias & Rogers 1996) together with the low-temperature opacities from Alexander &
Ferguson (1994). For X and Z the linear interpolation is used, but for T and � the cubic spline interpolation is used. The cubic spline
interpolation scheme allows one to obtain the derivatives of �with respect to Tand �. These derivatives are needed in the linearization
of the equations of energy transport.

B4. THE CONVECTIVE GRADIENT AND ITS LINEARIZATION

The calculation of the convective temperature gradient 9c in the envelope of the stellar models employs the mixing-length theory
(Henyey et al. 1965; Lydon & Sofia 1995) when magnetic fields are taken into account.

Defining 	 0 � 9rad �90
ad, the Schwarzschild (1906) criterion is used to determine convection: 	 > 0means convective. In the deep

interior convection zones 9c is set equal to the adiabatic gradient 90
ad.

In the envelope the evaluation of 9c is more complex, and we solve

FðxÞ � a3x
3 þ x2 þ a1x� 1 ¼ 0

for y > 0 such that Fð yÞ ¼ 0, where

a1 � V ¼ �3� �T 3=Cp

	 

HP=g		

0ð Þ1=2;
a3 � 3

4
�! 2=V :

We have defined 	 0 � ð9rad �90
adÞ, � � ð1þ 1

3
!2Þ�1

, ! ¼ ��lm, and �3 � 16
ffiffiffi
2

p

. The root y is guaranteed to lie in the interval

ð0;þ1Þ, since Fð0Þ ¼ �1 < 0 and Fð1Þ ¼ a1 þ a2 > 0. Furthermore, this root y is unique, since the derivative of F, F 0ðxÞ ¼ 3a3x
2 þ

2xþ a1, is positive definite for x > 0. An initial estimate of the root y is made, and a second-order Newton-Raphson correction is
applied:

�y ¼ �Fð yÞ=F 0ð yÞ � 1
2
Fð yÞ=F 0ð yÞ½ �2 F 00ð yÞ=F 0ð yÞ:
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The initial estimate of y is y ¼ 1/a1, unless a3 > 103, in which case y ¼ ð1/a3Þ1
=3
, which follows the asymptotic behavior of the

solution in either limit. Given the solution y, the convective gradient is computed by

9c ¼ 90
ad þ 9rad �90

ad

	 

yð yþ a1Þ:

The linearization of the convective gradient is cumbersome but can be calculated. We consider derivatives with respect to ln PT ,
ln T , ln R and L:

@9c

@ ln x
¼ @9ad

@ ln x
þ yð yþ a1Þ

@	 0

@ ln x
þ 	 ð2yþ a1Þ

@y

@ ln x
þ a1 y

@ ln a1
@ ln x

� �
;

where

@	 0

@ ln x
¼ @90

rad

@ ln x
� @9ad

@ ln x
:

The derivatives of 90
ad come from the equation of state and are nonvanishing only for x ¼ PT or T. The derivatives of

9rad ¼ ð3=16�acÞð�LL�PT Þ=ðGMT 4Þ

are nonvanishing for x ¼ PT , T, or L:

@9rad

@ ln PT

¼9rad 1þ @ ln �

@ ln PT

� �
T

;

@9rad

@ ln PT

¼9rad �4þ @ ln �

@ ln T

� �
P

;

@9rad

@L
¼ 9rad

L
:

In the radiative zone, the actual temperature gradient is equal to the radiative temperature gradient 9 ¼ 9rad; its derivatives are
given here. The opacity tables provide log � versus (log �, log T ). In order to calculate

ð@ ln �=@ ln T ÞP ¼ ð@ ln �=@ ln T Þ� þ ð@ ln �=@ ln �ÞT ð@ ln �=@ ln T ÞP;
ð@ ln �=@ ln PÞT ¼ ð@ ln �=@ ln �ÞT ð@ ln �=@ ln T ÞP;

one needs ð@ ln �/@ ln T Þ� and ð@ ln �/@ ln �ÞT (see Iglesias & Rogers 1996; Alexander & Ferguson 1994). The derivatives of y are
functions of a1 and a3,

@y

@ ln x
¼ � 1

F 0ð yÞ a1y
@ ln a1
@ ln x

þ a3 y
3 @a3
@ ln x

� �
;

which need the derivatives of a1 and a3,

@ ln a1
@ ln x

¼ @ ln �

@ ln x
þ @ ln �

@ ln x
þ 3

@ ln T

@ ln x
� @ ln Cp

@ ln x
þ 1

2

@ lnHP

@ ln x
� 1

2	 0
@	 0

@ ln x
� 1

2

@ ln g

@ ln x
� 1

2

@ ln 	

@ ln x
;

@ ln a3
@ ln x

¼ 2
@ ln !

@ ln x
þ @ ln �

@ ln x
� @ ln a1
@ ln x

:

The derivatives of 	 � �ð@ ln �/@T ÞP and Cp are computed by the equation of state. By calculating the derivative of �,

@ ln �

@ ln x
¼ � 2

3
!2�

@ ln !

@ ln x
;

and by expressing HP and g explicitly, one can obtain

@ ln a1
@ ln x

¼� 2

3
!2�

@ ln !

@ ln x
� @ ln Cp

@ ln x
� 1

2	

@	

@ ln x
� 1

2

@ ln 	

@ ln x
� PT

ln x
þ 3

@ ln T

@ ln x
þ 2

@ ln r

@ ln x
þ @ ln �

@ ln x
� 1

2

@ ln �

@ ln x
;

@ ln a3
@ ln x

¼ 2�
@ ln !

@ ln x
� @ ln a1
@ ln x

:
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The derivatives of ! with respect to PT, T, and r are straightforward,

@ ln !

@ ln PT

¼ 1þ @ ln �

@ ln PT

� �
T

;

@ ln !

@ ln T
¼ @ ln �

@ ln T

� �
P

;

@ ln !

@ ln r
¼ 2:
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