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ABSTRACT

We study both analytically and numerically hydrodynamic effects of two colliding shells, the simplified
models of internal shock in various relativistic outflows such as gamma-ray bursts and blazars. We pay particular
attention to three interesting cases: a pair of shells with the same rest-mass density (‘‘equal rest-mass density’’), a
pair of shells with the same rest mass (‘‘equal mass’’), and a pair of shells with the same bulk kinetic energy
(‘‘equal energy’’) measured in the interstellar medium frame. We find that the density profiles are significantly
affected by the propagation of rarefaction waves. A split feature appears at the contact discontinuity of two shells
for the equal-mass case, while no significant split appears for the equal-energy and equal rest-mass density cases.
The shell spreading within a few 10% of the speed of light is also shown as a notable aspect caused by rarefaction
waves. The conversion efficiency of bulk kinetic energy to internal energy is numerically evaluated. The time
evolutions of the efficiency show deviations from the widely used inelastic two-point mass-collision model.

Subject headinggs: galaxies: jets — gamma rays: bursts — gamma rays: theory —
radiation mechanisms: nonthermal — shock waves

1. INTRODUCTION

The internal shock scenario proposed by Rees (1978) is one
of the most promising models for explaining the observational
feature of relativistic outflows, as in gamma-ray bursts (GRBs)
and blazars (e.g., Rees & Meszaros 1994; Spada et al. 2001).
In this scenario, the bulk kinetic energy of the outflowing plasma
is converted into thermal energy and nonthermal particle energy
by shock dissipation and particle acceleration, respectively, and
explains the great power of these objects. Based on this scenario,
many authors have attempted to link the observed temporal pro-
files to multiple internal interactions (e.g., Kobayashi et al. 1997,
hereafter KPS97; Panaitescu et al. 1997; Tanihata et al. 2003;
Nakar & Piran 2002, hereafter NP02), looking for crucial hints on
the central engine of these relativistic outflows.

Most of the previous works focus on the comparison with
the observed light curves and model predictions employing a
simple inelastic collision of two-point masses (KPS97), and
little attention has been paid to hydrodynamic processes in
shell collision. However, it is obvious that, in the case of rel-
ativistic shocks, the timescales in which shock and rarefaction
waves cross the shells are comparable to the dynamical time-
scale �0=c, where �0 is the shell width measured in the
comoving frame of the shell and c is the speed of light. Since
the timescales of observations of these relativistic outflows
(e.g., Takahashi et al. 2000 for blazar jets; Fishman & Meegan
1995 for GRBs) are much longer than the dynamical time-
scales, the light curves should contain the footprints of these
hydrodynamic wave propagations. Thus, it is very interesting
to clarify the difference between the simple two-point mass-
collision (hereafter two-mass collision) model and the hydro-
dynamic treatment. The recent study by Kobayashi & Sari

(2001, hereafter KS01) reports that collided shells are reflected
from each other by thermal expansion. Since they perform a
hydrodynamic simulation and show the reflection feature for a
single case, the details of propagations of rarefaction waves for
various cases of collisions is not discussed. The aim of this
paper is to clarify the hydrodynamic effects including the
propagations of rarefaction wave. As the simplest case, we
explore the hydrodynamics of two-shell collisions in the in-
ternal shock model. Since we are mainly interested in the hy-
drodynamic processes themselves, it is beyond the scope of
this paper to make a detailed comparison of the observed
phenomena with the model results.

We consider the time evolution of two colliding shells in
relativistic hydrodynamics in x 2. In x 3 we discuss the ap-
plication to GRBs and blazars. The summary and discussion
are given in x 4.

2. HYDRODYNAMICS

Here we consider the hydrodynamics of the two-shell
interactions. Our intention is to derive analytically various
timescales for shocks and rarefaction waves crossing the
shells. The fundamentals of relativistic shocks are given by
Landau & Lifshitz (1959) and Blandford & McKee (1976).
Our main assumptions are as follows: (1) we adopt a planar
one-dimensional shock analysis and neglect radiative coolings
for simplicity, (2) we neglect the effect of magnetic fields, and
(3) we limit our attention to shells with relativistic speeds. We
are currently planing two-dimensional studies. The role of
magnetic fields is still under debate. A multifrequency anal-
ysis of TeV blazars shows that the energy density of the
magnetic field is smaller than that of nonthermal electrons
(Kino et al. 2002). As for assumption 3, it is self-evident that
the relativistic regime is most important, since emissions from
GRBs and blazars show a substantial Doppler boost.

2.1. Shock Jump Condition

In Figure 1 we draw a schematic mass density profile
during the shock propagation in the interactions of rapid and
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slow shells. Two shocks are formed: a reverse shock that
goes into the rapid shell and a forward shock that propa-
gates into the slow shell. There are four regions: (1) the
unshocked slow shell, (2) the shocked slow shell, (3) the
shocked rapid shell, and (4) the unshocked rapid shell.
Thermodynamic quantities, such as rest-mass density �, pres-
sure P, and internal energy density e, are measured in the
fluid rest frames. We use the terminology of regions i (i ¼ 1,
2, 3, and 4) and position of discontinuity j ( j ¼ FS, CD, and
RS) where FS, CD, and RS stand for the forward shock
front, contact discontinuity, and reverse shock front, re-
spectively. The fluid velocity and Lorentz factor in region i
measured in the interstellar medium (ISM) rest frame are
expressed as vi(¼ �ic) and �i, respectively. The relative ve-
locity and Lorentz factor of the fluids in regions i and j are
denoted as vij(¼ �vji ¼ �ijc ¼ ��jic) and �ij(¼ �ji), respec-
tively. Throughout this work, we use the assumption of
�i 31.

We first count the numbers of quantities and the shock jump
conditions. Each region is specified by three physical quan-
tities: rest-mass density �i, pressure Pi, and velocity vi mea-
sured in the ISM rest frame. Forward and reverse shock speeds
measured in the frame of unshocked regions (i.e., regions 1
and 4, respectively) are two other quantities. In all, there are
3 ; 4þ 2 ¼ 14 physical quantities. The total number of the
jump conditions at FS, RS, and CD is 3þ 3þ 2 ¼ 8. Hence,
given 3þ 3 ¼ 6 upstream quantities for each shock, we can
obtain the eight remaining downstream quantities by using
eight jump conditions.

Following Blandford & McKee (1976), we consider the
limit of strong shock, P2=n2 3P1=n1, and adopt the as-
sumption that the upstream matter is cold. As an equation of
state (EOS), we take

Pi ¼ (�̂i � 1)(ei � �i); ð1Þ

where �̂i is an adiabatic index. The jump conditions for the
forward shock are written as follows:

�2
FS1 ¼

(�12 þ 1)½�̂2(�12 � 1)þ 1�2

�̂2(2� �̂2)(�12 � 1)þ 2
;

e2 ¼ �12�2;
�2
�1

¼ �̂2�12 þ 1

�̂2 � 1
; ð2Þ

where �12 ¼ �1�2(1� �1�2) and �FS1 is the Lorentz factor of
forward shock measured in the rest frame of the unshocked
slow shell. In the relativistic limit, the adiabatic index is
�̂2 ¼ 4=3. Using the same assumptions as in the forward
shock, the jump conditions for the reverse shock are given by

�2
RS4 ¼

(�34 þ 1)½�̂3(�34 � 1)þ 1�2

�̂3(2� �̂3)(�34 � 1)þ 2
;

e3 ¼ �34�3;
�3
�4

¼ �̂3�34 þ 1

�̂3 � 1
; ð3Þ

where �34 ¼ �3�4(1� �3�4) and �RS4 is the Lorentz factor of
the reverse shock measured in the rest frame of the unshocked
rapid shell. The equality of pressures and velocities across the
contact discontinuity gives

P2 ¼ P3; �2 ¼ �3: ð4Þ

Before a shock breakout, �2 ¼ �3 ¼ �CD is satisfied. It may
be useful to introduce the ratio f � �4=�1, which can be
obtained from P2 ¼ P3, as

f � �4
�1

¼ (�̂2�12 þ 1)(�12 � 1)

(�̂3�34 þ 1)(�34 � 1)
: ð5Þ

Throughout this paper, we set P1 ¼ P4 ¼ 0. Then we take
�1, �4, �1, and �4 as the four remaining upstream parameters.

Fig. 1.—Sketch of a two-shell collision in which a rapid shell catches up with a slower one at the CD frame. Forward and reverse shocks (FS and RS) propagate
from the contact discontinuity (CD). We employ the conventional numbering for each region in the study of GRBs (e.g., Piran 1999).
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Then, with the eight shock conditions given above, we can
obtain eight downstream quantities: �2, e2, v2, vFS, �3, e3, v3,
and vRS.

2.2. Timescales of Wavve Propaggations

Here we evaluate seven timescales of relevance when the
shock and rarefaction waves cross the colliding shells. They
are useful for understanding the hydrodynamic evolution of
two-shell collisions. We measure these timescales in the rest
frame of CD (hereafter CD frame) because it facilitates com-
parison with each other. In contrast, most of the previous
papers used the ISM frame to measure the crossing time of the
shock (e.g., Sari & Piran 1995; Panaitescu et al. 1997). Here we
need to introduce new physical parameters, the shell widths
measured in the ISM frame,�r and�s, where subscripts r and
s represent rapid and slow shells, respectively. In the ISM
frame, the upstream parameters are as follows: Lorentz factors
�r(¼ �4) and �s(¼ �1), and rest-mass densities �r and �s. With
2þ 4 ¼ 6 physical parameters, we can uniquely specify the
initial condition. Note that regions 1 and 4 disappear after FS
and RS break out, respectively.

In the CD frame, we rewrite them as �0
r, �0

s, �0
r

(¼ �0
4 ¼ �34), and �0

s(¼ �0
1 ¼ �12) during the shock propa-

gation in the shells. After the shock breaks out of the shell, the
velocity is not uniform and determined by the propagation of
rarefaction wave. Note that once we choose the CD frame, �0

4

and �0
1 are not independent of each other (see, e.g., eq. [8]).

The time in which FS crosses the slow shell, t 0FS, is given by

t 0FS ¼ �0
s

j� 0
1j þ j� 0

FSj

¼�0
s j� 0

1j þ 1� 1

�02
1 �

2
FS1(1� j� 0

1jj�FS1j)2

" #1=28<
:

9=
;

�1

; ð6Þ

where we use equation (2) and � 02
FS ¼ 1� 1=�02

FS. Thus, we can
express t 0FS as a function of model parameters and �0

1, which is
also given implicitly from the model parameters. Similarly, the
RS crossing time in the rapid shell, t 0RS, is

t 0RS ¼ �0
r

j� 0
4j þ j� 0

RSj

¼ �0
r j� 0

4j þ 1� 1

�02
4 �

2
RS4(1� j� 0

4jj�RS4j)2

" #1=28<
:

9=
;

�1

; ð7Þ

where we use equation (3) and � 02
RS ¼ 1� 1=�02

RS. It is impor-
tant to note that �0

1 and �0
4 are not independent but related by

�0
4 ¼

�f (1� �̂3)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2(1� �̂3)

2 þ 4f �̂3 (�0
1 � 1)(�̂2�

0
1 þ 1)þ f

� �q
2f �̂3

:

ð8Þ

It is expected that after FS has crossed the slow shell, a
rarefaction wave (hereafter FR) propagates into the shocked
slow shell (e.g., Panaitescu et al. 1997). The sound speed is
given by (e.g., Mihalas & Mihalas 1984)

c2s ¼
@P

@e

� �
ad

¼ �̂P

eþ P
: ð9Þ

Thus, the time at which FR reaches CD, t 0FR-CD, is given by

t 0FR-CD ¼ t 0FS þ
�0

s;FS

cs2

¼ t 0FS þ�0
s�

0
1

�̂2 � 1

�̂2�
0
1 þ 1

�̂2(�̂2 � 1)(�0
1 � 1)

�̂2�
0
1 � �̂2 þ 1

c2
� ��1=2

;

ð10Þ

where �0
s;FS is the width of the slow shell just after FS reaches

the end of the shell. This is obtained by the mass conservation
(e.g., Spada et al. 2001), where (�̂2 � 1)=(�̂2�

0
1 þ 1) is the

compression factor of the slow shell and �0
1 is the factor from

the Lorentz contraction. Similarly, the corresponding time,
t 0RR-CD, at which the rarefaction wave (hereafter RR) generated
at the RS breakout reaches CD is given by

t 0RR-CD ¼ t 0RS þ
�0

r;RS

cs3

¼ t 0RS þ�0
r�

0
4

�̂3 � 1

�̂3�
0
4 þ 1

�̂3(�̂3 � 1)(�0
4 � 1)

�̂3�
0
4 � �̂3 þ 1

c2
� ��1=2

:

ð11Þ

In the case of t 0RR-CD > t 0FR-CD, only t 0FR-CD is an actual time,
and t 0RR-CD is a virtual time that does not exist in reality. The
opposite case is also true.

In the case of t 0RR-CD < t 0FR-CD, we have the time at which
two rarefaction waves collide, t 0RR-FR, as

t 0RR-FR � t 0RR-CD þ
�0

s;RR-CD

2cs2

� t 0RR-CD þ �0
s�

0
1

2cs2

�̂2 � 1

�̂2�
0
1 þ 1

t 0FR-CD � t 0RR-CD
t 0FR-CD � t 0FS

� �
; ð12Þ

where �0
s;RR-CD is the width of the part of slow shell through

which FR has not passed yet at t 0RR-CD. Since both RR and FR
propagate at the speed cs2 after t 0RR-CD, the above equation
includes a factor of 2. Note that after the rarefaction wave
crosses CD, the pressure gradient appears at CD. As a result,
CD begins to move from x0 ¼ 0 in the CD frame. Thus,
equations (12), (13), (14), and (15) are approximate estima-
tions. Similarly, in the case of t 0FR-CD < t 0RR-CD, we have

t 0RR-FR � t 0FR-CD þ
�0

r;FR-CD

2cs3

� t 0FR-CD þ �0
r�

0
4

2cs3

�̂3 � 1

�̂3�
0
4 þ 1

t 0RR-CD � t 0FR-CD
t 0RR-CD � t 0RS

� �
: ð13Þ

The timescale in which RR catches up with the propagating
forward shock (FS), t 0RR-FS, can be estimated as

t 0RR-FS �
cs;2t

0
RR-CD

cs2 � � 0
FSc

: ð14Þ

Similarly, the timescale in which FR catches up with the re-
verse shock (RS) is approximated as

t 0FR-RS �
cr;3t

0
FR-CD

cs3 � � 0
RSc

: ð15Þ
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2.3. Numerical Simulation

We complementarily perform the special relativistic hydro-
dynamic simulations. The detail of the code is given in Mizuta
et al. (2004). To sum up, the code is based on an approximate
relativistic Riemann solver. The numerical flux is derived from
Marquina’s flux formula (Donat & Marquina 1996). This code
is originally second order in space using the so-called MUSCL
method. In this study, however, this is slightly compromised
for numerical stability. We assume plane symmetry and treat
one-dimensional motions of shells. In discussing the propa-
gation of shock and rarefaction waves, we choose the CD
frame. Given the ratio �r=�s in the ISM frame and the value of
�s, we can determine the Lorentz transformation to the CD
frame easily because the CD Lorentz factor �CD(¼ �2 ¼ �3)
measured in the ISM frame can be derived by solving equa-
tion (5). We should note that the number of free parameters is
reduced from six to five because we have already fixed the
frame. As for the EOS, we assume for simplicity that �̂3 ¼
�̂2 ¼ 4=3 for �34 > 2 and �̂3 ¼ �̂2 ¼ 5=3 otherwise. Although
this simplification gives slightly inaccurate estimation of the
speeds of wave propagations, there is little effect on our con-
clusions in this work.

We start the calculation at t ¼ 0 when the collision of two
shells has just begun. Throughout this paper, we set �0

s=c ¼ 1
and �r ¼ 1 as units in numerical simulations. Initially, two
shells have opposite velocities, namely, v0r > 0 and v0s < 0. In
x 2.2 we did not impose any conditions for the plasma sur-
rounding the two shells. We only assumed that the boundary
of each shell will be kept intact during the passage of shocks
and rarefaction waves. For our numerical runs, we put plasma
of low rest-mass density (10�4T1; �s=�r) outside of the two
shells. They have the same velocity and pressure as the ad-
jacent shell. At first, the boundary condition at the left boun-
dary is a steady inflow of dilute plasma. When the reverse
shock or the rarefaction wave reaches the rapid shell’s boun-
dary, the velocity of the dilute plasma is set to be zero in-
stantaneously to reduce the effect of the interaction between the
shock and the dilute plasma. At the same time, the left boun-
dary condition is set to be a free outflow. The treatment of the
right-side dilute plasma and the boundary condition is the same
as that of the left side.

3. SHELL DYNAMICS AFTER COLLISION

3.1. Shell Splittingg

3.1.1. General Consideration

Here we classify the types of mass density profiles in the
merged shell based on the order of the times obtained in x 2.2.
Table 1 gives the complete set of possible orders. Although
there are various cases in the orders, the density profile in
particular, the splitting feature is governed by two criteria.

1. When t 0RR-CD < t 0FR-CD for �r > �s or t
0
FR-CD < t 0RR-CD for

�s > �r is satisfied, the splitting occurs at CD, since the rare-
faction wave going from the larger density region (region 2)
into the smaller density region (region 3) makes a dip in the
latter region.

2. When a pair of rarefaction waves propagating in opposite
directions collide, the density begins to decrease at the collision
point and the splitting feature emerges. Hence, the existence of
tRR-FR implies a splitting feature.

Based on these two criteria, the mass density profile is clas-
sified into four types and shown in Figure 2. If both criteria

are satisfied, then the mass density has triple peaks. We show
the corresponding schematic picture of spacetime diagram in
Figure 3. If only one criterion is met, then the double-peaked
profile is realized. When neither condition is satisfied, the
single peak is obtained.

3.1.2. GRBs and Blazars

Here we apply the above general consideration to the spe-
cific cases and examine which kind of rest-mass density
profile is realized in GRBs and blazars. We assume that the
widths of two shells are same in the ISM frame, which is
written as �r=�s ¼ 1 (see, e.g., KS01). We consider the
following three cases since it seems natural to suppose that
ejected shells from the central engine have a correlation
among them: (1) the energy of the bulk motion of the rapid
shell (E ¼ �mc2) equals that of the slow one in the ISM frame
(hereafter ‘‘equal energy’’ or ‘‘equal E’’), (2) the mass of the
rapid shell (m ¼ ���) equals that of the slow one (hereafter
‘‘equal mass’’ or ‘‘equal m’’), and (3) the rest-mass density of
rapid shell equals that of the slow one (hereafter ‘‘equal rest-
mass density’’ or ‘‘equal �’’),

�r ¼ �s (equal �);

�r�r�r ¼ �s�s�s (equal m);

�r�r�
2
r c

2 ¼ �s�s�
2
s c

2 (equal E): ð16Þ

Note that in the case of �r ¼ �s and �r > �s, �s is always
larger than �r. This leads to the absence of tRR-FS. For all
cases, we have 3þ 1þ 1 ¼ 5 parameters. We take the ratio

TABLE 1

Various Types of Evolution

Number Timescalea Profileb

�s > �r

1........................................... t 0RS < t 0RR-CD < t 0RR-FS S

2........................................... t 0RS < t 0RR-CD < t 0FS < t 0RR-FR D1

3........................................... t 0RS < t 0FS < t 0RR-CD < t 0RR-FR D1

4........................................... t 0RS < t 0FS < t 0FR-CD < t 0RR-FR T

5........................................... t 0FS < t 0FR-CD < t 0FR-RS D2

6........................................... t 0FS < t 0FR-CD < t 0RS < t 0RR-FR T

7........................................... t 0FS < t 0RS < t 0FR-CD < t 0RR-FR T

8........................................... t 0FS < t 0RS < t 0RR-CD < t 0RR-FR D1

�s < �r

9........................................... t 0RS < t 0RR-CD < t 0RR-FS D2

10......................................... t 0RS < t 0RR-CD < t 0FS < t 0RR-FR T

11......................................... t 0RS < t 0FS < t 0RR-CD < t 0RR-FR T

12......................................... t 0RS < t 0FS < t 0FR-CD < t 0RR-FR D1

13......................................... t 0FS < t 0FR-CD < t 0FR-RS S

14......................................... t 0FS < t 0FR-CD < t 0RS < t 0RR-FR D1

15......................................... t 0FS < t 0RS < t 0FR-CD < t 0RR-FR D1

16......................................... t 0FS < t 0RS < t 0RR-CD < t 0RR-FR T

�s ¼ �r

17......................................... t 0RS < t 0RR-FS S

18......................................... t 0RS < t 0FS < t 0RR-FR D1

19......................................... t 0FS < t 0FR-RS S

20......................................... t 0FS < t 0RS < t 0RR-FR D1

a Notations are given in x 2.2.
b Representative profiles of S, D1, D2, and T are schematically shown in

Fig. 2.
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Fig. 3.—Schematic picture of spacetime diagram of a two-shell interaction
in the CD frame. Here we assume �s > �r. A forward shock (FS) and a reverse
shock (RS) run through the slow and rapid shells, respectively. After the
shocks break out, the rarefaction waves propagate into the shells (FR and RR),
and the shells spread (FE and RE). This corresponds to case 7 in Table 1.

Fig. 2.—Schematic snapshot of the rest-mass density of two shells. Here we assume �s > �r. The corresponding timescale relation in each case is shown in
Table 1. Picture S shows the case in which RR catches up with the propagating FS and has a single peak. Picture D1 shows the case in which both FS and RS cross
the shells and the rarefaction wave propagating from both sides dig a dip and give a double-peaked profile. Picture D2 shows the case in which FR reaches CD and
digs a dip. Hence, the profile is double-peaked. Picture T shows the case of the combination of D1 and D2. Then the final profile is triple-peaked.

Fig. 4.—The �r=�s dependence of the various timescales for the equal-E
case. In the whole range, case 4 (triple) is realized. The slight jumps of the
timescales at �r=�s � 5 correspond to the abrupt change of adiabatic index.
The softening of the EOS in the relativistic regime gives slower shock waves,
and the timescales become longer accordingly.



�r=�s as the last parameter and vary its value. This completes
the six model parameters.

The various timescales for the equal-E case in GRBs are
shown as a function of �r=�s in Figure 4. Here we set �s ¼
102,�0

s ¼ 1010 cm, and �s ¼ 10�10 g cm�3 in the slow shell as
an example. Slight jumps of timescales are seen at �r=�s� 5 in
the figure. They are caused by the abrupt change of adiabatic
index between the nonrelativistic and relativistic regimes. The
softening of the EOS in the relativistic regime leads to slower
shock wave propagation in the CD frame. In the whole range,
criteria 1 and 2 given in x 3.1.1 are both satisfied. Therefore, the
triple-peaked profile is expected (No. 4 in Table 1) in principle.
However, criterion 1 is only marginally satisfied. As a result,

the two peaks are not remarkable. It is worthwhile to obtain
order estimations of �0

r=�
0
s and j� 0

r=�
0
sj by using a simple

approximation of �CD ��m (�m is the Lorentz factor of the
merged shell obtained by the two-mass collision model, and it
is given in x 3.3.1) in spite of some discrepancy with the exact
solution of equation (5). We have

�0
r

�0
s

¼ �r�r�
0
s

�s�s�
0
r

’ �4

�1

� �2 �2
1 þ �2

2

�2
3 þ �2

4

 !
;

� 0
r

� 0
s

����
���� ’ (�2

1 þ �2
2)(��2

3 þ �2
4)

(��2
1 þ �2

2)(�
2
3 þ �2

4)
: ð17Þ

Fig. 5.—Left: Time evolution of the rest-mass density profile in the CD frame in the case of equal E. The parameter is chosen so that �r=�s ¼ 3 in the ISM frame.
The parameters in the CD frame are shown in Table 2. Throughout our numerical simulations, we set �0

s=c ¼ 1 and �s ¼ 1 as units. Right: Spacetime diagram of
shock and rarefaction wave propagations. As shown in the text, tRS� tFS � 3. RE spreads at the speed �0.9c, while FE spreads at the speed �0.6c.

Fig. 6.—Left: Time evolution of the rest-mass density profile in the CD frame for equal E. In the ISM frame, �r=�s ¼ 6. The parameters are given in Table 2.
Right: Spacetime diagram of shock and rarefaction wave propagations. Both FS and RS propagate faster than those for �r=�s ¼ 3 and tFS � tRS � 3. RE spreads at
the speed �c, while FE spreads at the speed �0.7c.
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As �r=�s increases, the ratios of shell widths and velocities in
the CD frame go asymptotically to

�0
r

�0
s

� 3;
� 0
r

� 0
s

����
���� � 3: ð18Þ

This equation explains well the fact that each timescale in
Figure 4 has a weak dependence on �r=�s. This is why t

0
RS and

t 0FS are very close to each other; t 0RR-CD is also close to t 0FR-CD
simply because the sound speeds in the both shocked regions
are about a few 10% of the light speed and close to each other.
The corresponding numerical results are shown in Figures 5
and 6. In these calculations, we take the cases of �r=�s ¼ 3 and
�r=�s ¼ 6, respectively. This implies a large density contrast
of �s=�r ¼ 9 and �s=�r ¼ 36, respectively (see Table 2). The
collision of the rarefaction waves occurs in the region with
much lower density compared with region 2. As a result, the
peak of the profile is smoothed out. For larger values of �r=�s,
the density contrast between regions 2 and 3 becomes clearer.
Hence, we conclude that the equal-energy case essentially
evolves into single-peaked profiles. The spacetime diagram
obtained by the numerical simulation for equal E is shown in
Figures 5 and 6. From Figure 5 we see that t 0FS � t 0RS � 3, as is
shown in equation (18). In Figure 6, these timescales become
close to 3.

The timescales for the equal-mass case are shown in Figure 7.
Up to �r=�s � 20, criteria 1 and 2 are both satisfied and the
triple-peaked profile shows up (No. 6 in Table 1). As �r=�s

increases, we obtain

�0
r

�0
s

� �4

�1

;
� 0
r

� 0
s

����
���� � 1; ð19Þ

and t 0RS and t 0RR-CD become larger compared with t 0FS and
t 0FR-CD. For the numerical experiment, we select two cases
that have �r=�s ¼ 3 and 20. In each case, we clearly see the
dip corresponding to criterion 1 in Figures 8 and 9. However,
as in the equal-E case, the collision of rarefaction waves
occurs in the less dense rapid shell, and the density peak
tends to be smoothed out. Hence, we conclude that the equal-
mass collision with a large value of �r=�s effectively evolves
into the double-peaked (D2) profile. In KS01, the authors
found a shell-split feature in their numerical simulation (Fig. 2
in their paper) for the equal-m case. It can also be explained
as the D2 profile. In Figure 9, we see that the rarefaction
wave (FR) driven by the breakout of FS catches up with the

shock wave (RS) from behind at t 0 � 3, since the flow seen
from RS is subsonic in the downstream of RS. The propagation
speed of RS is modified by the merge with the rarefaction wave
and is determined by the strengths of the shock wave and
rarefaction wave. For the current case, the propagation speed of
RS is almost unchanged up to its breakout at t 0P5:4.

The timescales for the equal-� case is shown in Figure 10.
The important point is that �s ¼ �r along CD. Then criterion 1
disappears. In the limit of large �r=�s, we have

�0
r

�0
s

� 1

3

�4

�1

� �2

;
� 0
r

� 0
s

����
����� 1

3
; ð20Þ

and tRS and tRR-CD become larger compared with tFS and tFR-CD.
We see this in the numerical experiment with �r=�s ¼ 6 in
Figure 11. As in Figure 9, we see also in Figure 11 that FR
catches up to RS and merges during 3P t 0P6:5. The last topic
is the dependence of the above results on the hitherto fixed
model parameters �s,�

0
s, and �s. The results for different �s are

TABLE 2

Parameter Sets for Numerical Simulations of Equal E, Equal m, and Equal �

Number a �r=�s �CD
b �0

r �0
s �0

r=�
0
s �s=�r

4 (equal E )......... 3 6.7 1.34 1.05 2.3 9

4 (equal E )c ....... 6 7.0 2.26 1.06 2.8 36

6 (equal m)......... 3 7.6 1.25 1.09 2.6 3

5 (equal m)c ....... 20 11.8 4.29 1.40 6.4 20

19 (equal �)........ 6 12.2 1.43 1.43 6.0 1

(equal �)c,d ......... 20 22.4 2.35 2.35 1.0 1

a These numbers correspond to those shown in Table 1.
b The values are obtained by solving eq. (5). The slow shell Lorentz factor is fixed as

�s ¼ 5.
c We use �̂3 ¼ 4=3.
d This corresponds to the case D1 profile in Fig. 2 without the assumption of �s ¼ �r.

Fig. 7.—Timescales for equal mass. When �r=�s is smaller than �7, case 6
(triple) is realized. For �r=�s larger than �7, case 5 (D2) is realized. The
slight jumps of the timescales at �r=�s � 7 correspond to the abrupt change of
adiabatic index. The softening of the EOS in the relativistic regime gives
slower shock waves, and the timescales become longer accordingly.
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completely the same as in Figure 4. The position of each
timescale is determined by �0

r=�
0
s and � 0

r=�
0
s and are inde-

pendent of �s itself. Hence, we omit corresponding figures.
For different �s the result is also almost unchanged, since we
treat the case of �r=�s > 3 for simplicity. Then the sound speed
is about a few 10% of the light speed and has a weak depen-
dence on �s. When �0

s is increased, every timescale increases
linearly, keeping the relative positions of the timescales.

For a typical blazar, we set up three slow shell parameters as
�s ¼ 10, �0

s ¼ 1016 cm, and �s ¼ 10�26 g cm�3. We show the
result in Figure 12 for the equal-E case as an example. The es-
sential difference between GRBs and blazars is a typical shell
width. Hence, as explained above, every timescale becomes 106

times larger than that in Figure 4 with the relative positions
unchanged.

3.1.3. Extra Case

Since we have not seen a clear case corresponding to
criterion 2 so far, we have performed another specific case
to show what happens for the collision of two rarefaction-
rarefaction waves (D1 profile in Fig. 2). The D1 profile
appears most clearly when the rapid and slow shells have
similar mass densities and shell widths in the CD frame.
Hence, we do not use the assumption of �r ¼ �s here only.
Instead, we employ the condition that �r ¼ �s, �

0
r ¼ �0

s, and
�r=�s ¼ 20. In Figure 13, the D1 profile is indeed produced.

Fig. 8.—Left: Time evolution of the rest-mass density profile in the CD frame for equal m. In the ISM frame �r=�s ¼ 3. The parameters are shown in Table 2.
Criterion 2 is satisfied and the profile classified D2 in Fig. 2 is seen in this numerical result. Right: Spacetime diagram of shock and rarefaction wave propagations.
RE spreads at the speed �0.8c, while FE spreads at the speed �0.7c.

Fig. 9.—Left: Time evolution of the rest-mass density profile in the CD frame for equal m. In the ISM frame, �r=�s ¼ 20. The parameters are shown in Table 2.
The dilute rapid shell collides with the slow one and quickly spreads out. We also see that the dense slow shock is pushed forward by the rapid shell.
Right: Spacetime diagram of shock and rarefaction wave propagations. RE spreads at the speed �c, while FE spreads at the speed �0.9c.
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A larger value of �r=�s produces a greater dip than that shown
in Figure 13.

3.2. Shell Spreadingg

In principle, we can obtain the speed of the rarefaction
wave using Riemann invariants (e.g., Zel’dovich & Raizer
1966). In the relativistic limit, it is known that the speed of the
head of the rarefaction wave is close to the speed of light (e.g.,
Anile 1989). As the EOS of the shocked region deviates from
the relativistic one, the speed is reduced from the light speed,
and the intermediate regime should be treated by numerical
calculations (e.g., Wen et al. 1997). It is worthwhile to note that
from the values �0

r and �
0
s in Table 2 we see that the EOS in the

forward shocked region is a nonrelativistic one, while the re-
verse shocked region extends from the nonrelativistic to the
relativistic regime for the parameter ranges we adopted.

Numerical results for shell spreading are shown in Figures 5,
6, 8, 9, and 11, in which the width of the shell may be described
as

�0
tot(t

0) ’ �0
s;FS þ�0

r;RS þ vFE(t
0 � t 0FS)þ vRE(t

0 � t 0RS); ð21Þ

where �0
tot is the total width of the shell in the CD frame. We

should stress that although many authors assume that the shell
width is not changed after collisions (e.g., Spada et al. 2001;
NP02) for simplicity, the reality is that the shells spread at vFE
and vRE in the forward and backward directions, respectively.

3.3. Energgy Convversion Efficiency

The conversion efficiency of the bulk kinetic energy to the
internal one is one of the most important issues in exploring the
nature of the central engine of relativistic outflows, and many
authors have studied it (e.g., Kumar 1999; Tanihata et al. 2003).

3.3.1. Two-Mass Collision Model

Let us briefly review the widely used two-mass collision
model (e.g., Piran 1999). From the momentum and energy
conservations, we have

mr�r þ ms�s ¼ (mm þ Em=c
2)�m;

mr�r�r þ ms�s�s ¼ (mm þ Em=c
2)�m�m; ð22Þ

where mm ¼ mr þ ms, Em ¼ Er þ Es, and �m are the mass, the
internal energy, and the Lorentz factor of the merged shell,
respectively, and mr and ms are the rest mass of the rapid and
slow shells, respectively. Then we obtain the efficiency � as

� ¼ 1� (mr þ ms)�m

mr�r þ ms�s

; �2
m ¼ �r�s

mr�r þ ms�s

mr�s þ ms�r

: ð23Þ

It is a useful shortcut to approximate �m � �2 ¼ �3 without
solving equation (5). Using this shortcut for the equal-mass
density case (mr=�r ¼ ms=�s), we have �2

m ¼ (�2
r þ �2

s )=2.

Fig. 10.—Timescales for equal �. Case 19 in Table 1 is realized in the whole
range. The slight jumps of the timescales at �r=�s � 14;15 correspond to the
abrupt change of adiabatic index. The softening of the EOS in the relativistic
regime gives slower shock waves, and the timescales become longer accordingly.

Fig. 11.—Left: Time evolution of the rest-mass density profile in the CD frame for equal �. In the ISM frame, �r=�s ¼ 6. The parameters are shown in Table 2.
Right: Spacetime diagram of shock and rarefaction wave propagations. RE spreads at the speed �c, while FE spreads at the speed �0.8c.
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For the equal-mass case (mr ¼ ms), we have �2
m ¼ �r�s. For

equal energy (mr�r ¼ ms�s), we have�
2
m ¼ 2(�2

s�
2
r )=(�

2
s þ �2

r ).
Then, the efficiency � in each case is given by

� ’

1� 1ffiffiffi
2

p 1þ �s

�r

� �
1þ �s

�r

� �2
" #�1=2

(equal �);

1� 4

2þ �r=�sð Þ þ �s=�rð Þ

� �1=2
(equal m);

1� 1ffiffiffi
2

p 1þ �r

�s

� �
1þ �r

�s

� �2
" #�1=2

(equal E):

8>>>>>>>>>>><
>>>>>>>>>>>:

ð24Þ

As the value of �r=�s gets larger for the equal-m case, the
efficiency becomes larger and approaches �1. For the equal-E
and equal-� cases, it goes asymptotically to �0.3. Thus, we
find that equal m is the most effective collision if we neglect
the rarefaction waves.

3.3.2. Shock Model

The consideration of shock dynamics provides us with in-
formation on the assignment of the total dissipation energy
Ediss to the forward and reverse shocked regions, EFS and ERS.
From the equations of mass continuity in the CD frame, we
have �0

s;FS=�
0
s ¼ ½�0

1(�̂2 � 1)�=(�̂2�0
1 þ 1) and �0

s;RS =�
0
r ¼

½�0
4(�̂3 � 1)�=(�̂3�0

4 þ 1). Assuming a large value of �4=�1, we
have e2 þ P2 ’ e3 þ P3, and the dissipated energies are mainly
controlled by shell widths. They are written as

EFS

Ediss

’
�0

s;FS

�0
s;FS þ�0

r;RS

;
ERS

Ediss

’
�0

r;RS

�0
s;FS þ�0

r;RS

; ð25Þ

where EFS and ERS are the internal energy of forward and
reverse shocked regions just after the shock crosses each shell,
respectively (e.g., Spada et al. 2001). However, the values
EFS=Ediss and ERS=Ediss will begin to deviate from the above
approximation when the rarefaction waves start to propagate,
since they reconvert internal energy into kinetic energy. The
result including the rarefaction waves is shown below.

3.3.3. Numerical Results

The estimation of the energy conversion efficiencies with
shock and rarefaction waves taken into account are presented
in Figures 14, 15, and 16 based on the numerical simulations.
From the analogy of the two-mass collision model, we define
the efficiency measured in the ISM frame as

�(t) � 1�
R
�(t; x) dm(t; x)

�rmr þ �sms

¼ 1�
R
�(t; x)�(t; x)�(t; x) dx

�r�r�
2
r þ �s�s�

2
s

; ð26Þ

Fig. 12.—Same as Fig. 4, but for blazars. Compared with Fig. 4 the relative
positions of various timescales are almost unchanged, while the absolute value
of each timescale is reduced by a factor of 106, which is the ratio of the shell
width of GRB to that of the blazar.

Fig. 13.—Left: Time evolution of the rest-mass density profile in the CD frame for equal �. In the ISM frame, �r=�s ¼ 20. The parameters are shown in Table 2.
By the rarefaction-rarefaction wave collision, the bump is generated at the center of the shell. This corresponds to the D1 profile in Fig. 2. Right: Spacetime diagram
of shock and rarefaction wave propagations. Both RE and FE spread at the speed �c.
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where dm(t; x), �(t; x), �(t; x), and �(t; x) dx are the rest-mass
element, the rest-mass density, and the Lorentz factor, seen in
the ISM frame, and the length of line element in the CD frame,
respectively. We assume that the origins of both frames co-
incide at t ¼ t 0 ¼ 0. The Lorentz transformation of �(t; x) is
written as �(t; x) ¼ �CD�

0(t; x)½1� �CD�
0(t; x)�. The hyper-

surface of a constant time in the ISM frame does not coincide
with that in the CD frame. Hence, to evaluate spatial inte-
grations at a certain time in the ISM frame, we must collect the
values of physical quantities in the integrand for different
times in the CD frame. Unfortunately, this is a technically
difficult task to perform. Hence, we report to an approximation
that �(t; x) and �(t; x) are replaced by �(t 0; x0) and �(t 0; x0),
respectively. This is only valid near the original point of the
CD frame and mixes up these quantities at other time slices.
We believe, however, that this still gives the behavior of the
efficiency and the essential role of rarefaction waves. In these
figures, we compare the numerical results with the prediction
by the two-mass collision approximation. We find that the
two-mass collision model well reproduces the hydrodynamic
results just before the rarefaction waves begin to propagate.
After the shock waves breakout of the shells, the conversion
efficiency is reduced by several 10% from the estimate of
the two-mass collision model after several dynamical times.
It is noted again that no cooling effect is taken into account
here.

4. SUMMARY AND DISCUSSION

In this paper we have illuminated the difference between the
simple two-mass collision model and the hydrodynamic model
of the internal shock. We have studied one-dimensional hy-
drodynamic simulations of the two-shell collisions in the CD
frame taking the shock and rarefaction waves into account.
Below we summarize our results and give some discussions.

1. By comparing the relevant timescales of shock and rare-
faction waves, we have completely classified the evolutions of
the two-shell collisions using six physical parameters, that is,
the widths, rest-mass densities, and velocities of the two col-
liding shells. We find that rarefaction waves have a significant
effect on the dynamics. In principle, the rest-mass density
profile can be evolved into single-, double-, and triple-peaked

Fig. 14.—Time evolutions of the conversion efficiency defined by eq. (26)
for the equal-energy case. During shock propagations, � approaches the two-
mass collision estimate given by eq. (24) for each case. As the rarefaction
waves begin to propagate, the efficiencies are reduced by them. This sup-
pression can be ascribed to the thermal expansion.

Fig. 15.—Time evolutions of the conversion efficiency defined by eq. (26)
for the equal-m case. During shock propagations, � approaches the two-point
mass estimate given by eq. (24) for each case.

Fig. 16.—Time evolutions of the conversion efficiency defined by eq. (26)
for the equal-� case. During shock propagations, � approaches the two-point
mass estimate given by eq. (24) for each case.

INTERNAL SHOCK OF RELATIVISTIC OUTFLOWS 1031No. 2, 2004



features. In the limit of �r;�s 31, the features are essen-
tially characterized by only three parameters: the ratios of
Lorentz factors, widths, and rest-mass densities. The combi-
nation of the values of �r=�s and �r=�s determines the rel-
ative orders of the timescales of various wave propagations,
while the value of �r=�s controls the normalizations of the
timescales.

2. Bearing in mind the application to relativistic outflows
such as GRBs and blazars, we specifically examine the cases of
equal �, equal m, and equal E. For the equal-� case, the profile
is single-peaked. The rarefaction wave produced when FS
breaks out reaches CD and then catches up with RS. In the case
of equal m, the profile should in principle become triple-peaked
according to our classification scheme. In practice, however,
there is very little time for the FR-RR collision to make a clear
dip, while there is a lot more time for FR to create a dip for a
fairly wide range of parameters. Therefore, the profile in this
case is effectively double-peaked. For the equal-E case, the
profile is classified as triple-peaked. Again, however, there is
very little time for the FR-RR collision to make a dip. A very
large mass-density gradient between forward and reverse
shocked regions makes the dip even less pronounced. Fur-
thermore, there is again little time for FR to create a dip for a
fairly wide range of parameters. Hence, we conclude that the
profile for equal E is effectively single-peaked. If the cooling
timescale is sufficiently long in the shocked region, electro-
magnetic radiation will show these profiles.

3. For large �r=�s, we have shown that the spreading
velocity of the shells after collision is close to the speed of
light. Hence, the often used approximation of constant shell

width after collision is not very good in treating multiple col-
lisions. For example, NP02 claim that the equal-energy case is
suggested for the shell Lorentz factors in GRBs, assuming that
L > �, where L is the separation distance between two shells.
If the interval of the first and the second collisions is long,
however, the shell spreading effect cannot be ignored, and the
case of L < � should be included in the analysis. Then the
difference between the equal-m and equal-E cases might be
wiped away.
4. As the shell spreads after collision, the internal energy is

converted back to the bulk kinetic energy because of thermal
expansion. We have numerically studied the time-dependent
energy conversion efficiency quantitatively. Since we have
neglected the cooling processes, the conversion efficiency rises
up to the order of unity. This should correspond to the event in
the regime of ‘‘weak cooling’’ (Kino & Takahara 2004). If
�r=�s 31 and the time interval between collisions is long, the
conversion efficiency will be substantially deviated the estimate
of the two-mass collision model.
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