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ABSTRACT

Light rays passing very close to a black hole may experience very strong deviations. Two geometries have been
separately considered in recent literature: a source behind the black hole (standard gravitational lensing) and a
source in front of the black hole (retrolensing). In this paper we start from the strong-field limit approach to recover
both situations under the same formalism, describing not only the two geometries just mentioned but also any
possible intermediate configurations of the source-lens-observer system without any small-angle limitations. This
is done for any spherically symmetric black holes and for the equatorial plane of Kerr black holes. In light of this
formalism we revisit the previous literature on retrolensing, sensibly improving the observational estimates. In
particular, for the case of the star S2, we give precise predictions for the magnitude of the relativistic images and
the time of their highest brightness, which should occur at the beginning of a.d. 2018. The observation of such
images would open fascinating perspectives on the measure of the physical parameters of the central black hole,
including mass, spin, and distance.

Subject headinggs: black hole physics — Galaxy: center — gravitational lensing — stars: individual (S2)

1. INTRODUCTION

The fact that light rays can wind an arbitrary number of
times around a black hole before emerging back toward spatial
infinity has been well known since the earliest studies of
general relativity (Darwin 1959; Atkinson 1965; Luminet
1979; Ohanian 1987; Nemiroff 1993; see also the treatment in
Chandrasekhar 1983). In practice, a source behind a black hole
produces not only the two classical weak-field gravitational
lensing images but also an infinite number of strong-field
images corresponding to photons with winding numbers run-
ning from 1 to infinity. This phenomenon has been revived in a
work by Virbhadra & Ellis (2000), who showed that the su-
permassive black hole at the center of our Galaxy may be a
suitable lens candidate. The resolution needed for such an
observation is very high but should be reached by future very
long baseline interferometry experiments such as ARISE5 and
MAXIM.6 In order to describe gravitational lensing in such
extreme cases, we cannot use any weak-field approximation.
However, it is possible to take advantage of the opposite limit
and finally get a very simple and efficient analytical approxi-
mation, called the strong-field limit (SFL; Bozza 2002). This
method first emerged in Schwarzschild black hole studies
(Darwin 1959; Ohanian 1987; Bozza et al. 2001), then was
applied to Reissner-Nordstrom black holes (Eiroa et al. 2002)
and to charged black holes of heterotic string theory (Bhadra
2003) and finally generalized to an arbitrary spherically sym-
metric metric (Bozza 2002). The microlensing situation was

considered by Petters (2003), while Kerr black holes were ex-
plored analytically for quasi-equatorial motion (Bozza 2003)
and numerically for arbitrary motion (Vazquez & Esteban
2003). It is also interesting that a time-delay measurement
would give a precise estimate of the distance of the lens (Bozza
&Mancini 2004). For former and/or alternative formulations of
strong-field gravitational lensing see Frittelli & Newman
(1999), Frittelli et al. (2000), Dabrowski & Schunck (2000),
and Perlick (2004).

Already in the first studies of gravitational lensing in strong
fields by Darwin (1959) it was noticed that the whole sky is
mapped in the vicinity of what was then called a ‘‘compact
sun.’’ In particular, it was known that a source in front of the
lens could yield relativistic images and Einstein rings as bright
as a source behind the lens (see, e.g., Luminet 1979). In more
recent years retrolensing was rediscovered quite independently
from standard gravitational lensing. Holz & Wheeler (2002)
proposed that a black hole of a few solar masses passing within
1 pc of the solar system would redirect photons from the Sun
backward to the Earth. An observer would thus see a ‘‘star’’
lighting up and then switching off in the sky as the Earth in its
motion enters and leaves the best alignment position. De Paolis
et al. (2003) suggested the black hole in Sgr A* at the center of
our Galaxy as a suitable retrolens, proposing the star S2 (the
star with the smallest average distance from Sgr A* discovered
so far) as a candidate source. At the moment, this seems to be
the best known candidate for gravitational lensing in strong
fields, deserving a closer investigation. At the same time, Eiroa
& Torres (2004) considered retrolensing by Sgr A*, using the
analytical framework of the SFL method to give correct esti-
mates for such a phenomenon; their investigation, however, is
limited to small angles and cannot cover the case of S2. Finally,
De Paolis et al. (2004) extended Holz & Wheeler’s proposal to
Kerr retrolensing, using the SFL method to calculate the po-
sition of the images but using the Holz & Wheeler formula for
the amplification (which is inadequate for spinning black
holes), finding no significant deviation from the light curves of
the Schwarzschild case.
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In this paper, we give up any limitation due to small-angle
approximation and treat the standard and retro–gravitational
lensing on a unified ground, where they just come up as par-
ticular cases. In addition to recovering these two situations, we
also address the gravitational lensing problem for any inter-
mediate geometries, in which the strong-field images are still
present as always but are usually dimmer (see x 2). This allows
us to treat in a very accurate way the case of the star S2, giving
precise predictions for the light curves of its images in the next
several years. Moreover, we clarify several aspects that were
not clearly stated in the former literature, constructing a unique
analytical framework for the whole phenomenology.

In x 2 we discuss the spherically symmetric lens; we give the
formulae for the position and the magnification of the images
and discuss the differences with the magnification formula by
Holz & Wheeler (2002); we also comment on the importance
of time-delay measurements. Section 3 is devoted to the study
of S2, the best candidate source for gravitational lensing in the
SFL; we use our formalism to draw analytical curves of the
images, accurately predicting the epoch of their luminosity
peak. In x 4, in the light of the results by Bozza (2003), we
guess about the possible changes in S2 relativistic images if the
black hole at the center of our galaxy has nonvanishing spin;
we also compare our results in Sun retrolensing by Kerr black
holes with those by De Paolis et al. (2004). Section 5 contains a
summary of the work.

2. GRAVITATIONAL LENSING BY SPHERICALLY
SYMMETRIC BLACK HOLES

According to the SFL method, the deflection angle of a light
ray passing very close to a black hole can be expanded around
the minimum impact angle �m, which separates the light rays
absorbed by the black hole (� < �m) from the light rays that are
simply deflected (� > �m). As previously shown (Bozza 2002),
the deflection angle always diverges logarithmically at � � �m
for any class of spherically symmetric black holes. The loga-
rithmic term and the constant term give a sufficient approxi-
mation to the deflection angle in order to explain the whole
phenomenology. The fundamental formula reads

� (�) ¼ �a log
�

�m
�1

� �
þ b; ð1Þ

up to higher-order terms in (�� �m). The numerical coef-
ficients a and b depend on the characteristics of the black hole
(electric charge, coupling to a scalar field, the particular
gravitational theory we are using, etc.). We refer the reader to
(Bozza 2002) for its full derivation and for some examples (see
also Bhadra 2003).

Using equation (1), Eiroa & Torres (2004) have correctly
calculated the position and the magnification of the retrolens-
ing images. However, their treatment (as well as the treatment
in Bozza 2002 for standard lensing) is limited to small sepa-
rations of the source from the optical axis (defined as the line
connecting the observer with the lens). In order to address the
general case, we have to write the lens equation in a suitable
way, without restricting to particular cases.

2.1. Lens Equation and Position of the Imagges

The source, the lens, and the observer define the plane where
the whole motion of the photon takes place in the case of
spherically symmetric black holes. We define � as the angle
between the source-lens direction and the optical axis (see

Fig. 1), and � as the angular position of the image in the sky of
the observer with respect to the position of the black hole,
which coincides with the impact angle of the light ray as seen by
the observer. The impact angle as seen from the source is called
�. Then the lens equation is simply (see also Bozza 2003)

� ¼ � (�)� �� �: ð2Þ

Now, we can give a unique treatment allowing � to run over the
whole range ½0;þ1). In fact, � ’ 0 would yield the weak-field
gravitational lensing, � ’ � would be gravitational retrolens-
ing, � ’ 2� would give standard gravitational lensing in the
SFL, and so on. The collection of strong-field gravitational
lensing images would be recovered, solving the lens equation
for � ’ 2n� with n � 1, while the collection of retrolensing
images is recovered with � ¼ (2n� 1)� with n � 1.
Since we are only interested in strong-field gravitational

lensing of far sources, the impact angle � ¼ arcsin (u=DOL) is
always negligible compared to � and � , as it is of the order of
the Schwarzschild radius of the black hole divided by the
distance of the lens, which is usually much larger (unless we
are falling into the black hole). So we can safely drop � from
equation (2). For � we can apply the same argument as long
as the source is far enough from the black hole (see, e.g.,
Cunningham & Bardeen 1973 or Viergutz 1993 for the more
complicated case where the source is orbiting very close to the
black hole).
The general solution of the lens equation is then

� ¼ �m 1þ e b��ð Þ=a
h i

: ð3Þ

This formula is valid both for standard gravitational lensing
(when � ’ 2n�; compare with Bozza 2002) and for retrolensing
[when � ’ (2n� 1)�; compare with Eiroa & Torres 2004]. It
is also valid for any intermediate situation. Its limits of validity
are fixed by the accuracy of the SFL formula (eq. [1]) for the
deflection angle when we slip from strong-field to weak-field
gravitational lensing. This point deserves a deeper discussion.
Estimates of the accuracy of the SFL approximation are

easily made in the Schwarzschild case, where it is possible to
calculate the deflection angle exactly (Bozza et al. 2001). So
let us call � ex(�) the exact deflection angle for Schwarzschild
black hole. Let �ex be the image calculated using � ex in the
lens equation (2). What is really interesting in the images is
the difference from the minimum impact angle, i.e., ���m and
�ex��m. So, in Figure 2 we finally plot (�ex��)=(�ex��m)
versus �.

Fig. 1.—Generic lensing configuration.
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Of course when � ’ 0, we should rather use the weak-
field approximation, and the error becomes very large. (We
should also take into account the fact that the additional
terms in the lens equation are no longer negligible.) What is
more interesting is looking at the error in the determination
of the retrolensing images (� ’ �), which turns to be of the
order of 6%. The accuracy grows exponentially with �, so
that the outermost relativistic image of standard strong-field
gravitational lensing (� ¼ 2�) is determined with an accu-
racy of 0.3%. To improve these numbers, which is perhaps
desirable for the outermost retrolensing image, higher-order
terms in the formula for the deflection angle should be in-
cluded, but this task is beyond the scope of this work. A 6%
accuracy in retrolensing will be sufficient for most of the
following discussions.

2.2. Maggnification of the Imagges

In the first retrolensing paper, Holz & Wheeler (2002)
proposed a rather unusual formula for the amplification of the
images, based on heuristic arguments:

A ¼ �(u2
o � u2

i )
��

2�
; ð4Þ

�� ¼ 2 arctan
RS

DOS sin �

� �
; ð5Þ

where ui and uo are the inner and outer impact parameters that
bound the image, respectively, �� is the amplitude of the arc
described by the image, and RS is the source radius.

According to this formula, a full Einstein ring would form
only for a perfect alignment � ¼ 0. This is obviously wrong,
since it is sufficient that just one point of the source is per-
fectly aligned to build a full Einstein ring. For a source far
enough from perfect alignment, it can be shown that this ap-
proximate formula coincides with the standard formula we
derive in this subsection. However, it cannot be trusted in the
high-alignment regime and should be replaced by a more
rigorous one.

Ohanian (1987) already derived a formula valid for the
Schwarzschild black hole. Here we rederive it for an arbitrary
black hole. To describe the extension of the source in terms of
our angles, we can attach polar coordinates to the lens frame,
where � plays the role of the polar angle from the optical axis,
and we introduce an azimuthal angle � around this axis. Then
the solid-angle element is given by d!S ¼ d� sin �d�. In the

same way, we can attach polar coordinates to the observer
obtaining an image element d!I ¼ d� sin �d�. The quantity

d!I

d!S

¼ sin �

sin � d�=d�ð Þ ð6Þ

represents the ratio between the angular extension of the image
as it appears to the observer and the extension of the source as
it appears to the black hole. The latter is related to the extension
of the source as it appears to the observer by the simple qua-
dratic ratio of the distances D2

OS=D
2
LS . Finally we have

� ¼ D2
OS

D2
LS

sin �

sin � d�=d�ð Þ : ð7Þ

The source distance is, of course, related to the other
distances by simple trigonometry: D2

OS ¼ D2
OL þ D2

LS þ
2DOLDLS cos �. Moreover, since we are always considering
black holes far from the observer, we can safely approximate
sin � ’ �. On the other hand, only for a high-alignment sit-
uation, with � ’ k�, can we replace sin � by j� � k�j. In such
cases, which correspond to standard and retrolensing, we re-
cover the usual formula for the magnification of spherically
symmetric lenses, valid for small angles. Equation (7), on the
contrary, is valid also for a general �.

Now, using the lens equation, we can write

� ¼ � D2
OS

D2
LS

�2
me

b��ð Þ=a 1þ e b��ð Þ= a
h i

a sin �
; ð8Þ

where the sign coming out of the derivative correctly accounts
for the parity of the image. For � ’ 2n� we recover the
magnification formula given by Bozza (2002), while for � ’
(2n� 1)� we recover the formula given by Eiroa & Torres
(2004). However, equation (8) smoothly joins the two extreme
cases, covering the whole range of �. It can be obtained from
the Kerr magnification formula given by Bozza (2003) in the
limit of vanishing black hole spin. In addition, the derivation
proposed here does not need to pass through the Kerr metric
and can be applied to a generic spherically symmetric black
hole.

The caustic points (points of formally infinite magnifica-
tion) are exactly at � ¼ k� where sin � vanishes. Sources close
to these points get the maximal amplification. That is why
standard and retrolensing were first studied as the most in-
teresting physical cases.

To treat extended sources we need to integrate this formula
over the angular extension of the source, eventually weighted
by a surface brightness factor. If the source is far from a
caustic point, then the magnification varies very little along
the source surface, and it makes almost no difference to ap-
proximate the source as a point. On the other hand, the
magnification for pointlike sources diverges on caustic points,
while for realistic extended sources we get a finite result in-
tegrating over the source angular area. Then the source radius
acts as an effective cutoff of the magnification.

In order to compare this formula with that of Holz &
Wheeler (2002), we can use it in the limit of retrolensing, with
� ’ �. The magnification becomes

�retro ¼ �D 2
OS

D2
LS

�2
me

b��ð Þ=a 1þ e b��ð Þ=a
h i

aj� � �j ; ð9Þ

Fig. 2.—Accuracy of the SFL in the determination of the images as a
function of the source position angle �.
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where we have neglected the dependence on � in the expo-
nentials being much weaker than the dependence in the
denominator.

Finally, the integral over the source extension for a constant
brightness source of radius RS is a standard calculation in
terms of elliptic functions, first performed by Witt & Mao
(1994) and also given explicitly by Eiroa & Torres (2004). It
amounts to replacing the j� � �j�1 in equation (9) by its in-
tegral over the source disk DS ,

1

��2S

Z
DS

1

�
sin � d� d� ¼

2sign½�S � ��
��2S

"
(�S � �)E

�

2
;� 4�S�

(�S � �)2

� �

þ (�S þ �)F
�

2
;� 4�S�

(�S � �)2

� �#
; ð10Þ

where for simplicity we have used � instead of j� � �j and we
have defined �S ¼ RS=DLS ; F and E are the elliptic integrals of
first and second kind.

With this formula, we can draw a retro-MACHO light curve
for the situation described by Holz & Wheeler (2002), i.e., a
black hole of 10 M� passing at 0.01 pc from the Sun, which
deviates photons coming from the Sun backward to the Earth.
We can compare the curves in Figure 3 with those by Holz &
Wheeler (2002) to see how different the shape looks when the
source starts to cover the caustic point (top curve). It is in-
teresting to note that the absolute normalization of the curves
by Holz & Wheeler (2002) is slightly different from that by De
Paolis et al. (2004), and both are slightly different from ours.
This might depend on minor approximations in the units of
measure.

In the case of perfect alignment, equation (10) gives 2=�S .
The maximum amplification is thus

�max ¼
D2

OS

D2
LS

4�2
me

b�k�ð Þ= a 1þ e b�k�ð Þ=a
h i
a�S

; ð11Þ

where we have also multiplied by two in order to sum the
(equal) magnifications of the two images. In Sun retrolensing,
it amounts to

�max ¼ 1:29 ; 10�14 ML

10 M�

� �2
RS

R�

� ��1
DOL

0:01 pc

� ��1

: ð12Þ

Now, let us consider an arbitrary geometry, where observer,
source, and lens are completely misaligned, so that � is far
from k�. Then we have to use the general equation (7) for the
magnification with a value for sin �, which is a generic
number between 0 and 1. To compare this situation with the
perfect alignment, we can take the ratio between equation (7)
with sin � ’ 1 and one-half of equation (11) (for a single
image). Apart from the exponentials, which can weakly
modify the order of magnitude, this ratio is generally of the
order of

�min

�max

� �S
2
T1: ð13Þ

Thus, intermediate lensing is generally disfavored with re-
spect to standard and retro–gravitational lensing. However,
this does not mean that intermediate lensing cannot be inter-
esting from an observational point of view, as we shall see
in x 3.

2.3. Time Delay in Strongg-Field Gravvitational Lensingg

Time delay in strong-field gravitational lensing provides a
very important independent observable, which directly yields
the distance of the lens with a good accuracy (Bozza &
Mancini 2004). In fact, the time delay between images with
successive winding numbers is

�T ¼ 2�
DOL�m
c0

; ð14Þ

where c0 is the speed of light. Thus, by measuring �m and �T
we can immediately obtain DOL. To get an idea of how big the
time delay is, we can write it as

�T ¼ 0:13h
M

2:87 ; 106 M�

� �
: ð15Þ

It is thus completely insignificant for solar mass black
holes, even if they are close to our solar system. It is also quite
small for the black hole at the center of our Galaxy, but it
amounts to several days for supermassive black holes in other
galaxies, being thus measurable, once we find a suitable var-
iable source.
The calculations by Bozza & Mancini (2004) were made

with the standard gravitational lensing configuration in
mind. However, it is easy to see that in retrolensing or any
intermediate lensing configurations the time difference be-
tween relativistic images remains exactly the same, while
only the (unobservable) absolute travel time of the photon
changes.
Now let us consider the time delay between the first rela-

tivistic image and the direct image of the source. When the
source is well aligned behind the lens, then the direct image
becomes weakly lensed and the first relativistic image turns to
the secondary weak-field image. In this case, the Shapiro time-
delay formula applies (see Wex et al. 1996 for an application
involving the Galactic center).

Fig. 3.—Total magnitude of the images of the Sun produced by a black hole
with 10 M� at 0.01 pc distance acting as a retrolens. From bottom to top we
consider a central event, an event with maximum alignment of � ¼ 1 R�=DLS ,
and one with � ¼ 1 AU=DLS .
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If the source is not behind the lens, then the time delay
between the first relativistic image and the direct image is
dominated by the geometric path difference

�T ¼ DOL þ DLS � DOS

c0
¼ DOL

c0
1þ sin � � sin �

sin (� � �)

� �

’ DOL

c0

1� cos �

sin �
�; ð16Þ

where � is the angular separation between the source and the
black hole as seen by the observer. The last approximate
equality is valid if �T1. In principle, by measuring � and
�T , if we have a good knowledge of �, we can use the time
delay to estimate the distance to the lens. With respect to the
time delay between consecutive relativistic images, this mea-
sure is surely easier, since we just need one relativistic image.
However, we need a good knowledge of the angle �, which
was not required in the previous case.

3. GRAVITATIONAL LENSING OF THE STAR
S2 BY SGR A*

S2 is the star with the least average distance from the Galactic
center discovered so far (Schödel et al. 2002). Its orbital motion
has been very accurately reconstructed through proper motion
and spectral measurements. Its orbital parameters, taken by
Schödel et al. (2003), are reported in Table 1. This star looks
like an O8–B0 main-sequence star of 15 M� with an apparent
magnitude in the K band (centered on k ¼ 2:2 �m) of mK ¼
13:9. The extinction in the K band in the region of the Galactic
center amounts to 3.3 mag (Rieke et al. 1989). The orbital
period and the semimajor axis fix the enclosed mass to Menc ¼
3:3 ; 106 M�, slightly larger than the central black hole mass,
which is currently estimated as MBH ¼ 2:87 ; 106 M�.

The value of the inclination of the orbit suggests that a high
alignment with the observer-lens line does not occur during
the motion of the star around Sgr A*. This seems to rule out
any possibility for standard or retro–gravitational lensing. Con-
trarily to what was expected, De Paolis et al. (2003) claimed
that the relativistic images of S2 near the central black hole are
not far beyond instrumental sensitivities, even if the alignment
is not favorable. In this section we complete their analysis in
the light of our formalism, including all the significant orbital
parameters and drawing light curves for the relativistic images
using ourmagnification formula.We can thus confirm their claim,
also predicting the best observability time for these images.

Rather than a retrolensing configuration, S2 represents a
case with an intermediate �. The magnification of the images
is thus well described by equation (7). Since the radius of S2 is
a few solar radii, �S stays much smaller than j� � k�j (i.e., we
are far enough from caustic points), allowing us to trust the
pointlike magnification without the need to integrate it over
the source surface. After some algebra, we can write down
all the interesting quantities in terms of the orbital parameters
of the system:

DLS ¼
a(1� e2)

1þ e cos �
; ð17Þ

DOL ’ DOS ¼ 8 kpc; ð18Þ
� ¼ arccos½sin (�þ !) sin i�; ð19Þ

where � is the anomaly angle of the star starting from
the periapse epoch, i is the inclination of the orbit, and ! is the
periapse anomaly with respect to the ascending node. By the
angular momentum conservation, we have

L ¼ MS2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMenca(1� e2)

p
¼ MS2D

2
LS�̇: ð20Þ

By this equation, we can write a differential equation for �̇,

a(1� e2)½ �3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMenc

p
(1þ e cos �)2

�̇ ¼ 1: ð21Þ

Integrating and inverting, we can get � as a function of
time, exploiting the initial condition �(T0) ¼ 0, with T0 given
in Table 1. If the eccentricity of the orbit of S2 were negli-
gible, �(t) would just be a linear function of time, of the form
�(t) ¼ !0t, with !0 ¼ 2�=T being a constant. This approxi-
mation was done for simplicity by De Paolis et al. (2003).
However, in Figure 4 we see that the high value of the ec-
centricity drastically modifies this function. To get accurate
predictions, it is thus mandatory to take into account the an-
gular motion of S2 correctly.

Finally, we can plot the magnification of the first two rel-
ativistic images, taking MBH ¼ 2:87 ; 106 M� as the mass of
the black hole (Schödel et al. 2003; De Paolis et al. 2003 used
Menc). The first relativistic image has 0 < � < �. In practice it
is the secondary image of weak-field gravitational lensing that
turns into a strong-field image because of the high misalign-
ment. It has a negative parity and is formed close to the black
hole on the other side with respect to the direction of S2. The

TABLE 1

Orbital Parameters for S2

Orbital Parameter a Value

a.......................................................... 4:54 ; 10�3 pc

P ......................................................... 15.73 yr

e.......................................................... 0.87

T0........................................................ 2002.31 yr

i .......................................................... 45N7

�......................................................... 45N9

! ......................................................... 244N7

a Parameters: a is the semimajor axis, P is the orbital
period, e is the eccentricity, T0 is the epoch of periapse, i
is the inclination of the normal of the orbit with respect to
the line of sight, � is the position angle of the ascending
node, ! is the periapse anomaly with respect to the as-
cending node. Data taken from Schödel et al. (2003).

Fig. 4.—Orbital position of S2 as a function of time.
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second relativistic image has � < � < 2� and comes from
light rays which take the ‘‘wrong’’ direction around the black
hole and are bound to turn once more around it in order to
reach the observer. This image has positive parity and appears
on the same side of S2. The next images are fainter and
probably uninteresting for the moment.

In Figure 5 we plot the magnifications of the first two images
as functions of time. The periapse epoch is the most favorable
for the observations, since DLS , which appears with a power of
—2 in equation (7), drops to its minimum value. This mini-
mum value is still 1300 times larger than the Schwarzschild
radius of the central black hole, so that we can safely treat the
source as far from the lens. Since the angular velocity of S2 is
maximal in the periapse epoch, the luminosity peak is rela-
tively short. As S2 passed through the periapse in 2002, we
have to wait for the next periapse to get this luminosity peak.
In Figure 6 we have drawn the expected apparent magnitudes
in the K band of the first two relativistic images at the epoch of
the next periapse, supposing that the extinction value 3.3 in
this band (Rieke et al. 1989) also applies from light coming to
us from regions very close to the central black hole. The first
relativistic image should stay brighter than 32 mag from mid-
August 2017 to mid-April 2018. The second relativistic image
is typically 5.4 times fainter during the peak, a hard challenge
for next-generation instruments.

The observation of a relativistic image requires a strikingly
high angular resolution together with a high flux sensitivity.
Very impressive improvements in very long baseline interfer-
ometry have been performed in recent years in the radio bands.
With the first detection of transatlantic fringes at 147 GHz
(Krichbaum et al. 2002), the present world record has been
established at 18 �as, which is just a few times the angular size
of the Schwarzschild radius of the black hole at the Galactic
center. Further improvements can be obtained at submillimeter
wavelengths.

A very important step for absolute sensitivity in the infrared
band is the James Webb Space Telescope (JWST ), which will
operate in the wavelength interval 0.6–27 �m. At k ¼ 2:2 �m
with a 3 hr exposure, it will be able to detect a flux corre-
sponding to 32 mag, just enough to catch the first S2 rela-
tivistic image. If coupled with other instruments still to come,
then the detection of relativistic images could become a future
observational frontier. Furthermore, we cannot forget that the
Galactic center is surrounded by a crowded cluster of stars,
which can probably yield even better candidates than S2 for
strong-field gravitational lensing.

We close this section with some comments on possible
time-delay measurements. Since S2 is close to the center of
the Galaxy but never aligned behind it, we can estimate the

time delay between the first relativistic image and the direct
image using equation (16). At the luminosity peak epoch, this
delay amounts to 5.95 hr, thus being comparable to the ex-
posure time. In the particular case of S2, no intrinsic vari-
ability has been reported up to now in the observed spectral
bands. However, the principle of time-delay measures could
be applied to eventual new candidates or to S2 itself if any
variability is detected in its flux. A measure of such a short
time delay requires a very good sampling over the whole
period of variability. The precision of such an estimate is
limited by the effort undertaken to sample the two light curves
to be compared. With a good knowledge of the orbit (in order
to correctly estimate �) and a sufficient sampling, which
would depend on the future facilities and the characteristics of
the source, it could be possible to establish the distance to the
center of the Galaxy on a solid direct measurement.

4. KERR GRAVITATIONAL LENSING

What we have said up to now is true for spherically sym-
metric black holes (including the estimates on S2 gravitational
lensing). In the case of spinning black holes, everything
becomes much more complicated, but some very important
facts already emerge from the analysis of quasi-equatorial
motion, which has already been done analytically (Bozza
2003). In fact, it is evident that the caustics are no longer
aligned along the optical axis, but drift following the sense of
rotation of the black hole. In addition, they are no longer
pointlike but acquire finite extension. To get an idea of the
importance of these changes, we can see that for a ¼ 0:1, the
first retrolensing caustic drifts from the optical axis by an
angle of 10

�
and acquires an extension of 2N4 on the equatorial

plane. The existence of extended caustics is accompanied by
the formation of pairs of additional images when the source
enters one of the caustics. These images are missed in the
quasi-equatorial approach, since they rather live far from the
equatorial plane. A very important consequence is the fact that
high magnifications can be attained much more easily. In fact,
while in spherically symmetric metrics the caustics are
pointlike and coincide with the optical axis, in the Kerr metric
they are distributed in all directions around the lens and
have finite extension, so that it is much easier for a source to
lie within a high-amplification region for some relativistic
images. Another complication arises because the usual hier-
archy among relativistic images, which just follows the
winding number, can be completely upset by the fact that the

Fig. 5.—Magnification of the first two relativistic images as a function of
time.

Fig. 6.—Apparent magnitude of the first two relativistic images in the
epoch of the next periapse.
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source lies in a caustic that affects images with a higher winding
number.

Summing up, Kerr black hole lensing is much richer than
spherically symmetric black hole lensing. It is also much more
promising from a phenomenological point of view, since it is
easier to have brighter images. And of course, it is reasonable
to expect that astrophysical black holes are born with a non-
negligible spin. All these statements point to the importance of
the investigation of Kerr black hole lensing in the general case.

4.1. Kerr Black Hole Lensinggwith S2

As a practical example of the modifications that an eventual
spin of the black hole in Sgr A* would have on the light curve
of the images of S2, let us calculate the magnification at the
moments when S2 crosses the plane of the Galaxy. It is rea-
sonable to assume that if the central black hole is spinning, the
angle of its equatorial plane is very close to that of the rota-
tional plane of the Galaxy. Using the orbital parameters of S2,
we see that it has crossed the Galactic plane in t1 ¼ 2003:12,
where it had � ¼ 77N2 and DLS ¼ 2:74 ; 10�3 pc, being east
of the black hole and slightly behind it. It will cross the
Galactic plane again in t2 ¼ 2018:00 with � ¼ 102N5 and
DLS ¼ 6:93 ; 10�4 pc, being west of the black hole and
slightly before it. For these crossing times, we can precisely
calculate the magnifications of the equatorial images using
the formula by Bozza (2003),

� ¼ D2
OS

DOLDLS

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
u

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
(DOL þ DLS)C � DOLDLSS

��� ��� ; ð22Þ

where u ¼ �RSch=DOL,C ¼ cos�, S ¼ sin�, and � is the phase
of the photon oscillations on the equatorial plane, expressed by

� ¼ � b� �

a
þ b̂: ð23Þ

The coefficients a, b, and b̂ are all functions of the spin of
the black hole a, (see Bozza 2003 for the whole derivation).

In Figure 7 we plot the magnifications of the images as a
function of the black hole spin, from a ¼ 0 (Schwarzschild) to
a ¼ 0:5 (an extreme Kerr black hole in our normalization). In
Figures 7a and 7b we plot the image magnifications for the past
time t1, while in Figures 7c and 7d we plot the image magni-
fications for the future time t2. In Figures 7a and 7c we plot
the magnifications of the images with negative parity. The
brightest of them gives the most significant contribution (it is
this image that is going to be most likely observable). The
magnifications of the images with increasing winding numbers
plotted together. The higher the winding number, the lower the
magnification. In Figures 7b and 7d we represent the magnifi-
cation of the positive parity images. The most relevant of these
are also represented in Figures 5 and 6, where they are, however,
fainter than the brightest negative parity image. As the winding
number increases, the magnification decreases. The images in
Figures 7a and 7d are formed by retrograde photons, i.e.,
winding oppositely to the sense of rotation of the black hole. The
images in Figures 7b and 7c are formed by corotating photons.

Now let us comment on the outcome of these figures. In-
creasing the spin of the black hole, we see that corotating
images become brighter and retrograde images become fainter.
The most striking features are the peaks in the magnification
that occur at definite values of the black hole spin. Varying
the black hole spin, the caustic points drift all around the

Fig. 7.—Magnifications of the images of S2 as functions of the black hole spin a at (a, b) time t1 ¼ 2003:12; and (c, d ) time t2 ¼ 2018:00. Panels (a) and (c) are
the negative parity images with increasing winding numbers, and (b) and (d ) are the positive parity images, again with increasing winding numbers.
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trigonometric interval, and for some values they meet the
angular position of S2. Around these values, the magnification
can become significantly higher than the normal value. We
also see that the first caustics, corresponding to low winding
numbers, move slowly and thus cross the position of S2 fewer
times. The caustics corresponding to higher winding numbers
move quickly. For this reason the fainter images meet caustics
more often in the interval of variability of a.

If the true value of the spin of the central black hole is such
that one of the images is close to a caustic point, that image
will be highly amplified. By these plots, we see that in a.d.A.D.

2018.00 for the particular value a� 0:26, the second negative
parity image will overcome the brighter one.

Besides the luminosity of the relativistic images, the pres-
ence of a spin for the black hole also affects their position. In
fact, images formed by retrograde photons appear up to 1.5
times farther from the central black hole, while corotating
photons appear up to 2.6 times closer to it.

Finally, it must be kept in mind that since the caustics have
extended areas, these caustic points are actually just the cusps
of these caustics. This means that the images we are plotting in
Figure 7 change their parity at every caustic crossing. Global
parity conservation is assured by creation or destruction of
nonequatorial images of the same parity of the image before
the crossing. For these images we do not have an analytical
treatment at the moment, and all we can say is that they will
appear at each caustic crossing and disappear when the source
steps out of a caustic.

When a complete analytical treatment of the Kerr black hole
lensing is available, not only will we have a clearer idea of the
dynamics of all images, but we will be able to use all the in-
formation about position and luminosity of all visible relativistic
images to measure the spin of the black hole. We can imagine
that such an estimate would be much cleaner and simpler than
those relying on poorly understood models of the accretion disk
or gas surrounding the central black hole, which are subject to
very complicated physical processes and dynamics. However,
for the details of such a fascinating measure, we still have to
wait for further analytical progress on the general Kerr lensing.

4.2. Sun Retrolensinggby a Kerr Black Hole

Another context where Kerr black hole lensing was dis-
cussed was retrolensing of the Sun by a nearby Kerr black
hole (De Paolis et al. 2004). As a first step, a geometry was
considered such that the whole event occurred within the
equatorial plane of the black hole. Using the formulae by
Bozza (2003), the positions of the images were correctly
calculated. However, the magnification was estimated using
the formula by Holz & Wheeler (2002), which was derived for
a Schwarzschild black hole (being also inaccurate for central
events, as shown in x 2). It is well known in different contexts
(Gould & Loeb 1992; Bozza 1999) that the modification to
the magnification map comes firstly from the change to the
Jacobian function, due to the change in the lens model, and
only secondly from the displacements of the image positions
due to the modifications in the lens equation, which can be
neglected in a first extent. As a consequence of this simplifi-
cation, De Paolis et al. (2004) found no significant deviation
from Schwarzschild retrolensing. However, by the study of the
equatorial case, we learn that the caustics drift and acquire
finite extension, so we expect that things are not so simple.

For the configuration considered in Holz & Wheeler (2002)
and De Paolis et al. (2004), we have strong magnification only
if the source is close to a caustic. Very small misalignments can

kill the images to very small luminosities (it is sufficient to look
at Fig. 3 to be convinced; for quantitative estimates see Holz &
Wheeler 2002). So, it is sufficient that the relevant caustic for
retrolensing moves out of the Earth orbit in order for the Sun
retrolensing to disappear at all. With a black hole at a distance
of 0.01 pc, this happens if the black hole spin is a > 0:00027,
quite a small value. If we have a black hole with a spin less than
this, then the retrolensing caustic area would be much smaller
then the Sun angular radius as seen from the black hole, being
effectively treatable as pointlike. Then everything would work
more or less like in the Schwarzschild case, with corrections to
the magnification curves of the order of ��=� ’ a, i.e., below
the precision of SFL approximation.

5. CONCLUSIONS

Gravitational lensing in strong fields is a very interesting
subject from the theoretical point of view. Potentially it is a
very appealing phenomenon, which is completely embedded
within full general relativity. It would thus be an exceptional
probe for physics in the regions close to the event horizons of
black holes and would give very important feedback on the
correct theory of gravitation. This justifies the very strong
efforts that have been made by several groups to find possible
candidate sources and lenses that could make this fascinating
phenomenon manifest. The astrophysical cases investigated
up to now are such that the relativistic images should be
‘‘almost’’ observable or should become observable in not too
many years. The most important problem is whether these
theoretical configurations are likely or not. The case of S2, on
the contrary, is a concrete case in which definite predictions
for the image luminosities can be made.
In this work we have extended the analytical framework of

the strong-field limit analysis to cover all the possible geo-
metric configurations, giving up any small-angle approxima-
tions that are not automatically encoded in the tracks of the
light rays. In this way, we have been able to revisit the so-
called retrolensing, in particular the Sun retrolensing proposed
by Holz & Wheeler (2002), with more valid mathematical
instruments. Moreover, we can adequately cover any inter-
mediate case, such as that of the star S2 (De Paolis et al.
2003). For the first relativistic image of this star, we predict an
epoch of maximal luminosity (better than 32 mag) between
the end of a.d. 2017 and the first part of 2018.
Using previous work on equatorial Kerr lensing (Bozza

2003), we have guessed how the presence of extended caustics
and their drift from the optical axis can affect the brightness of
the relativistic images of S2 at the epoch of its crossing
through the Galactic plane. We have also put upper limits on
the black hole spin in Kerr retrolensing of the Sun in order to
have still significant images.
As a final remark, we can say that strong-field gravitational

lensing opens really fascinating perspectives, like testing
general relativity and measuring the distance, the spin, or
other physical parameters of the black hole in the Galactic
center and in the centers of other galaxies. The nice luminosity
estimates for S2 encourage us to look for more stars orbiting
very close to the central black hole as new potential candidate
sources for such an amazing phenomenon.
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