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ABSTRACT
We present a simple method to detect periodic signals in sparse astronomical event data. The method

is particularly appropriate for gamma-ray astronomy where the number of available photons is sparse in
time and Poissonian noise dominates the statistics. It is based on an autocorrelation function, which
provides phase independence. We have implemented and successfully applied this method on simulated
data. This paper presents some numerical results and a description of the model used to generate the
synthetic data along with a formal deÐnition of the signal-to-noise ratio in the generated time series.
Subject headings : methods : data analysis È methods : statistical

1. INTRODUCTION

The gamma-ray spectrum was the last photon energy
range to be opened to astronomical observation. In this
regard EGRET, part of Compton Gamma Ray Observatory
(CGRO), has made great contributions to the Ðeld

et al. et al.(Kanbach 1988 ; Fichtel 1994).
In gamma-ray astronomy, the detected photons emitted

by various sources are relatively few and sparse in time. The
small number of detected gamma photons is due both to the
low emission of the sources and to the limited gathering
capacity of present-day gamma-ray telescopes. This implies
a sparse time series of photon arrival times from a given
source in the sky and, consequently, poor statistics for data
analysis. Under these conditions, the gathered data are
mainly dominated by Poissonian noise, which makes it dif-
Ðcult to observe periodic behaviors of the emitting source.
The detection of periodic signals with sparse data is a diffi-
cult problem when there is no indication of periodicity from
a di†erent band of the spectrum Caraveo, &(Bignami,
Mereghetti 1993).

The new generation of gamma-ray telescopes, like
GLAST, ARGO, and others based on large-area detectors

et al. will provide a large(Colavita 1996 ; Sacco 1993),
amount of data with better statistics and at the same time
with better temporal and angular resolution. Hence, new
gamma-ray sources that have no counterparts in other
regions of the spectrum could be identiÐed.

A suitable method to explore periodicity in sparse data
should be able to deal with a small number of events and
should provide some rejection to the constant background
emission, which always contaminates data from a point
source. Di†erent methods have been developed to cope with
the problem of periodicity searching Mendez, &(Cincotta,
Nun8 es & Loredo1995 ; Bai 1992 ; Gregory 1992 ; Swanepoel
& De Beer et al.1990 ; Scargle 1989 ; Leahy 1983).
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The method we propose allows the detection of period-
icity or, at least, the formulation of a hypothesis as to its
existence even in the case of a very small number of detected
photons. The noncorrelated noise is adequately suppressed
by means of an autocorrelation of the data, while the inÑu-
ence of background emission is limited by considering only
the variations around a mean value. It is also possible to
determine the period of the main component by inspecting
the peaks of an estimation function, which we have deÐned.

2. THE METHOD

The method of Ðnding periodicity within sparse data can
be structured into a sequence of four separate steps :

1. Folding of the data into a trial period (° 2.1),
2. Subtraction of the mean value from folded data (° 2.2),
3. Autocorrelation of the processed data and(° 2.3),
4. Cosine Fourier transformation of the autocorrelation

function (° 2.4).

2.1. Folding
Let us assume that are the photon arrival times. ByMT
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where [ É ] stands for the integer part function, we perform a
folding of the time series within a trial period q. The Mt
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obtained in this way belong to the interval [0, q]. We next
build a histogram by dividing this period into k bins and
counting the number of that fall within each bin. Fromt

inow on, k will be considered an implicit variable of the
functions we will deÐne.

After folding the whole sequence into segments of a
chosen period length, the last segment is generally incom-
plete since the period is not an exact divisor of the sequence
length and will therefore form a tail of events. If we corre-
lated all the segments, the tail would be completed with
nonexistent zero events, and this would indicate false
periodicity. This sort of tail e†ect is particularly important
when the number of folded periods is small and the tail
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length is approximately half of the folding period. We
avoided this e†ect by ignoring the tail.

2.2. Subtraction of the Mean Value
Let be the number of that fall into the ith interval ofq

i
t
iq ; then the mean value of the histogram is given by

q6 \ 1
k

;
j/1

k
q
j
. (2)

By subtracting the mean from each of the bins, we obtain a
new set of data deÐned as follows :Mp
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[ q6 , i \ 1, 2, . . . , k . (3)

In this way, the new histogram given by has its meanMp
i
N

value equal to zero. The e†ect of this subtraction is to cancel
the contribution of the nonperiodic background emission.
The values will be smaller if the histogram of the isMp
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relatively Ñat. Therefore, should reÑect in some way theMp
i
N

Ñuctuations around the mean value. These Ñuctuations are
meaningful in the case of periodicity.

2.3. Autocorrelation
By means of the autocorrelation function, we expect to

suppress the noncorrelated noise that is mainly due to the
discrete nature of data. By using the autocorrelation func-
tion we ignore the phase of the periodic component that we
are trying to detect in the time series (Bai 1992).

We can deÐne the autocorrelation function F as follows :

F( j)\ 1
N

;
i/l

k~j
p
i
É p

i`j
, j \ 0, 1, . . . , k [ 1 , (4)

where N is the number of arrival times used.
The folding procedure a priori assumes a virtual period-

icity ; hence, we may set periodic boundary conditions on
the previous expression. With this assumption we deÐne a
new autocorrelation function in order to use all possible
pairs of values as follows :(p
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2.4. Cosine Fourier T ransformation of the
Autocorrelation Function

The last step deals with the evaluation of the area under
the autocorrelation function graph. To point out its
meaning, let us imagine that the histogram of consistsMp

i
N

of uncorrelated noise only ; then its autocorrelation function
will look like a narrow peak. The autocorrelation function
has its maximum when its argument is zero, whereas for
nonzero arguments it falls down quickly and keeps on Ñuc-
tuating around a base value, encompassing a small area.
The integral of this function can be considered a measure of
how much noise is present in the histogram given by Mp

i
N.

To evaluate the area under the curve representing the auto-
correlation function F, we propose a discrete cosine Fourier
transformation of F. This corresponds to a weighted inte-
gral where the cosine is the weight function. This procedure
should bring to mind the Wiener-Kinchine theorem, which
is used to deÐne the power spectral density of a stationary
random process to be the Fourier transform of its autocor-
relation function. Finally we deÐne the period estimation

function (PEF) as follows :

PEF (q) \ ;
j/0

k@2
F( j) cos

A2n
k

j
B

. (6)

This function depends explicitly on the period used to fold
the time series, and we expect it to reach its maximum if the
folding period coincides with the actual period of the time
series. This maximum should be distinguishable from the
spurious peaks due to the noise Ñuctuation. We have
deÐned the signal-to-noise ratio of the PEF as the ratio of
its peak value referenced to its mean value and its standard
deviation. We have chosen this ratio to have a measure of
how distinguishable the peak we are looking for is from
others peaks, i.e., the peak that would correspond to the
period of the sequence.

To detect the peak we have to scan from a minimum to a
maximum q (the period interval of interest) using a period
step that must be less than half of the peak width in order to
avoid skipping the right peak. When we are folding the time
series with a period close to the actual period present in the
time series, we have to be sure that the last folded segment
does not contribute negatively to the Ðnal folded data. That
is, the accumulated phase di†erence must not be larger than
half a period. To clarify this point let us consider the di†er-
ence between the folding period and the actual one to be
close to zero, and let us designate it by *q ; then the largest
phase di†erence among the folded periods will occur
between the Ðrst and the last periods. If the length of the
time series is L , then the maximum phase di†erence will be
(L /q) times *q, and this value has to be smaller than (q/2) ;
that is ;

L
q

*q\
q
2

. (7)

Then the period step *q must observe the following condi-
tion :

*q\
q2
2L

. (8)

3. SIMULATIONS

We present hereafter preliminary simulation results to
illustrate the applicability of the method, as well as the
model used to generate periodic time series.

The arrival times of emitted photons from a constant
source follow a Poissonian succession, and the time interval
between two consecutive detected photons constitutes the
outcome of a stochastic variable. Its probability density
function is given by an exponential function

p(t) \ j É e~jt . (9)

Starting from it is possible to generate a timeequation (9),
series by accumulating the interval times obtained by means
of the following expression :

*t
i
\ [(1/j) ln (RND) , (10)

where is the interval between the photons i and i] 1*t
iarrival times, while RND is a uniformly distributed random

number between 0 and 1. In this case, the parameter j is
constant, i.e., time independent. Nevertheless, if the emitting
source has a periodic behavior, we expect j to be a periodic
function of time. Let us consider the simplest case in which
the time series corresponds to a uniform background plus a
pure sinusoidal component ; then, j can be expressed in the
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FIG. 1a FIG. 1b

FIG. 1.ÈHistograms of folded time series. Signal period 0.3, folding period 0.3, arrival times : (a) 1000 photons and (b) 5000 photons.

following form:

j(t@ ) \ j0(1] d sin u0 t@ ) , (11)

where and is the actual period.u0\ (2n/q0) q0Taking into account that j(t@ ) is the mean number of
counted photons in the time unit

j \ dN
dt@

, (12)

and that we explicitly may write

dN
dt@

\ dN
dt

dt
dt@

, (13)

then

j(t@ ) \ j0
dt
dt@

. (14)

Therefore, we can transform the time of a constant time
series in such a way that the new time series may have a

TABLE 1

STATISTICAL RESULTS

PERIOD ESTIMATION FUNCTION

TIME SERIES

(Photons) Mean Value Peak Standard Deviation S/N Ratio

1000 . . . . . . . . 1.136 6.25 0.88 5.8
5000 . . . . . . . . 0.931 16.27 0.68 22.5

periodic component described by a sinusoidal parameter j
as in By comparing the equations andequation (11). (11)

it turns out that we can write(14),

dt
dt@

\ (1] d sin u0 t@ ) , (15)

and the transformation rule becomes

t \ t@[ d
u

cos ut@ . (16)

A numerical procedure was used to solve equation (16).
The above new time series described by j(t@ ) has been the

subject of our method to investigate whether a periodic
component is present and to estimate the sensitivity of the
method to detect periodicity.

If the amount of photons emitted by a source is described
by the Poissonian distribution P(j, n) \ (e~jjn/n !), then we
can consider the single sources as two independent sources
whose emission processes are also described by the Pois-
sonian distributions n) and n) whereP(j1, P(j2, j1] j2\
j, hence the following relation holds

P(j, n) \ ;
m/0

n
P(j1, m)P(j2, n [ m) if j1] j2\ j ,

and n, m ½ Z . (17)

We use the previous analysis to interpret our single hypo-
thetical source with parameter sin ut) as twoj(t) [ j0(1 ] d
independent sources with parameters andj1\ j0(1 [ d)



FIG. 2a FIG. 2b

FIG. 2.ÈHistograms of folded time series. Signal period 0.3, folding period 0.33, arrival times : (a) 1000 photons and (b) 5000 photons.

FIG. 3a FIG. 3b

FIG. 3.ÈPeriod estimation function of (a) 1000 photons time series and (b) 5000 photons time series.
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FIG. 4.Èsignal-to-noise ratio of PEF for time series with di†erent
number of photons. The error bars correspond to 2 p. The analytic expres-
sion of the Ðtting curve is where N is the number of(1/2)JN [ 10,
photons.

ut), respectively. This allows us to con-j2\ j0 d(1 ] sin
sider some of the photons coming from a time-constant
source and others coming from a pure periodic source. We
can consider the photons emitted by the time-constant
source (described by as the noise, and the others asj1) N0,the signal, therefore, we can state the rate of their meanS0.number as the signal-to-noise ratio of our series of arrival
times.

The parameter and are the mean number ofj1 j2photons emitted per unit time ; then, computing their tem-
poral mean value, we obtain

S0
N0

\ j0 d
j0(1[ d)

\ d
(1 [ d)

. (18)

We have generated two time series with 1000 and 5000
photon arrival times, respectively, both having j0\ 1,
d \ 0.2, and a period of 0.3 arbitrary units (see InFig. 1).
both cases the period after folding has been divided in
k \ 100 intervals.

Figures and display the same histograms as Figures2a 2b
and but obtained with a folding period of 0.33. The1a 1b

extent to which noise dominates the histograms is evident in
all four cases.

We have applied the present method on both previous
time series scanning the period from 0.28 to 0.32. The PEF
is represented in Figure for 1000 photons and in Figure3a

for 5000 photons, respectively.3b
shows some statistical results that enables evalu-Table 1

ation of the sensitivity of the method.
We have also generated time series of di†erent lengths

with the same mean interval time between consecutive
photons. These series were generated with q0\ 10
(arbitrary units), d \ 0.2, and The periodicity of thej0\ 1.
series has been explored for periods between 5 and 15 using
a variable period step

*q\ q2
4L

, (19)

which is half of the upper limit of the period step given in
equation (8).

shows the achieved signal-to-noise ratio, whereFigure 4
the error bars correspond to two standard deviations of the
PEF. The Ðtting curve shows a dependency on the square
root of the photon number for each time series, which is an
expected feature for a typical Gaussian process. To con-
struct the histogram representing the folded data it is pos-
sible to use di†erent numbers of bins denoted by the
corresponding parameter k. We have set the parameter
k \ 20, but similar results were obtained with values as high
as k \ 200, showing that k is not a critical parameter of the
method.

4. CONCLUSIONS

The present method has proved to be suitable to process
a small amount of data meaningfully. Most of the noncor-
related noise is suppressed by means of the autocorrelation
function. An important feature of the method is its phase
independence that makes the time reference irrelevant. The
Ðnal signal-to-noise ratio is sufficiently acceptable even for
as few as 1000 sparse photons, where, on average, 800
photons correspond to a time-constant source. We have
applied the method to periodic time series with periods in
the range of 10~2 to 10`2 of the mean interval time of
consecutive photons, obtaining similar results to those pre-
sented here.
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