
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgnh20

Download by: [Mount Sinai Health System Libraries] Date: 27 June 2017, At: 11:58

Geomatics, Natural Hazards and Risk

ISSN: 1947-5705 (Print) 1947-5713 (Online) Journal homepage: http://www.tandfonline.com/loi/tgnh20

Fisher–Shannon and detrended fluctuation
analysis of MODIS normalized difference
vegetation index (NDVI) time series of fire-affected
and fire-unaffected pixels

Xiaolian Li, Antonio Lanorte, Rosa Lasaponara, Michele Lovallo, Weiguo Song
& Luciano Telesca

To cite this article: Xiaolian Li, Antonio Lanorte, Rosa Lasaponara, Michele Lovallo, Weiguo
Song & Luciano Telesca (2017): Fisher–Shannon and detrended fluctuation analysis of MODIS
normalized difference vegetation index (NDVI) time series of fire-affected and fire-unaffected pixels,
Geomatics, Natural Hazards and Risk, DOI: 10.1080/19475705.2017.1337652

To link to this article:  http://dx.doi.org/10.1080/19475705.2017.1337652

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 14 Jun 2017.

Submit your article to this journal Article views: 37

View related articles View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgnh20
http://www.tandfonline.com/loi/tgnh20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/19475705.2017.1337652
http://dx.doi.org/10.1080/19475705.2017.1337652
http://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgnh20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/19475705.2017.1337652
http://www.tandfonline.com/doi/mlt/10.1080/19475705.2017.1337652
http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2017.1337652&domain=pdf&date_stamp=2017-06-14
http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2017.1337652&domain=pdf&date_stamp=2017-06-14


Fisher–Shannon and detrended fluctuation analysis of MODIS
normalized difference vegetation index (NDVI) time series of
fire-affected and fire-unaffected pixels

Xiaolian Lia, Antonio Lanorteb, Rosa Lasaponarab, Michele Lovalloc, Weiguo Songa and
Luciano Telescab

aState Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China;
bNational Research Council, Institute of Methodologies for Environmental Analysis, Tito, Italy;
cARPAB, Potenza, Italy

ARTICLE HISTORY
Received 5 July 2016
Accepted 20 April 2017

ABSTRACT
MODIS-NDVI data from 2002 to 2014 were analysed to evaluate the effect
of fire on vegetation in a test site located in Daxing’anling region (Inner
Mongolia and Heilongjiang Province). Fire-affected and fire-unaffected areas
were processed using two statistical approaches: detrended fluctuation
analysis (DFA) and Fisher–Shannon (FS) method. The DFA allows the
detection of scaling behaviour in nonstationary signals, whereas the FS
method permits to identify the organization/order structure in complex
signals. Our findings show that the results obtained by jointly using the two
methods are consistent, enabling the characterization and discrimination
between the fire-affected and fire-unaffected areas. In particular, among the
investigated indices, the mean value of Fisher information measure (FIM)
represents the most significant in discriminating between burned and
unburned sites; its mean value for burned sites is about 2.5 that is
significantly larger than that obtained for unburned sites (»1.3). FIM is also
characterized by the larger effectiveness in discriminating the two classes of
sites on the base of its receiver operating characteristic based performance.
The scaling exponents estimated by means of the DFA of the fire-affected
pixels are averagely higher than those of the fire-unaffected ones, which,
furthermore, are characterized by lower organization and higher disorder
degree. Both of the two methods would contribute to identify the impact of
fires on vegetation.

KEYWORDS
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1. Introduction

A sustainable and continuous monitoring in terms of type and status of vegetation cover and ongo-
ing changes is a key issue for the management of ecosystem functionality and for implementing
effective strategies to mitigate disturbance phenomena as drought, wind, storm, fire, etc. on environ-
ment and ecosystems (Yapp et al. 2010; Lawley et al. 2016). Fire is one of the most critical factors of
disturbance in worldwide ecosystems (Carvalheiro et al. 2010; Cruz & Alexander 2013; Eastaugh &
Hasenauer 2014). The effects of fires on soil and vegetation, depend on many factors, among them
are fire frequency, fire severity and plant resistance (French et al. 2008; Keeley 2009). The characteri-
zation of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resil-
ience, which is the ability of vegetation to recover after fire (Lentile et al. 2006).
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During the last decades, the high number and repeated occurrence of severe wildfires recorded in
different regions of the world (UNCCD 1994; FAO 2010) have strongly heightened the negative
effects of fire on vegetation. The recent increasing occurrence of fire events is due to many reasons,
among them are the abandonment of rural areas, variations in land use practice and climate change.
The increasing fire frequency can induce significant variations in vegetation fire resilience and this
highlights the need of evaluating the vegetation reaction to fires (D�ıaz-Delgado et al. 2003). This is
of primary importance since changes in the status or types of vegetation play an active role in eco-
logical processes (such as productivity level, creation of altered patches, modification in vegetation
structure and shifts in vegetation cover composition), as well as in land surface processes (such as
surface energy, water balance and carbon cycle) (Huemmrich et al. 1999).

The assessment of fire impacts on ecological resources requires investigations performed at differ-
ent temporal and spatial scales, from local up to regional level. In such a context, satellite technologies
can be profitably used for investigating the dynamics of vegetation re-growth after fire disturbance at
different temporal and spatial scales (Lasaponara 2006a, 2006b, 2013). Fire-induced dynamical pro-
cesses are very difficult to study since they affect the complex soil–surface–atmosphere system, due to
the existence of feedback mechanisms involving human activity, ecological patterns and different sub-
systems of climate (Telesca & Lasaponara 2010). The use of satellite time series along with statistical
analysis techniques can be helpful in understanding the functional characteristics of vegetation
dynamics and enable the reporting of ongoing trends at a detailed level (Telesca et al. 2007).

The remote sensing of vegetation has been traditionally carried out by using vegetation indices,
which are quantitative measures, based on vegetation spectral properties that attempt to measure
biomass or vegetative vigour.

The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red
band of the electromagnetic spectrum against the high reflectance of leaf mesophyll in the near
infrared band. The simplest form of vegetation index is simply a ratio between two digital values
from these two spectral bands. The most widely used index is the well-known normalized difference
vegetation index (NDVI) (Rouse et al. 1973, 1974; Jiang & Huete 2010). NDVI is used to identify
vegetation health by measuring the difference of the infrared reflectance with that of the visible red
band. NDVI provides information about the spatial and temporal distribution of vegetation com-
munities and vegetation biomass. High values of the vegetation index identify pixels covered by sub-
stantial proportions of healthy vegetation (Tucker 1980). NDVI is indicative of plant photosynthetic
activity and has been found related to the green leaf area index and the fraction of photosynthetically
active radiation absorbed by vegetation. Therefore, variations in NDVI values are indicative of varia-
tions in vegetation composition and dynamics.

This paper deals with the characterization of vegetation post-fire dynamics carried out in the Dax-
ing’anling region (Heilongjiang Province and Inner Mongolia) in the north-eastern China. This region
is selected due to the high frequency of large fires. The investigations are performed by using a remote
sensing satellite data-set, which provides a valuable basic data source to monitor change and under-
stand ongoing degradation process. For the purposes of our analyses, the temporal series from 2002
to 2014 of NDVI satellite MODIS data were processed using two statistical approaches: the detrended
fluctuation analysis (DFA) and the Fisher–Shannon (FS) method. Both the methods are efficiently
used to investigate the time dynamics of complex and nonstationary signals as those analysed in the
present paper.

The objectives of this study are: (1) verify the reliability of DFA and FS methods in the detection of the
fire-affected pixels and (2) provide a quantitative characterization of the vegetation recovery capability.

2. Study area and data-set

This study was carried out in the Daxing’anling region (Figure 1), which is located in Heilongjiang
Province and Inner Mongolia (50.5�–52.25� N, 122�–125.5� E), in the north-eastern China. This
region is selected because the forest fires have occurred very often and also have severely affected
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large areas. The total area of Daxing’anling region is about 250,000 km2. The forest coverage of Dax-
ing’anling region is about 62% (Liu 2014). There is about 81,300 km2 of the forest that cover the
Inner Mongolia (Wang 2014). The main land covers of this area (Figure 2) are: coniferous forest
(Larix sp., Pinus Sylvestris, Picea sp.), broadleaved deciduous forest (Quercus sp., Betula sp.) and
mixed forest (Liu 2014; Wang 2014). This study area experiences a cool continental monsoon cli-
mate, which is very cold in winter but warm in summer. The weather is relatively dry and the pre-
cipitation amount is low in spring and autumn (65 mmand 80 mm) (Liu 2014; Wang 2014). Thus,
fires happen more and more frequently in these seasons as well as in summer due to the high tem-
perature. Several big fires occurred in Daxing’anling region. The fire events are listed in Table 1. In
this study, the fires occurred on 26 June 2010 were taken into consideration for analysing the differ-
ence between burned area and unburned area. The fires are located approximately at 123.48� E and
51.3� N, which is near the border of Inner Mongolia and Heilongjiang Province.

Data from the MODIS sensor on-board the Aqua satellite were used in this study. In order to
reduce the contamination effects that were generated by residual clouds, atmospheric perturbation,
variable illumination and viewing geometry in daily NDVI maps, the 16-day composite NDVI prod-
uct MYD13Q1 that has a 250-m spatial resolution was taken into consideration in this study. Such
data can be downloaded from the Land Processes Distributed Active Archive Center (LP DDAC:
https://lpdaac.usgs.gov/).

The MODIS data were geometrically rectified and re-projected to UTMWGS84. Then, the image
was spatially resized on the study area. According to the analysis of Miller and Thode (2007) and
Lanorte et al. (2013), the criterions (formulas (1)–(3)) were used to discriminate the burned area
from the unburned area. And then, the burned area and unburned area can be extracted after this
procedure by using the region of interest tool of ENVI software.

NDVIpre > NDVIpost; (1)

NBR ¼ r2 � r7ð Þ= r2 þ r7ð Þ; (2)

dNBR ¼ 1000� ðNBRprefire � NBRpostfireÞ � 400 ; (3)

Figure 1. The study area: the burned and unburned sites are coloured, respectively, in red and green.
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where NDVIpre is the NDVI of pre-fire, while NDVIpost is the NDVI of post-fire. NBR is the normal-
ized burn ratio, considered the best index to identify a burned area which is calculated normalizing
the difference between the reflectance of the two burn sensitive bands, infrared (NIR) and shortwave
infrared (SWIR). At this aim, we used the band 2 (NIR) and Band 7 (SWIR) of MODIS-Aqua daily
surface reflectance images at 500-m spatial resolution (MYD02HKM - Level 1B Calibrated Geolo-
cated Radiances). The dNBR is the difference of NBR between pre-fire and post-fire.

3. Methods

NDVI time series of burned and unburned areas are both characterized by very complex signal vari-
ability, and a simple visual inspection or simple standard statistics could not allow to identify the
dynamics governing the time series of pixels covering the fire-affected and fire-unaffected areas.

Table 1. Fire events occurred in Daxing’anling region.

Date Location
Burned area

(km2) Description

6 May 1987 Tahe and Mohe County 10,100 The fire caused by the human behaviour and lasted for 21 days.
30,000 people took part in firefighting. The loss of this fire is
about 0.5 billion dollars.

15 October 2004 Heihe, Heilongjiang
Province

Not specified The fire occurred on 14 October 2010 and lasted for several
days. More than 2000 people took part in firefighting.

27 April 2009 Zhanhe, Heilongjiang
Province

1,557,562 The fire lasted until 11 May 2009. There were more than 10,000
fire fighters and 19 airplanes were used to put out the fire.

26 June 2010 Inner Mongolia and
Heilongjiang Province

134,976 The fire lasted until 3 July 2010 and consumed a large amount
of fire protection resources.

Figure 2. The landcover of study area.
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Therefore, robust nonlinear time series tools are necessary to disclose inner features that characterize
both types of pixels. In our study, the statistical analysis of the pixel time series is performed by using
the FS method and the DFA. The first method allows to identify organizational/order properties in
time series (Martin et al. 2001), while the second one permits the robust detection of scaling behaviour
in time series in order to reveal persistent/anti-persistent features (Kantelhardt et al. 2002).

3.1. The Fisher–Shannon method

The Fisher information measure (FIM) and the Shannon entropy, well-known statistical quantities
in the theory of information, are efficiently employed to characterize the complex dynamics in non-
stationary time series. The FIM provides information on the organizational structure of a signal
quantifying its degree of order (Martin et al. 2001), while the Shannon entropy is used to quantify
the degree of uncertainty or disorder of a time series (Shannon 1948). Various geophysical and envi-
ronmental complex and nonstationary signals, like volcano-related continuous seismic signals
(Telesca et al. 2014), earthquake-related electromagnetic signals (Telesca et al. 2009), magnetotellu-
rics (Telesca et al. 2011), atmospheric particulate matter time series (Telesca et al. 2008) and wind
series (Telesca & Lovallo 2011), were analysed by using the FS method to get an insight into the
dynamics underlying their inner time variability:

Let f(x) be the probability density of a signal x, then its FIM I is given by

I ¼
Zþ1

�1

@

@x
f ðxÞ

� �2 dx
f ðxÞ; (4)

and its Shannon entropy HX is defined as (Shannon 1948)

HX ¼ �
Zþ1

�1
fXðxÞlog fX xð Þdx: (5)

Instead of HX, it is generally used the Shannon power entropy as NX,

NX ¼ 1
2pe

e2HX : (6)

Since both the FIM and the Shannon entropy power are calculated on the basis of the probability
density function f(x), it is important that this is estimated with good accuracy, especially when
observational time series are investigated. The estimation of the f(x) can be carried out by means of
the kernel density estimator technique (Devroye 1987; Janicki & Weron 1994) as shown in the for-
mula below:

f̂ MðxÞ ¼
1
Mb

XM
i¼1

K
x � xi
b

� �
; (7)

where f̂ MðxÞ represents the estimation of f(x), with b the bandwidth, M is the number of data and
K(u) is the kernel function, which is a continuous non-negative and symmetric function satisfying
the two following conditions:

K uð Þ � 0 and
Zþ1

�1
KðuÞdu ¼ 1 : (8)
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Following Troudi et al.’s (2008) and Raykar and Duraiswami’s (2006) algorithms, the Gaussian
kernel with zero mean and unit variance is used.

f̂ MðxÞ ¼
1

M
ffiffiffiffiffiffiffiffiffiffi
2pb2

p
XM
i¼1

e�
ðx�xiÞ2
2b2 : (9)

3.2. The detrended fluctuation analysis

The DFA (Peng et al. 1995) is a well-known method to detect scaling behaviour in nonstationary
signals and its effectiveness and easiness of calculation makes DFA one of the most used methods to
reveal long-range correlation structures in observational time series in diverse research fields (Zheng
et al. 2008; Telesca & Lovallo 2009, 2010, 2011; Telesca et al. 2012, 2016).

The DFA comprises the following steps:

(1) the time series x(i), where i = 1, . . . ,N, and N is the length of the series integrated

yðkÞ ¼
Xk
i¼1

xðiÞ � h x i; (10)

where hxi is the mean value of the series;

(2) the integrated series y(k) is divided into boxes of equal length n;
(3) for each n-size box, y(k) is fitted by least square line y(n,k) that is the estimated trend in that

box, and detrended by subtracting the local trend y(n,k) in each box;
(4) for a given n-size box, the root-mean-square fluctuation, F(n), is calculated:

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

yðkÞ � yðn; kÞ
vuut ; (11)

(5) the above procedure is repeated for all the available box sizes n to provide a relationship between
F(n) and the box size n, which for long-range power-law correlated signals is a power-law

FðnÞ/ na ; (12)

(6) the scaling exponent a quantifies the strength of the long-range power-law correlations of the
series x(i): if a = 0.5, the series is uncorrelated; if a > 0.5, the series is persistent, where persis-
tence means that a large (small) value (compared to the average) is more likely to be followed
by a large (small) value; if a < 0.5, the correlations of the series are anti-persistent, which
indicates that a large (small) value (compared to the average) is more likely to be followed by
a small (large) value (Mandelbrot 1982; Schertzer & Lovejoy 1987; Marshak et al. 1994; Calif
& Schmitt 2014).

4. Results

4.1. Analysis of burned area

The NBR of pre- and post-fire are shown in Figure 3(a,b). It points out that the NBR of some areas
in post-fire, which is presented in black colour in Figure 3(b), is smaller than that in pre-fire. This
is due to the influence of the forest fire occurred on 28 June 2010. The dNBR between pre- and
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post-fire is shown in Figure 3(c). It presents clearly that some areas have large variation in the mea-
surement of dNBR, which is depicted in bright white. Thus, it is feasible to identify the fire-affected
pixels based on the measurement of dNBR. We extracted 3200 pixels of the fire-unaffected pixels
based on the visual inspection for analysing the variation between pre- and post-fire. Figure 3(d)
shows the scatter plot of unaffected pixels in NBR of pre-fire versus dNBR. It can be seen that the
dNBR�1000 values of most of the fire-unaffected pixels are around from ¡50 to 100 and all of these
values are under 400. Thus, the threshold of dNBR�1000 is set reasonably.

4.2. The time series NDVI trends

The investigations were carried out in both fire-affected areas (the areas that are depicted in red col-
our in Figure 1) and fire-unaffected area (the area that is depicted in green colour in Figure 1), which
are located in Daxing’anling region. Using the time series NDVI-MODIS data (MYD13Q1), 360 pix-
els were extracted from the fire-affected and fire-unaffected areas respectively, in the 2002–2014
period. The trends of the time series NDVI data of three pixels belonging to the 360 fire-affected pix-
els and fire-unaffected pixels are presented in Figure 4(a) and Figure 5(a), respectively. And the
NDVI mean values of the fire-affected pixels and unaffected pixels were calculated and shown in
Figure 6(a,c). It can be seen that the NDVI of the fire-affected pixels has a sharp decrease when fire
occurs.

The details of these six pixels are shown in Table 2. All these pixels correspond to the mixed for-
est vegetation type which consists of mixtures of broadleaf and needle-leaf trees. The NBR of the

Figure 3. (a) The NBR of pre-fire obtained on 4 June 2010; (b) the NBR of post-fire obtained on 29 August 2010; (c) the dNBR
between (a) and (b); (d) the scatter plot of fire-unaffected pixels in NBR of pre-fire versus dNBR.
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fire-affected pixels shows greater variations after fire than that of the fire-unaffected pixels according
to the column of dNBR. The pixel time variations undergo seasonal periodicities, which have to be
removed before applying the FS method and the DFA, in order to avoid any cycle-induced effect on
the results. The seasonality was removed by computing for each 16-day composite the normalized
departure defined as follows, NDVId = (NDVI ¡mNDVI)/sNDVI. The composite mean mNDVI is cal-
culated for each calendar day, e.g. 1 January, by averaging over all years in the record. Analogously
the standard deviation sNDVI is computed. This filtering procedure for satellite data was already
applied by Telesca and Lasaponara (2005, 2006a, 2006b). Figures 4 and 5 show the time variation of
the normalized departure. We can see that the seasonal fluctuations (that are indicated by the quasi-
periodic behaviour shown by the pixel time series) are not evident anymore, and this indicates that
the filtering procedure was correctly done.

The NDVId of three pixels of the fire-affected and fire-unaffected are shown in Figures 4(b) and
5(b). And the mean values of NDVId of the fire-affected pixels and unaffected pixels are shown in
Figure 6(b,d).

It can be concluded from Figures 3–5 that the NDVI changes periodically every year. It reaches
the peak in June or July and goes down to the minimum in January or December. However, the
NDVI declines sharply when fires occur, and the vegetation needs some time such as some months

Figure 4. The time series NDVI trends (a) and the normalized departure of NDVI (b) of the fire-affected pixels. (The right plot is the
enlarged part of rectangle laid on the left plot.)
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or even some years to recover to the level of pre-fire. In this study, we consider both fire-affected and
fire unaffected pixels in order to characterize the post-fire dynamics in vegetation through variations
in NDVI values. The comparison of the temporal behaviour of the fire-affected and fire unaffected
pixels enables us to assess that the variations observed in NDVI values are actually indicative of var-
iations in vegetation conditions and post-fire dynamics rather than other factors such as weather
parameters.

4.3. Statistics analysis of pixels time series data

To each NDVId time series, the FS method and the DFA were applied. Figure 7(a) shows the FS
information plane, in which each pixel is identified by a point in the plane, whose x-axis is the Shan-
non entropy power and the y-axis is the FIM. Figure 7(b,c) show the histograms of the FIM and NX

Figure 5. The time series NDVI trends (a) and the normalized departure of NDVI (b) of fire-unaffected pixels. (The right plot is the
enlarged part of rectangle laid on the left plot.)
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values for the burned and unburned pixels. The FIM and Shannon entropy values can be used to
classify the fire unaffected (black circles) by the fire-affected (red circles) pixel. The FS analysis sug-
gests that the order/organization structure of the time series of the pixels affected by fire is higher
than that of the pixel not affected by fire.

Figure 8 shows the histograms of the scaling exponents obtained by applying the DFA on
the time series of the same pixel as in Figure 7. The mean (§standard deviation) of the FIM,
NX and a for the fire-affected and unaffected pixels along with the t-value of Welch’s test are
summarized in Table 3. In particular, the t-value indicates that mean of the parameter’s values
for the burned pixels is significantly different from the mean of the same parameter’s values
for the unburned pixels. The values of the DFA scaling exponents and the FS values for the
fire-affected and fire-unaffected pixels suggest that it could be possible to reliably discriminate

Figure 6. The time series NDVI trends (a) and (c), and the normalized departure of NDVI (b) and (d). (a) and (b) are the mean value
of the fire-affected pixels, while (c) and (d) are the mean value of fire-unaffected pixels.

Table 2. The details of these representative pixels.

ID Lon and Lat NBR of pre-fire NBR of post-fire 1000 dNBR Vegetation type Attribute

1 123.457841 E 51.325921 N 0.6227 ¡0.0615 684.2051 Mix forest Fire affected
2 123.457819 E 51.323673 N 0.6227 ¡0.0615 684.2051 Mix forest Fire affected
3 123.489868 E 51.301063 N 0.6180 ¡0.0859 707.4257 Mix forest Fire affected
4 123.796957 E 51.432010 N 0.5817 0.6274 ¡45.7020 Mix forest Fire unaffected
5 123.771558 E 51.418692 N 0.7225 0.6677 54.8572 Mix forest Fire unaffected
6 123.767775 E 51.407477 N 0.7694 0.6732 96.1274 Mix forest Fire unaffected

10 X. LI ET AL.



between the fire-affected and fire-unaffected areas. However, there is a certain overlap between
the clouds of points representing both types of pixels that is very probably due to the physical
conditions of the investigated pixels. In other words, the pixels corresponding to the overlap
could represent sites partially burned, and, thus, their classification is ‘on the border’ between
the fire-affected and fire-unaffected.
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Figure 7. Fisher–Shannon information plane of the time series of pixels covering the investigated area. The fire-unaffected pixels
are characterized by lower FIM and higher Shannon entropy power, while those affected by fire are featured by higher FIM and
lower Shannon entropy power. Histograms of the FIMs (b) and NX (c) for the fire-affected and fire-unaffected pixels covering the
investigated area.
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The parameters derived from the FS method (FIM and NX) and the DFA (scaling exponent) are use-
ful to describe the dynamics of the pixel time series of the fire-affected and unaffected areas.

The consistence between the results obtained by applying the FS and those obtained by applying
the DFA to the same satellite pixel time series enables to reliably characterize and discriminate the
fire-affected and unaffected areas, on the basis of the DFA scaling exponents and the values of the
FIM and Shannon entropy.

The average higher values of the DFA scaling exponent for the fire-affected pixel time series
indicate that the temporal fluctuations of the fire-affected vegetation are characterized by a
more intense persistent character, which governs the vegetation dynamics by means of a sort
of positive feedback mechanisms that aim at destabilizing its status and forcing its recovery
after the occurrence of the fire. The ability in recovery of vegetation after fire (resilience) was
also evidenced in Telesca and Lasaponara (2005), who investigated the correlation properties
of the pixel time series of the 1998–2003 decadal NDVI satellite SPOT VEGETATION data
for the fire-affected and fire-unaffected areas. In their study, a significantly higher DFA scaling
exponent was estimated for the fire-affected sites, suggesting the role played by fires in forcing
a more unstable dynamics for vegetation re-growth processes. Similar vegetational patterns are
identified in the time series of post-fire NDVI SPOT VEGETATION pixels (Telesca &
Lasaponara 2006b), which are also characterized by lower FIM and higher Shannon entropy
power (Lanorte et al. 2014).

A quantitative check of the discrimination performance of the FS and DFA parameters can be
carried out by means of the receiver operating characteristic (ROC) analysis that has long been uti-
lized to evaluate the performance of binary classifiers (Kharin & Zwiers 2003). The ROC curve rep-
resents the functional relationship between the true positive rate, also called sensitivity (ratio
between the number of positives that are correctly classified and the total number of positives)
against the false positive rate (ratio between the number of negatives that are incorrectly classified

Table 3. Results of the Fisher–Shannon and DFA analysis.

hFIMi (§std) hNXi (§std) hai (§std)

Unburned 1.302(§0.138) 1.384(§0.018) 1.165(§0.079)
Burned t-Welch 2.497(§0.837) 26.69 1.328(§0.031) ¡29.59 1.259(§0.112) 12.73
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Figure 8. Histograms of the scaling exponents calculated by using the DFA for the fire-affected and fire-unaffected pixels covering
the investigated area. The scaling exponents of the time series of the fire-affected pixels are averagely larger than those of the
fire-unaffected ones.
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and the total number of negatives). Indicating as specificity (SP) the probability of classifying a nega-
tive occurrence as negative, the false positive rate is equal to 1-SP. A classifier is considered good or
not on the basis of its position in the ROC space. The point (0,1) represents the perfect classifier.
One classifier is better than another, if its representative point in ROC space is to the north-west of
that of the other. If a classifier is represented by a point on the diagonal line y = x, then the classifica-
tion is random. A classifier is better than another if its ROC curve is located above that of the other,
or if the area under its ROC curve (AUC) is larger. Therefore, the performance of the classifier can
be evaluated also from the numerical value of the AUC.

From Figure 9, it is clearly visible that FIM is the best classifier of the fire-affected and unaffected
pixels, since its ROC curve is above those of the Nx and DFA. Its AUC is the largest (0.95) while that
of the DFA is the smallest (0.768).

5. Discussion

Extracting trends from vegetation time series can be challenging due to noise, seasonal variations
and other factors that may cover the inter-annual subtle signals. Therefore, in order to assess the
reliability of the identified subtle trends, the possibility of using different approaches useful to
describe small ongoing vegetational variations is desirable. Herein, in order to assess the complex
dynamics of fire effects on vegetation cover, the DFA along with the FS information plane (defined
by the FIM and the Shannon entropy power (NX)) were used.

These indices measure different levels of temporal correlation of the investigated time series, thus
providing an estimation of fire recovery capabilities in different ways.

In particular, DFA allows the detection of scaling behaviour in nonstationary signals. Shannon’s
index measures information linked, in this case, to the diverse behaviour after fire events in the sys-
tem vegetation – fire. Fisher’s a is a parameter of the log series which is often used as a diversity
index and therefore in the current investigation it pertains to the different post-fire recovery capabil-
ities. In the FS plane, the pixel series seem to aggregate into two different clusters corresponding to
two different fire recovery behaviours/capabilities after fire.

In the investigated time series results obtained from both DFA and FS well fit each other, thus
confirming the robustness and reliability of the adopted statistical analyses. The main finding of this
study is that the joint use of the two robust statistical approaches enables a reliable identification
and description of pattern of observed NDVI time series data, allowing us
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Figure 9. ROC analysis for the three classifiers: DFA, FIM and Shannon entropy power. The black diagonal line corresponds to the
random classifier. It is clearly evident that FIM is the best classifier with best discrimination performance.
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(1) to identify the impact of the fire phenomenon on a given pixel: burned, unburned, partially
burned;

(2) to assess forecasting schemes (for instance, by extrapolating the identified pattern for predict-
ing future values).

The different effects of fire, even on the same type of vegetation cover, is due to the: (1) diverse
fire severity degrees that may affect the samples (pixels) under investigation and (2) the fact that
each pixel provides a signal that is an average of its whole spatial cover (for example, only a small
part may be actually involved in the fire event). Nevertheless, although the coarse resolution of satel-
lite images used in this study may limit the range of spatial details that can be detected, they have
clearly proved to be reliable also for the identification and monitoring of sub-pixels changes. In these
cases, if required, further detailed analyses could be conducted using higher resolution data to cope
with the specific needs of heterogeneous covers or sub-pixel details. DFA and FS plane jointly used
with satellite time series can be reliably used as tools for mapping, quantifying and monitoring fire-
induced changes in vegetation behavioural patterns and physical vegetation variations at different
space and time scales.

6. Conclusions

In our analysis, it is evidenced that satellite time series investigated by means of robust statistical
tools, as are DFA and FS, could be supportive for a sustainable monitoring and an operative man-
agement of vegetation at different temporal scales. In fact, it was evident that the use of DFA and FS
enabled us: (1) to identify the physical variation in vegetation that, in the current case under investi-
gation, is the occurrence of fire event and therefore the discrimination of the fire-affected from fire-
unaffected areas and (2) the different vegetational behaviour and recovery capabilities exhibited by
the vegetation over the investigated time window.

As a whole, we would like to highlight that the use of space technologies can optimize the time
consuming and expensive field analysis, enabling the monitoring of large areas, helping the deci-
sion-makers in the management of burned area and in designing strategies for vegetation recovery.

Furthermore, the proposed integrated approach can be fruitfully applied to similar investigations
in several different application fields, such as, for instance, those addressed to extract subtle land
degradation-related signals that even if small are, however, significant for mapping changes and pro-
vide an early warning of ongoing degradation processes.
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