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It is shown that the nonlinear pendulum equation can be transformed into a linear harmonic oscillator in the
phase space thanks to Kerner’s method [12]. Moreover, as a mathematical divertissement, the second-order
differential equation determining the phase-space trajectories of the nonlinear pendulum is quantized.
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1. Introduction

In [11], the four authors have reminded us that:
“In his 1908 book Elementary Mathematics from an Advanced Standpoint, Felix Klein advo-

cated the introduction of calculus into the high school curriculum. One of his arguments was based
on the problem of small oscillations of the pendulum. The problem had been treated until then using
a somewhat mysterious superposition principle involving a hypothetical circular motion of the pen-
dulum. Klein advocated what he felt was a better approach, involving the differential equation of
the pendulum.”

The motion of a pendulum of length ` is determined by the well-known second-order nonlinear
differential equation:

φ̈ =−g
`

sin(φ), (1.1)

with φ the angle variable with the vertical direction, and g the constant of gravity.
As stated by Felix Klein in [13] (p. 187), “for small amplitude we may replace sin(φ) with φ

without serious error. This gives for so called infinitely small oscillation of the pendulum” the linear
equation of a harmonic oscillator:

φ̈ =−g
`

φ . (1.2)

In [12], Kerner has shown that (nearly) every system of nonlinear differential equations of order n
can be transformed into a polynomial system of order m with m > n. Kerner also showed that every
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M.C. Nucci / The nonlinear pendulum always oscillates

polynomial system of any degree can be transformed into a Riccati system. In [14] (pp.173-174),
Kowalski and Steeb applied Kerner’s method to the pendulum equationa, i.e.:

ẅ1 =−sin(w1), (1.3)

which is equivalent to the following system of two equations of first order:

ẇ1 = w2,

ẇ2 = −sin(w1). (1.4)

They introduce two new variables w3,w4 such that:

w3 = sin(w1), w4 = cos(w1). (1.5)

Then the following quadratic system for the pendulum equation was derivedb:

ẇ1 = w2,

ẇ2 = −w3, (1.6)

ẇ3 = w4w2,

ẇ4 = −w3w2.

In this paper, we show that system (1.6) hides a linear harmonic oscillator in phase space with
variables (w1,w2). First, we use the reduction method [18] and then we raise the order to find a
second-order differential equation. This equation admits an eight-dimensional Lie point symmetry
algebra, therefore it is linearizable [16], and we derive its linearizing point transformation. Then,
we determine three Lagrangians that admit the highest number of Noether point symmetries with
the help of the Jacobi last multiplier [8]. Then, we recall the quantization method that preserves the
Noether point symmetries as described for the first time in [19,20], reformulated in [4] for problems
that are linearizable by Lie point symmetries (as in the present case), and successfully applied to
various classical problems: second-order Riccati equation [21], dynamics of a charged particle in a
uniform magnetic field and a non-isochronous Calogero’s goldfish system [20], an equation related
to a Calogero’s goldfish equation [22], two nonlinear equations somewhat related to the Riemann
problem [23], a Liénard I nonlinear oscillator [4], a family of Liénard II nonlinear oscillators [5], N
planar rotors and an isochronous Calogero’s goldfish system [24], a particle on a double cone [6].
Consequently, as a mathematical divertissement, we quantize the second-order differential equation
determining the phase-space trajectories of the nonlinear pendulum.

2. Transformation to a linear harmonic oscillator

Since system (1.6) is autonomous, we can apply the reduction method [18] and choose w1 as the
new independent variable. Consequently the following system of three equations is obtained:

w′2 = −w3

w2
, (2.1)

w′3 = w4, (2.2)

w′4 = −w3, (2.3)

aOne may assume g/`= 1 without loss of generality.
bActually, this system, although hidden in a more general problem, was presented by Kerner himself [12].
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where prime denotes derivative with respect to y = w1. If we derive w3 from (2.1), i.e.:

w3 =−w2w′2, (2.4)

then equation (2.3) becomes:

w′4 = w2w′2, (2.5)

that can be integrated to give a first integral of system (2.1)-(2.3), i.e.:

w2
2

2
−w4 = E0, (2.6)

with E0 an arbitrary constantc. Finally, equation (2.2) becomes the following nonlinear equation of
second orderd:

u′′ =
2E0−u2−2u′2

2u
, (2.7)

with u = w2. This equation admits an eight-dimensional Lie point symmetry algebra generated by
the following operators:

Γ1 = (u2−2E0)cos(y)∂y +

(
2E0−

u2

2

)
sin(y)u∂u,

Γ2 = (u2−2E0)sin(y)∂y−
(

2E0−
u2

2

)
cos(y)u∂u,

Γ3 =
u2−2E0

u
∂u,

Γ4 = 2sin(2y)∂y +
u2−2E0

u
cos(2y)∂u, (2.8)

Γ5 = −2cos(2y)∂y +
u2−2E0

u
sin(2y)∂u,

Γ6 = ∂y,

Γ7 =
cos(y)

u
∂u,

Γ8 =
sin(y)

u
∂u,

therefore it is linearizable by means of a point transformation. In order to find the linearizing trans-
formation we have to look for a two-dimensional abelian intransitive subalgebra, and, following
Lie’s classification of two-dimensional algebras in the real plane [16], we have to transform it into
the canonical form ∂w, z∂w, with w and z the new dependent and independent variables, respec-
tivelye. We found that one such subalgebra is that generated by Γ7,Γ8, and, consequently, we derived

cThis is indeed the known integral of conservation of energy.
dThis is an equation where the dependent variable is w2 = φ̇ , i.e., the angular velocity of the pendulum, and the inde-
pendent variable is w1 = φ , i.e., the angle variable. Therefore, we have obtained an equation in terms of the phase space
variables.
eThis Lie’s result can also be found in modern textbooks of group analysis, e.g. [7].
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the transformation

z =
sin(y)
cos(y)

, w =

u2

2
−E0

cos(y)
, (2.9)

that takes equation (2.7) into the equation of the one-dimensional free particle

d2w
dz2 = 0, (2.10)

while the transformation

q =
u2

2
−E0, (2.11)

takes equation (2.7) into the equation of the linear harmonic oscillator, i.e.:

q′′ =−q. (2.12)

Since q = w4 = cos(φ), and y = φ , this equation is nothing else that:

d2

dφ 2 cos(φ) =−cos(φ). (2.13)

3. Jacobi last multiplier and Lagrangians

In this section, we recall the definition and properties of the Jacobi last multiplier, its connection to
Lie symmetries and to Lagrangians (namely, calculus of variations).

The method of the Jacobi last multiplier [8,9] (an English translation of [9] is available in [10])
provides a means to determine all of the solutions of the partial differential equation:

A f =
n

∑
i=1

ai(x1, . . . ,xn)
∂ f
∂xi

= 0 (3.1)

or its equivalent associated Lagrange’s system:

dx1

a1
=

dx2

a2
= . . .=

dxn

an
. (3.2)

In fact, if one knows the Jacobi last multiplier and all but one of the solutions, namely n− 2
solutions, then the last solution can be obtained by a quadrature. The Jacobi last multiplier M is
given by:

∂ ( f ,ω1,ω2, . . . ,ωn−1)

∂ (x1,x2, . . . ,xn)
= MA f , (3.3)

where

∂ ( f ,ω1,ω2, . . . ,ωn−1)

∂ (x1,x2, . . . ,xn)
= det



∂ f
∂x1

· · · ∂ f
∂xn

∂ω1

∂x1

∂ω1

∂xn
...

...
∂ωn−1

∂x1
· · · ∂ωn−1

∂xn


= 0 (3.4)
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and ω1, . . . ,ωn−1 are n−1 solutions of (3.1) or, equivalently, first integrals of (3.2) independent of
each other. This means that M is a function of the variables (x1, . . . ,xn) and depends on the chosen
n− 1 solutions, in the sense that it varies as they vary. The essential properties of the Jacobi last
multiplier are:

(a) If one selects a different set of n−1 independent solutions η1, . . . ,ηn−1 of Equation (3.1), then
the corresponding last multiplier N is linked to M by the relationship:

N = M
∂ (η1, . . . ,ηn−1)

∂ (ω1, . . . ,ωn−1)
.

(b) Given a non-singular transformation of variables:

τ : (x1,x2, . . . ,xn)−→ (x′1,x
′
2, . . . ,x

′
n),

then the last multiplier M′ of A ′F = 0 is given by:

M′ = M
∂ (x1,x2, . . . ,xn)

∂ (x′1,x
′
2, . . . ,x′n)

,

where M obviously comes from the n−1 solutions of A F = 0, which correspond to those
chosen for A ′F = 0 through the inverse transformation τ−1.

(c) One can prove that each multiplier M is a solution of the following linear partial differen-
tial equation:

n

∑
i=1

∂ (Mai)

∂xi
= 0; (3.5)

and vice versa, every solution M of this equation is a Jacobi last multiplier.
(d) If one knows two Jacobi last multipliers M1 and M2 of Equation (3.1), then their ratio is a

solution ω of (3.1) or, equivalently, a first integral of (3.2). Naturally, the ratio may be quite
trivial, namely a constant; vice versa, the product of a multiplier M1 times any solution ω

yields another last multiplier M2 = M1ω .

Since the existence of a solution/first integral is consequent upon the existence of symmetry, an
alternative formulation in terms of symmetries was provided by Lie [15, 16]. A clear treatment of
the formulation in terms of solutions/first integrals and symmetries is given by Bianchi [1]. If we
know n−1 symmetries of (3.1)/(3.2), say:

Γi =
n

∑
j=1

ξi j(x1, . . . ,xn)∂x j , i = 1,n−1, (3.6)

a Jacobi last multiplier is given by M = ∆−1, provided that ∆ 6= 0, where:

∆ = det


a1 · · · an

ξ1,1 ξ1,n
...

...
ξn−1,1 · · · ξn−1,n

 . (3.7)

There is an obvious corollary to the results of the Jacobi last multiplier mentioned above. In the
case that there exists a constant multiplier, the determinant is a first integral. This result is potentially
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M.C. Nucci / The nonlinear pendulum always oscillates

very useful in the search for first integrals of systems of ordinary differential equations. In particular,
if each component of the vector field of the equation of motion is missing the variable associated
with that component, i.e., ∂ai/∂xi = 0, then the last multiplier is a constant, and any other Jacobi
last multiplier is a first integral.

Another property of the Jacobi last multiplier is its (almost forgotten) relationship with the
Lagrangian, L = L(t,x, ẋ), for any second-order equation:

ẍ = φ(t,x, ẋ), (3.8)

namely [9, 29]:

M =
∂ 2L
∂ ẋ2 , (3.9)

where M = M(t,x, ẋ) satisfies the following equation:

d
dt
(logM)+

∂φ

∂ ẋ
= 0. (3.10)

Then, equation (3.8) becomes the Euler–Lagrange equation:

− d
dt

(
∂L
∂ ẋ

)
+

∂L
∂x

= 0. (3.11)

The proof is given by taking the derivative of (3.11) by ẋ and showing that this yields (3.10). If
one knows a Jacobi last multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M dẋ
)

dẋ+ `1(t,x)ẋ+ `2(t,x), (3.12)

where `1 and `2 are functions of t and x, which have to satisfy a single partial differential equation
related to (3.8) [25]. As was shown in [25], `1, `2 are related to the gauge function F = F(t,x). In
fact, we may assume:

`1 =
∂F
∂x

`2 =
∂F
∂ t

+ `3(t,x) (3.13)

where `3 has to satisfy the mentioned partial differential equation and F is obviously arbitrary.
In principle, one can derive up to twenty-eight Jacobi last multipliers, and therefore Lagrangians

for equation (2.7). In particular, we consider the Jacobi last multiplier generated by the reciprocal
of the determinant (3.7) with Γ7 and Γ8 in (2.8), i.e.

∆ = det


1 u′ 2E0−u2−2u′2

2u

0 cos(y)
u − sin(y)

u − cos(y)u′

u2

0 sin(y)
u

cos(y)
u − sin(y)u′

u2

=
1
u2 . (3.14)

Consequently, a Jacobi last multiplier is

M = u2, (3.15)
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M.C. Nucci / The nonlinear pendulum always oscillates

and from (3.12) the following Lagrangian can be obtained

L =
1
2

u2(u′2 +E0)−
1
8

u4. (3.16)

This Lagrangian admits five Noether point symmetries, the highest possible number, namely those
generated by Γ4,Γ5,Γ6,Γ7,Γ8 in (2.8). Obviously, this Lagrangian could have been obtained by
applying the transformation (2.11) to the natural Lagrangian of the harmonic oscillator equation
(2.12), i.e.,

LHO =
1
2
(q′2−q2). (3.17)

However, here we would like to emphasize the role of the Jacobi last multiplier for determining the
Lagrangians admitted by a single second-order ordinary differential equation [29].
In fact, we can construct by means of the Jacobi last multiplier other two Lagrangians that admit five
Noether point symmetries. The Jacobi last multiplier generated by the reciprocal of the determinant
(3.7) with Γ9 = 2Γ6 +Γ5 and Γ12 = 2E2

0 Γ7 +Γ2 is

JLM9,12 =
8u2

(2uu′ sin(y)− (u2−2E0)cos(y))3 , (3.18)

that using (3.12) yields the Lagrangian:

L9,12 =
1

sin(y)2 (2uu′ sin(y)− (u2−2E0)cos(y))
. (3.19)

This Lagrangian admits five Noether point symmetries generated by Γ1,Γ8,Γ9,Γ11 = −3Γ3 +

Γ4,Γ12.
The Jacobi last multiplier generated by the reciprocal of the determinant (3.7) with Γ13 = Γ1−
2E2

0 Γ8 and Γ10 =−2Γ6 +Γ5 is

JLM13,10 =
8u2

(2uu′ cos(y)+(u2−2E0)sin(y))3 , (3.20)

that using (3.12) yields the Lagrangian:

L13,10 =
1

cos(y)2 (2uu′ cos(y)+(u2−2E0)sin(y))
. (3.21)

This Lagrangian admits five Noether point symmetries generated by Γ2,Γ7,Γ10,Γ13,Γ14 = 3Γ3+Γ4.
The Lagrangians L9,12, and L13,10 correspond to the Lagrangians of the harmonic oscillator equation
(2.12)

L2 = 1/
(
2sin(y)2(q′ sin(y)−qcos(y))

)
, (3.22)

and

L3 = 1/
(
2cos(y)2(q′ cos(y)+qsin(y))

)
, (3.23)

respectively.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

152

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
4:

12
 3

0 
D

ec
em

be
r 

20
17

 



M.C. Nucci / The nonlinear pendulum always oscillates

4. Quantizing with Noether symmetries

If a system of second-order equations is considered, i.e.

ẍ(t) = F(t,x, ẋ), x ∈ RN , (4.1)

that comes from a variational principle with a Lagrangian of first order, i.e. L = L(t,x, ẋ), then the
method that was first proposed in [19] can be summarized as follows:

(1) Find the Lie point symmetries of the Lagrange equations

ϒ =W (t,x)∂t +
N

∑
k=1

Wk(t,x)∂xk

(2) Among them find the Noether point symmetries

Γ =V (t,x)∂t +
N

∑
k=1

Vk(t,x)∂xk

This may require searching for the Lagrangian yielding the maximum possible number of
Noether point symmetries [25–28].

(3) Construct the Schrödinger equationf admitting these Noether point symmetries as Lie point
symmetries, namely

2iΨt +
N

∑
k, j=1

fk j(x)Ψx jxk +
N

∑
k=1

hk(x)Ψxk + f0(x)Ψ = 0 (4.2)

with Lie point symmetries

Ω =V (t,x)∂t +
N

∑
k=1

Vk(t,x)∂xk +G(t,x,Ψ)∂Ψ

without adding any other point symmetries apart from the two symmetries that are present
in any linear homogeneous partial differential equationg, namely

Ψ∂Ψ, α(t,x)∂Ψ,

where α = α(t,x) is any solution of the Schrödinger equation (4.2).

If the system (4.1) is linearizable by a point transformation, and it possesses the maximal number of
admissible Lie point symmetries, namely N2+4N+3, then in [2,3] it was proven that the maximal-
dimension Lie point symmetry algebra of a system of N equations of second order is isomorphic
to sl(N +2,R), and that the corresponding Noether point symmetries generate a (N2 +3N +6)/2-
dimensional Lie algebra gV whose structure (Levi-Malćev decomposition and realization by means
of a matrix algebra) was determined. It was also proven that the corresponding linear system

fWe assume h̄ = 1 without loss of generality.
gIn the following we will refer to those two symmetries as the homogeneity and linearity symmetries.
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z′′(s)+2A1(s) · z′(s)+A0(s) · z(s)+b(s) = 0, (4.3)

with the condition

A0(s) = A′1(s)+A1(s)2 +a(s)1, (4.4)

where A0,A1 are N×N matrices, and a is a scalar function.
Consequently if system (4.1) admits sl(N +2,R) as Lie point symmetry algebra then in [4] we

reformulated the algorithm that yields the Schrödinger equation as follows:

Step 1. Find the linearizing transformation which does not change the time, as prescribed in non-
relativistic quantum mechanics.

Step 2. Derive the Lagrangian by applying the linearizing transformation to the standard
Lagrangian of the corresponding linear system (4.3), namely the one that admits the maxi-
mum number of Noether point symmetriesh.

Step 3. Apply the linearizing transformation to the Schrödinger equation of the corresponding clas-
sical linear problem. This yields the Schrödinger equation corresponding to system (4.1).

This quantization is consistent with the classical properties of the system, namely the Lie point sym-
metries of the obtained Schrödinger equation correspond to the Noether point symmetries admitted
by the Lagrangian of system (4.1).

The Schrödinger equation of the linear harmonic oscillator (2.12) is:

2iΨy +Ψqq−q2
Ψ = 0 (4.5)

with Ψ = Ψ(y,q). If we apply the transformation (2.11), then we obtain the Schrödinger equation
of equation (2.7):

2iΨy +
Ψuu

u2 −
Ψu

u3 −
(u2−2E0)

2

4
Ψ = 0, (4.6)

with Ψ = Ψ(y,u). We now check the classical consistency of the Schrödinger equation (4.6). Using
the REDUCE programs [17] we find that indeed its Lie point symmetries are generated by the
following operators:

Ω1 = Γ4−
(
2cos(2y)+ i cos(2y)(u2−2E0)

2) ψ

2
∂ψ ,

Ω2 = Γ5−
(
2sin(2y)− i cos(2y)(u2−2E0)

2) ψ

2
∂ψ ,

Ω3 = Γ6, (4.7)

Ω4 = Γ7− i sin(y)(u2−2E0)
ψ

2
∂ψ ,

Ω5 = Γ8 + i cos(y)(u2−2E0)
ψ

2
∂ψ ,

plus the homogeneity and linearity symmetries. The Schrödinger equation (4.6) written in the orig-
inal variables p = φ̇ = w2 = u, and φ = w1 = y is:

hIn [3] it was shown that any diffeomorphism between two systems of second-order differential equations takes Noether
symmetries into Noether symmetries, and therefore the Lagrangian is unique up to a diffeomorphism.
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M.C. Nucci / The nonlinear pendulum always oscillates

2iΨφ +
Ψpp

p2 −
Ψp

p3 −
(p2−2E0)

2

4
Ψ = 0, (4.8)

with Ψ = Ψ(φ , p). Obviously the spectrum of this equation is discrete En = (n+ 1/2), n ∈ N, the
same as that of the linear harmonic oscillator (4.5).
However, here time is replaced by the angle φ and space variable by the angular momentum φ̇ , a
mathematical divertissement indeed.

5. Final remarks

Kerner’s method [12] was used in [14] in order to transform the classical second-order equation of
the nonlinear pendulum (1.3) into a system of four quadratic first-order equations (1.6), although
those equations were also presented by Kerner within a more general example in [12]. By means of
the reduction method [18] we have derived from the system an equivalent nonlinear second-order
equation (2.7) where the dependent variable is the angular velocity and the independent variable is
the angle variable of the pendulum. We found out that this equation admits an eight-dimensional Lie
point symmetry algebra and therefore is linearizable and can be transformed into a linear harmonic
oscillator. After recollecting the properties of the Jacobi Last multiplier we have determined, among
many, three Lagrangians admitted by equation (2.7). The three Lagrangians admit the maximum
number (five) of Noether point symmetries, and they are directly related to three Lagrangians (one
natural) of the harmonic oscillator (2.12) through the transformation (2.11). Finally, we have taken
the Noether point symmetries of the natural Lagrangian and constructed the Schrödinger equation
(4.8) for the classical equation (2.7) by the method that preserves the Noether point symmetries
[19,20], namely, as a mathematical divertissement, we have quantized the second-order differential
equation determining the phase-space trajectories of the nonlinear pendulum.

However, in [30] DeWitt has tersely stated that
In using point transformations in quantum theory, one usually first ”quantizes” a given system

in a set of ”natural” coordinates (e.g., rectilinear coordinates) and then carries out the coordinate
changes afterwards. However, if we adopt seriously the philosophy of general relativity, then we
should say that one coordinate system is as good as another, and we need not have felt obliged to
carry out the quantization in a ”natural” coordinate system.

In quantum mechanics, can we replace time and space with space and velocity, respectively?
Happy prime birthday, Orlando.
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aus: Arithmetik, Algebra, Analysis, B.G. Teubner, Leipzig (1908).

[14] K. Kowalski, Willi-Hans Steeb, Nonlinear Dynamical Systems and Carleman Linearization, World
Scientific Publishing, Singapore (1991).

[15] S. Lie, Veralgemeinerung und neue Verwerthung der Jacobischen Multiplicator-Theorie, Christ. Forh.,
255–274 (1874).

[16] S. Lie, Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen,
Teubner, Leipzig, Germany (1912).

[17] M.C. Nucci, Interactive REDUCE programs for calculating Lie point, non-classical, Lie-Bäcklund, and
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