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Abstract
Social isolation of rats both reduces the cerebrocortical and plasma concentrations of 3a-hydroxy-5a-pregnan-20-one
(3a,5a-TH PROG) and 3a,5a-tetrahydrodeoxycorticosterone and potentiates the positive effects of acute stress and ethanol
on the concentrations of these neuroactive steroids. We now show that social isolation decreased the plasma level of
adrenocorticotropin (ACTH), moreover, intracerebroventricular administration of corticotropin releasing factor (CRF)
induced a marked increase in the plasma corticosterone level in both isolated and group-housed rats, but this effect was
significantly greater in the isolated rats (þ121%) than in the group-housed rats (þ86%). In addition, in isolated rats, a low
dose of dexamethasone had no effect on the plasma corticosterone concentration, whereas, a high dose significantly reduced it;
both doses of dexamethasone reduced plasma corticosterone in group-housed rats. Furthermore, the corticosterone level after
injection of dexamethasone at the high dose was significantly greater in the isolated animals than in the group-housed rats.
These results suggest that social isolation increased sensitivity of the pituitary to CRF and impaired negative feedback
regulation of the hypothalamic–pituitary–adrenal (HPA) axis.
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Introduction

Long-term social isolation after weaning markedly

affects the behavior of rats. Isolated animals are

aggressive, neophobic and highly reactive to human

handling. They appear nervous and show both an

anxiety-like profile in the elevated plus-maze test and

increased locomotor activity in response to novel

situations (Hatch et al. 1963; Parker and Morinan

1986; Wongwitdecha and Marsden 1996). Social

isolation is thus thought to be stressful for these

normally gregarious animals and their abnormal

reactivity to environmental stimuli when reared

under this condition is thought to be a product of

prolonged stress. Although, the underlying mecha-

nisms remain poorly understood, similar social

conditions are thought to contribute to the etiology

of psychiatric disorders such as schizophrenia,

depression and anxiety in humans (Heim and

Nemeroff 2001).

Several acute stressful stimuli, as well as ethanol,

increase the brain and plasma concentrations of

neuroactive steroids, which are endogenous steroids

that affect the excitability of central neurons in a

manner independent of nuclear hormone receptors

(for review see Biggio and Purdy 2001). Some of

these compounds, such as 3a-hydroxy-5a-pregnan-

20-one (allopregnanolone or 3a,5a-TH PROG) and

3a,5a-tetrahydrodeoxycorticosterone (3a,5a-TH

DOC), are among the most potent positive allosteric

modulators of type A receptors for the inhibitory

neurotransmitter g-aminobutyric acid (GABA)

(Majewska et al. 1986; Belleli and Lambert 2005).

Thus, their acute administration in pharmacological

doses elicits anxiolytic, anticonvulsant and sedative-

hypnotic effects in rodents; moreover, physiological
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or pharmacologically induced changes in the levels of

3a,5a-TH PROG are implicated in the regulation of

GABAA receptor plasticity in addition to modulation

of receptor function (for reviews see Biggio and

Purdy 2001; Smith 2004).

We found that social isolation of rats for 30 days

immediately after weaning, in the absence of any

additional stressor, resulted in a decrease in the

cerebrocortical and plasma concentrations of 3a,

5a-TH PROG and 3a,5a-TH DOC compared with

the corresponding values for group-housed animals,

an effect prevented by handling of the animals twice

daily (Serra et al. 2000). The molecular mechanism

responsible for the persistent decrease in the

abundance of neuroactive steroids induced by social

isolation in rats remains unclear. The observations

that adrenalectomy both markedly reduces the brain

content of neuroactive steroids (Purdy et al. 1991;

Khisti et al. 2002; O’Dell et al. 2004) and prevents the

increase in the plasma and brain concentrations of

these compounds induced by acute stress (Barbaccia

et al. 1997) suggest that adrenal steroidogenesis plays

an important role in maintaining the abundance of

neuroactive steroids in both brain and plasma. An

altered regulation of the hypothalamic–pituitary–

adrenal (HPA) axis might thus contribute to the

reduction in the amounts of neuroactive steroids

apparent in isolated animals. We have previously

shown that the increases in the brain and plasma

concentrations of 3a,5a-TH PROG and 3a,5a-TH

DOC induced by foot shock (Barbaccia et al. 1996,

1997) used in this instance as a novel acute stressor

were markedly greater on a percentage basis in socially

isolated rats (395% and 292%, respectively) than in

group-housed animals (78% and 107%, respectively;

Serra et al. 2000). These results suggest that social

isolation induced a change in regulation of the HPA

axis rather than a decrease in secretory capability per

se. This conclusion is consistent with the notion of

development during exposure to chronic stress of a

“facilitatory trace”, characterized by hyperresponsive-

ness of the HPA axis to new stimuli (Akana et al.

1992). To examine the mechanism responsible for the

reduction in the basal concentrations of neuroactive

steroids and the increased sensitivity of the production

of these steroids to stress induced by social isolation,

we have now investigated the effect of social isolation

on neuroendocrine state.

Materials and methods

Animals

Male Sprague-Dawley CD rats at 30 days of age,

immediately after weaning, were housed for 30 days

either in groups of 6–8 per cage or individually in

smaller cages. They were maintained under an

artificial 12-h-light, 12-h-dark cycle (lights on at

07:00 h) at a constant temperature of 238 ^ 28C and

65% humidity. All experiments were performed

between 08:30 h and noon. Food and water were

freely available at all times. Animal care and handling

throughout the experimental procedures were in

accordance with the European Communities Council

Directive of 24 November 1986 (86/609/EEC).

Treatments

Corticotrophin releasing factor (CRF). Seven days before

the end of the 30-day period, a polyethylene cannula

(SP-10 PE) was implanted into the right lateral

ventricle of rats anesthetized with equithesin

(propylene glycol 20%, ethanol 10%, pentobarbital

0.2 M, 0.3 ml/kg, i.p.). At the end of the 30-day

period, CRF (500 ng in 5ml of physiological saline) or

saline was injected into the lateral cerebral ventricle of

the experimental animals with the use of a 10-ml

microsyringe and an injection cannula inserted into

the guide cannula. The animals were killed 30 min

later. Correct placement of the cannula was verified

histologically.

Dexamethasone. Rats were injected intraperitoneally

(i.p.) with dexamethasone (3 or 500mg/kg body

weight) or physiological saline (0.9%) vehicle and

killed 150 min later.

Extraction and assay of corticosterone

Rats were killed by decapitation with a guillotine.

Blood was collected from the trunk of killed rats into

heparinized tubes and centrifuged at 900g for 20 min

at room temperature. The resulting plasma was frozen

at 2808C until assayed for steroids. Corticosterone

was extracted from the plasma with ethyl acetate

(recovery of 70–80% as monitored by addition of a

trace amount of [3H]corticosterone) and then

quantified by radioimmunoassay, as described pre-

viously (Serra et al. 2000), with specific antibodies

(ICN, Costa Mesa, CA).

Adrenocorticotrophin hormone (ACTH)

radioimmunoassay

Blood was collected from the trunk of killed rats into

prechilled (48C) tubes containing EDTA and then

centrifuged within 60 min at 900g for 10 min in a

refrigerated centrifuge (48C). The resulting plasma

was frozen (2808C) until assayed for radioimmuno-

assay with a kit obtained from ICN, Costa Mesa.

Results

We postulated that an altered regulation of the HPA

axis might contribute to the reduction in the amounts
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of neuroactive steroids found in isolated animals.

Consistent with this hypothesis, we found that

the basal concentration of ACTH in plasma

was significantly decreased in isolated rats

(1023 ^ 148 pg/ml) compared with group-housed

rats (1495 ^ 210 pg/ml) (data are means ^ SD of

values from 36 animals, P , 0.01, Student’s t-test).

We previously found that foot-shock stress or

ethanol injection increased the cerebrocortical and

plasma concentrations of neuroactive steroids by a

greater percentage in isolated rats than in group-

housed animals (Serra et al. 2000, 2003). This

indicates a hyperresponsiveness of the HPA axis in

isolated rats, and indirectly suggests that in spite of the

decreased basal plasma level of ACTH, full secretory

capacity of the pituitary corticotrophs is maintained in

these animals. Therefore, we examined the effect of

central administration of CRF on the plasma

concentration of corticosterone (Figure 1). CRF was

injected into the lateral ventricle to gain access to the

primary capillary plexus of the hypothalamo–pituitary

portal system, although there may have also been

central actions of CRF leading to HPA axis activation.

CRF induced a marked increase in the plasma

corticosterone concentration in both isolated and

group-housed rats, but this effect was significantly

greater (P , 0.01) in the isolated animals (þ121%)

than in the group-housed rats (þ86%).

Next, we investigated the effect of intraperitoneal

injection of dexamethasone on the basal concentration

of corticosterone in the plasma of socially isolated rats.

As shown in Figure 2, we found that the plasma

corticosterone concentration in group-housed rats

was significantly reduced by injection of the low or

high dose of dexamethasone (238 and 281% of basal

values, as given in Figure 2 legend). In isolated rats,

however, the low dose of dexamhasone had no effect

on the plasma corticosterone concentration, whereas

the high dose significantly reduced it (251%). The

plasma corticosterone concentration after injection of

dexamethasone at the high dose was nevertheless

significantly greater in the isolated animals than in the

group-housed rats (Figure 2).

Discussion

We have shown that social isolation decreased the

plasma concentration of ACTH, evidently increased

sensitivity of the pituitary to CRF and impaired

glucocorticoid negative feedback regulation of corti-

costerone secretion.

A decrease in the plasma concentration of ACTH,

despite the continuous presence of the stressor, has

been described for animals exposed to various chronic

stressful stimuli and several mechanisms for this

effect, in addition to a reduction in pituitary

responsiveness to modulators of ACTH secretion

(CRF, AVP), have been proposed (Keller-Wood and

Dallman 1984; Rivier and Vale 1987; Hauger et al.

1988). Rivier and Vale (1987) suggested that both a

decrease in the readily releasable pool of ACTH and

the negative feedback exerted by corticosterone may

account for the diminished responsiveness of the

HPA axis of rats exposed to chronic intermittent

electroshock.

Figure 1. Effect of exogenous CRF on the plasma concentration of

corticosterone in socially isolated rats. Rats were housed in groups

or in isolation for 30 days. Data represent the percentage increase in

the plasma concentration of corticosterone in the rats given

intracerebroventricular (i.c.v.) CRF, relative to the corresponding

values for control (saline-injected) rats and are means ^ SEM of

values from 14 animals. Basal values: group-housed rats,

99 ^ 11 ng/ml; isolated rats, 127 ^ 16 ng/ml. *P , 0.01 vs group-

housed rats (Student’s t-test).

Figure 2. Effect of i.p. dexamethasone on the plasma

concentration of corticosterone in socially isolated rats. Rats were

housed in groups or in isolation for 30 days. Data represent the

plasma concentration of corticosterone expressed as a percentage of

the corresponding values for control (saline-injected) rats and are

means ^ SEM of values from 20 animals. Basal values: group-

housed rats, 113 ^ 10 ng/ml; isolated rats, 131 ^ 14 ng/ml.

*P , 0.01 vs corresponding control rats; †P , 0.01 vs

corresponding group-housed rats (two-way analysis of variance

followed by Newman-Keuls test).
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In contrast, we have previously shown that social

isolation increases the responsiveness of the HPA axis

to new stimuli. Thus, the increases in the brain and

plasma concentrations of 3a,5a-TH PROG and

3a,5a-TH DOC induced by foot shock (Barbaccia

et al. 1996, 1997), used in this instance as a novel

acute stressor, or by systemic injection of ethanol

(Van Doren et al. 2000), were markedly greater on a

percentage basis in socially isolated rats than in group-

housed animals (Serra et al. 2000, 2003). The

enhanced effects of acute stress and ethanol on the

brain and plasma concentrations of neuroactive

steroids in isolated rats may be related to an abnormal

reactivity of the HPA axis that develops as an adaptive

response to chronic stress. Abnormalities in the

behavioral response of isolated rats to distinct

challenges have been associated with functional

changes in the endocrine response, although differ-

ences in social isolation procedures or test environ-

ments among studies have led to apparently

discrepant results. For example, the basal level of

corticosterone in plasma was found to be either

unchanged (Morinan and Leonard 1980; Viveros et al.

1988; Haller and Halàsz 1999), increased (Rivier and

Vale 1987; Greco et al. 1990; Genaro et al. 2004;

Sandstrom and Hart 2005) or decreased (Miachon

et al. 1993; Sanchez et al. 1998; Chida et al. 2005) in

socially isolated animals.

Given that CRF is the main stimulator of ACTH

release (Axelrod and Reisine 1984), and the stimu-

latory effect of ethanol on the corticotrophs requires

the release of endogenous CRF (Lee et al. 2004),

either enhanced CRF release in response to stress and

to ethanol, or an increased pituitary sensitivity to CRF

might be responsible for the exaggerated response of

isolated rats to a novel stress.

The results presented suggest that the enhanced

corticosteroid secretion apparent in response to a

novel acute stress in socially isolated rats may be

attributable, at least in part, to an increased sensitivity

of the pituitary corticotrophs to CRF, although, an

augmented release of CRF and AVP from the

hypothalamic paraventricular nucleus or an increased

POMC primary transcript level (Lee et al. 2004)

cannot be ruled out.

Studies on HPA axis sensitivity during chronic

stress have generated apparently contradictory find-

ings as a result of the large variation in the intensity

and duration of exposure to stressors and in the doses

of administered CRF. Pituitary–adrenocortical

responses to CRF have been found to be unaffected

by chronic stress associated with immobilization

(Hashimoto et al. 1988; Culman et al. 1991) or

crowding (Bugajski et al. 1994) in rats, whereas

chronic shock-avoidance stress resulted in an attenu-

ated ACTH response to CRF (Odio and Brodish

1990). In contrast, the ACTH response to intravenous

administration of CRF was significantly increased in

rats stressed by cold adaptation (Uehara et al. 1989)

or by social defeat (Buwalda et al. 1999). The latter

study also showed that levels both of the glucocorti-

coid receptor in the hippocampus and hypothalamus

and of the mineralocorticoid receptor in the hippo-

campus were significantly decreased in the stressed

animals, resulting in reduced feedback inhibition of

the HPA axis (Buwalda et al. 1999). Expression of

glucocorticoid and mineralocorticoid receptors in the

brain has been found not to be markedly affected by

social isolation in rats (Holson et al. 1991; Olsson et al.

1994; Weiss et al. 2004; Filipovic et al. 2005).

Nevertheless, it is possible that the increased respon-

siveness of socially isolated rats to acute stimuli is

attributable in part to decreased negative feedback by

corticosterone. The negative feedback exerted by

corticosterone on its own release after exposure of

animals to stress is mediated by glucocorticoid

receptors in the pituitary, hypothalamus and hippo-

campus (Keller-Wood and Dallman 1984). A gradual

decrease in the number of glucocorticoid receptors in

specific brain areas in response to social isolation

might result in a reduced effectiveness of feedback

inhibition of the HPA axis, thereby leading to an

increased ACTH response.

The data obtained with the dexamethasone

suppression test suggest that the chronic mild stress

associated with social isolation impairs negative

feedback. Several studies have demonstrated a

pituitary rather than a brain site of action in the

suppression of HPA axis activity if moderate

amounts of dexamethasone are administered (De

Kloet et al. 1975; Miller et al. 1992; Cole et al.

2000). Low doses of the synthetic steroid in the

drinking water were previously found to induce

selective activation of glucocorticoid receptors in the

pituitary, with mineralocorticoid and glucocorticoid

receptors in the brain being unaffected; in contrast,

high doses of dexamethasone activate glucocorticoid

receptors in the brain (Miller et al. 1992). Although,

we used a different route (i.p.) of administration of

dexamethasone, we selected a low and a high dose of

the steroid, in an attempt to examine separately the

effects of glucocorticoid receptor activation in the

pituitary and in the brain (hypothalamus, hippo-

campus, cerebral cortex). The low dose of dexa-

methasone, which effectively reduced the plasma

corticosterone level in group-housed rats, presum-

ably by acting primarily at the glucocorticoid

receptors in the anterior pituitary, failed to affect

the plasma level of corticosterone in isolated animals.

Moreover, the partial suppression of corticosterone

secretion induced by the high dose of dexamethasone

in the isolated rats is suggestive of a partial down-

regulation of glucocorticoid receptors in brain areas

responsible for feedback inhibition. This hypothesis

is supported by the results of studies showing that

most procedures for the induction of chronic stress
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result in down-regulation of glucocorticoid receptors

in both the hippocampus and hypothalamus as well

as in a consequent hyperresponsiveness of the HPA

axis (Makino et al. 1995; Kitraki et al. 1999).
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