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Abstract. One of the main ingredients of nuclear astrophysics is the cross section of the

thermonuclear reactions which power the stars and synthesize the chemical elements in

the Universe. Deep underground in the Gran Sasso Laboratory the cross section of the key

reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle

have been measured right down to the energies of astrophysical interest. The main results

obtained during the solar phase of LUNA are reviewed before describing the current

LUNA program devoted to the study of the nucleosynthesis of the light elements in AGB

stars and Classical Novae. Finally, the future of LUNA with the new 3.5 MV accelerator

devoted to the study of helium and carbon burning is discussed.

1 Introduction

Only hydrogen, helium and lithium were synthesized in the first minutes after the big-bang. All

the other elements in the Universe are produced by the thermonuclear reactions taking place inside

the cauldrons active in the cosmos, i.e. the stars. Nuclear astrophysics studies the reactions which

transmute the chemical elements and provide energy to the stars. The reactions occur in the hot

plasma of a star, with temperatures in the range of tens to hundreds of millions degrees, inside an

energy window, the Gamow peak, which is far below the Coulomb energy arising from the repulsion

between nuclei. In this region the cross section is given by:

σ(E) =
S (E)

E
exp(−2 π η), (1)

where S (E) is the astrophysical factor (which contains the nuclear physics information) and η is given

by 2 π η = 31.29 Z1 Z2(μ/E)1/2. Z1 and Z2 are the nuclear charges of the interacting particles, μ is the

reduced mass (in units of amu), and E is the center of mass energy (in units of keV).

At low energies the cross sections are extremely small. Such smallness makes the star life-time

of the length we observe, but it also makes the direct measurement impossible in the laboratory.

LUNA, Laboratory for Underground Nuclear Astrophysics, started twenty five years ago to run nu-

clear physics experiments in an extremely low-background environment, the Gran Sasso Laboratory

(LNGS), to reproduce in the laboratory what Nature makes inside the stars [1, 2].
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2 Accelerators under Gran Sasso

Two electrostatic accelerators able to deliver hydrogen or helium beams have been installed in LUNA:

first a compact 50 kV home made machine and then, in the year 2000, a commercial 400 kV one.

Common features of the two accelerators are the high beam current, the long term stability and the

precise beam energy determination. In particular, the 400 kV accelerator can provide up to 0.5 mA

of hydrogen and 0.25 mA of helium at the target stations, with 0.3 keV accuracy on the beam energy,

100 eV energy spread, and 5 eV per hour long-term stability.

The dolomite rock of Gran Sasso provides a natural shielding equivalent to at least 3800 meters of

water which reduces the muon and neutron fluxes by a factor 106 and 103, respectively. The neutron

flux underground is mainly due to (α,n) reactions in the rock, with the alpha particles coming from

the 238U and 232Th decay chains. Finally, the activity due to Radon from the rock is suppressed down

to the level of few tens of Bequerel/m3 thanks to frequent air volume exchanges.

3 LUNA and the Sun

The first phase of LUNA, the solar phase, has been driven by the solar neutrino problem [3]. In

particular, the initial activity has been focused on the 3He(3He,2p)4He cross section measurement

within the solar Gamow peak (15-27 keV). Such a reaction is a key one of the hydrogen burning

proton-proton chain, which is responsible for more than 99% of the solar luminosity. Fig.1 shows

the results from LUNA [4] together with higher energy measurements [5–7]. For the first time a

nuclear reaction has been measured in the laboratory at the energy occurring in a star. In particular,

at the lowest energy of 16.5 keV the cross section is 0.02 pbarn, which corresponds to a rate of about

2 events/month, rather low even for the "silent" experiments of underground physics. No narrow

resonance has been found and, as a consequence, the astrophysical solution of the 8B and 7Be solar

neutrino problem based on its existence has been definitely ruled out. 3He(α,γ)7Be, the competing

reaction for 3He burning, has also been measured by LUNA both by detecting the prompt γ rays and

by counting the 7Be nuclei from their decay.

Figure 1. The cross section of 3He(3He,2p)4He as function of energy.
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The CNO cycle is responsible for the remaining 1% of the solar luminosity. 14N(p,γ)15O is the

slowest reaction of the cycle. In particular, it is the key reaction to predict the 13N and 15O solar

neutrino flux, which depends almost linearly on its cross section. The results obtained first with the

germanium detector [8], then with the BGO set-up [9] and, finally, with a composite germanium

detector [10] were about a factor two lower than the existing extrapolation from previous data at very

low energy (with a total error now reduced to 8%). Because of this reduction the CNO neutrino yield

in the Sun is decreased by about a factor of two. Thanks to the relatively small error on the cross

section, it will be possible in the near future to measure the carbon and nitrogen content of the Sun

core by comparing the predicted CNO neutrino flux with the measured one.

4 AGB stars and Classical Novae

A rich program of nuclear astrophysics mainly devoted to CNO, Ne-Na and Mg-Al cycles started a

few years ago after the solar phase of LUNA. Of particular interest are those bridge reactions which

are connecting one cycle to the next, as 15N(p,γ)16O [11] and 17O(p,γ)18F [12], the latter competing

with 17O(p,α)14N [13], or which are key ingredients of gamma astronomy, as 25Mg(p,γ)26Al [14].

Due to the higher Coulomb barrier of the reactions involved, the cycles become important at

temperatures higher than the one of our Sun, i.e. during hydrogen burning in the shell of AGB stars

and during the thermonuclear runaway of classical Novae (about 30-100, and 100-400 million degrees,

respectively). Relatively unimportant for energy generation, these cycles are essential for the cooking

of the light nuclei up to 27Al. In particular, LUNA is now measuring 22Ne(p,γ)23Na [15], the reaction

of the Ne-Na cycle with the highest uncertainty, and 23Na(p,γ)24Mg, the reaction connecting the Ne-

Na cycle to the Mg-Al one.

5 What next: helium and carbon burning

After hydrogen burning the natural evolution of LUNA is the study of the next steps in the fusion

chain towards 56Fe: helium and carbon burning. In particular, 12C(α,γ)16O determines the abundance

ratio between carbon and oxygen, the two key elements to the development of life, and it shapes

the nucleosynthesis in massive stars affecting the outcomes of both thermonuclear and core-collapse

supernovae.

Equally important are 13C(α,n)16O and 22Ne(α,n)25Mg, the sources of the neutrons which syn-

thesize half of the trans-iron elements through the S-process: neutron capture followed by β decay.

Finally, the 12C+12C fusion reaction is switching on the carbon burning. Its rate determines the evo-

lution of a massive star up to a slowly cooling white dwarf or up to a core-collapse supernova. It also

affects the ignition conditions and time scales of thermonuclear supernovae, the standard candles of

Cosmology.

This program requires a new 3.5 MV accelerator which is going to be installed underground in

the north side of Hall B of Gran Sasso in spring 2018. The accelerator room (fig.2) will have 80cm

thick concrete walls and ceiling working as neutron shielding. The room will host a single-ended

electrostatic accelerator, with two beam lines (only one of them fed at a time) able to deliver H, He+,

C+ and C2+ beams at high current (from 1 mA of H to 100 eμA of C2+). After the underground

mounting of the accelerator and its commissioning, the first physics run will start at the beginning of

2019.
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Figure 2. The LUNA-MV facility in the north side of Hall B at LNGS and the 3.5 MV accelerator.

6 Conclusions

Underground nuclear astrophysics was born twenty five years ago in the core of Gran Sasso, with the

aim of measuring cross sections at very low energy. After the solar phase, LUNA is now studying

the hydrogen burning reactions which are responsible for the cooking of the light elements in AGB

stars and classical Novae. The future of LUNA is going to start with the installation of a new 3.5 MV

accelerator in spring 2018 and it will be focused on the study of helium and carbon burning in stars.
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