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Abstract: In this study the authors investigate the two-dimensional target localisation capabilities of a passive radar system based
on WiFi transmissions. It is well known that the most straightforward way to achieve the target position estimation in the
horizontal plane with a passive radar exploits the measurements either of a single bistatic range plus a direction of arrival
(DoA) or of two bistatic ranges collected by two separate receivers. However, for a practical application it is interesting to
clearly define which one of the two approaches provides the passive radar target localisation with a higher accuracy and
whether combining both multiple bistatic range plus DoA measurements provides a further advantage. A multistatic
configuration is considered which allows to collect a set of range/Doppler/angle measurements for a given target. Different
target localisation strategies are devised and compared, based on subsets of the available measurements with the aim of
understanding the localisation accuracies achievable using the different combinations of measurements. Experimental results
are shown based on a passive radar prototype developed and fielded at the DIET Department – Sapienza University of Rome.
This will contribute to demonstrate the fruitful application of the passive radar concept for short range surveillance.
1 Introduction

In the last years the interest in passive coherent location (PCL)
radar for surveillance purposes has significantly grown up [1,
2]. In particular, a number of studies have looked at the use of
PCL radar systems for local area monitoring applications by
exploiting wireless network transmissions as potential
sources of opportunity.
Among them, transmitters for base stations of global

system for mobile Communications, Universal Mobile
Telecommunications System, Worldwide Interoperability for
Microwave Access (WiMAX) and forthcoming generation,
such as Long Term Evolution, of mobile personal
communication and network connection provide a largely
populated and well-connected network of sources of
opportunity for medium range surveillance [3–11].
In contrast, the IEEE 802.11 Standard based (WiFi)

transmitters provide a very local but potentially wide
bandwidth and well-controlled signals useful when aiming
at indoor surveillance or at monitoring small external areas
[12]. These signals have been shown to be an appropriate
choice for the detection and localisation of designated
vehicles, human beings or man-made objects within short
ranges using the passive radar principle [13, 14]. For
example, the WiFi-based passive radar can be employed for
detecting and tracking people moving inside a building after
a disaster, for monitoring vehicles moving in parking areas,
or for the surveillance of sensible areas within railway
station, airport terminals and private commercial premises [15].
Effective processing techniques have been designed to
enable the practical operation of the resulting system [13,
15–22], and to rise the specific challenges issued by
advanced applications, such as target cross-range profiling
via ISAR processing [23–26].
With reference to the target localisation stage, the

preliminary results reported in [21, 22] show that it is
possible to estimate the target x-y coordinates with
reasonable accuracy. To this purpose, multiple passive radar
sensors can be exploited which allow to collect a set of
range/Doppler measures for the same target which is
observed at different bi-static geometries. Moreover,
assuming that each sensor uses a couple of surveillance
antennas, a simple interferometric approach can be
exploited to estimate the direction of arrival (DoA) of the
target echo. This obviously increases the set of available
measures thus potentially improving the localisation
capability of the conceived system.
However, different measures (range/Doppler/DoA) might

be characterised by different accuracies and their effect on
the target two-dimensional (2D) localisation might be
highly dependent on the target geometry. Moreover the
availability of multiple measures is typically paid in terms
of system complexity and cost.
Therefore in this paper we consider the problem of obtaining

the target x-y coordinates from a small set of measures. In
particular, we carefully analyse the benefits deriving from the
inclusion of a given measure in the set exploited for target
localisation since this allows to give hints to the design of
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the conceived multistatic system. Moreover, proper localisation
strategies are presented to obtain the best localisation
performance from the joint exploitation of all the available
measures. Finally, different approaches are investigated for
the estimation of the target motion components; this might
fruitfully feed the target tracking algorithm or it can
effectively initialise the target motion parameters estimation
stage needed for its ISAR profile formation [23].
The experimental results are shown against the data

collected by the WiFi-based passive radar prototype
developed at the DIET Dept. – University of Rome ‘La
Sapienza’. Specifically the results are reported for different
tests performed using vehicular targets in a wide outdoor
area. The availability of the ground truth provided by a
global positioning system (GPS) receiver with real time
Kinematic allows us to compare the considered localisation
strategies by evaluating the achievable accuracies and
therefore to assess which ones are the configurations to be
preferred when designing a practical short range passive
radar scheme aiming at localising the targets.
The paper is organised as follows. In Section 2 the

WiFi-based passive radar scheme is briefly described
together with the main processing stages required to collect
the range/Doppler/DoA measures. Also the prototype used
for the experimental activity is introduced. In Section 3 the
exploitation of a minimum number of measures is
considered for target 2D localisation and the results are
compared when using two range measures from two PCL
systems or the range/DoA couple provided by a single PCL
system. The possibility of jointly exploiting all the available
measures is investigated in Section 4 where a Maximum
Likelihood estimation approach is presented which is shown
to significantly improve the target localisation performance.
The target motion parameters estimation is addressed in
Section 5. Finally, in Section 6 we draw our conclusions.
2 WiFi-based passive radar concept and the
experimental setup

A WiFi access point (AP), used to provide coverage for an
assigned area, potentially acts as an ideal illuminator of
opportunity for short range PCL surveillance if appropriate
techniques are adopted to process the collected signals. This
has been largely demonstrated in [12–22] by means of both
theoretical and experimental results.
Specifically the processing scheme for target detection

designed by the authors has been fully described in [13]
and its main blocks are depicted in Fig. 1.
The low-power signal reflected from the target is collected

by the main PCL receiver (typically known as the surveillance
channel) using a directive antenna steered towards the
surveillance area. An auxiliary receiver (typically known as
the reference channel) is usually adopted to collect the
transmitted signal.
Fig. 1 WiFi-based PCL processing scheme for target detection and loc
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A transmitter-specific conditioning of the reference signal
is first performed to improve the resulting ambiguity
function (AF); to this purpose proper techniques have been
introduced to cope with the high sidelobe structures
appearing in the AF of WiFi signals based on different
modulations [13, 15–18].
The pre-conditioned reference signal is then used to

remove undesired contributions (direct signal leakage and
strong clutter/multipath echoes) that have been received,
along with the moving target echo, on the surveillance
channel. To this purpose we resort to a modified version of
the adaptive cancellation approach presented in [27], the
extensive cancellation algorithm (ECA), which operates by
subtracting from the surveillance signal properly scaled and
delayed replicas of the reference signal. Specifically, the
Batches version of the ECA (ECA-B) is adopted which
requires the filter weights to be estimated over smaller
portions of the integration time.
After the cancellation stage, the detection process is based

on the evaluation of the bistatic two-dimensional
(range-Doppler) cross-correlation function (2D-CCF)
between the surveillance and the reference signal. Based on
the pulsed nature of WiFi transmissions and observing that
the pulse duration is significantly smaller than the coherent
processing interval required to achieve the desired
signal-to-noise ratio (SNR) and Doppler resolution for the
considered applications, the 2D-CCF can be practically
evaluated by cross-correlating the surveillance signal with
the reference signal on a pulse basis (‘Range compression’
block in Fig. 1) and coherently integrating the obtained
results over consecutive pulses (‘2D-CCF evaluation’ block
in Fig. 1). At this latter stage, an ad hoc designed taper
function can be exploited to control the sidelobes of the AF
in the Doppler dimension [19].
A constant false alarm rate (CFAR) threshold can be then

applied on the obtained map to automatically detect the
potential targets according to a specific CFAR detection
scheme. This provides a first target localisation over the
bistatic range/Doppler plane.
The measures collected at consecutive observations can be

used to perform a line tracking over this plane. Using a
conventional Kalman algorithm allows to reduce the false
alarm rate whereas yielding more accurate range/velocity
estimations.
Assuming that the PCL system is equipped with a couple of

surveillance antennas, the same processing scheme might be
applied on both channels and an interferometric approach
can be exploited to estimate the DoA of the detected target
echo.
Combining the available measures or, possibly, using the

measures obtained from multiple PCL systems, the target
2D localisation in local Cartesian coordinates can be
obtained.
The results obtained with the above processing scheme

have been reported in many contributions showing its
alisation
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effectiveness against typical scenarios [13, 15–17, 21, 22].
Some examples are reported in the following using the real
data set that will be then exploited in the subsequent
Sections to investigate different localisation strategies and to
assess their performance.
The considered data set has been collected by means of the

experimental setup sketched in Fig. 2; the reported test was
performed in a parking area where a vehicular target was
employed moving on a given trajectory (see the left-hand
side of Fig. 2). A GPS receiver was mounted on the
moving car to collect the ground truth.
A commercial WiFi AP was used as transmitter of

opportunity. Its antenna output was connected to the
transmitting antenna (TX) that was located at the point
represented with the coordinates (xTX, yTX) = (0, 0) m; a
directional coupler was used to send a −20 dB copy of the
transmitted signal to the first receiving channel of a
four-channel receiving system with the aim of collecting the
reference signal. Note that this approach allows to recover a
quite pure copy of the transmitted signal by exploiting a
partially cooperative AP. Alternatively the reference signal
might be collected by a dedicated antenna or recovered
from the signal received at the surveillance channel, [13]; in
these cases proper techniques can be applied to remove
undesired effects because of multipath contributions, [13].
Three surveillance antennas were directly connected to the

three remaining receiving channels. Note that, using the three
available surveillance channels, we could synthesise two
independent PCL sensors one of which is equipped with a
pair of surveillance antennas providing the target DoA
estimation capability. To this purpose, the first standalone
surveillance antenna (RX 1) was located in (x1, y1) = (25, 0)
m in a bistatic configuration with respect to the TX; on the
other hand antennas RX 2 and RX 3 were placed a few tens
of centimeters below the TX (in a quasi-monostatic
configuration), displaced in the horizontal direction by 12
cm which gives a 45° ambiguity for the DoA estimation.
After a fully coherent base-band down-conversion stage,

the signals collected at the different receiving channels are
sampled at 22 MHz and stored for off-line processing.
The WiFi-based passive radar processing scheme depicted

in Fig. 1 is applied against the collected surveillance signals
separately at each receiving channel. In particular, the ECA
is applied with a batch duration equal to 100 ms over a
range of 300 m; a coherent integration time of 0.5 s is used
to evaluate the 2D-CCF over consecutive portions of the
Fig. 2 Sketch of the experimental setup and the performed test
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acquired signals (frames) with a fixed displacement of 0.1 s
(10 frames per second are thus obtained); and target
detection is performed by resorting to a standard
cell-average CFAR threshold with a probability of false
alarm equal to 10−4.
Fig. 3 reports the detection results obtained for the two

PCL systems for a 15 s acquisition (150 Frames) compared
with the ground truth (black discontinuous line).
Specifically, the output is shown of a standard association
stage only aimed at discarding false alarms; moreover the
detections associated to stationary tracks have been
discarded since they are likely to correspond to clutter
residues. The raw target plots are reported since the
obtained measures have not been filtered at this stage.
In particular Fig. 3a reports the results for the PCL system

based on the standalone antenna RX1, namely PCL1. The
results for PCL2 are shown in Fig. 3b where a
two-out-of-two criterion has been adopted on the detection
results separately obtained against the signals collected by
antennas RX2 and RX3.
As is apparent, many plots are obtained that clearly

correspond to the target echoes. In addition a long plot
sequence is detected by both PCL1 and PCL2 that is likely
to be generated by the double-bounce reflection of the
target echo over the building in the upper zone of Fig. 2
(see the sequence of detections at positive Doppler
frequency and decreasing bistatic range between 250 and
150 m). In practical applications, the false targets generated
by multipath effect on the target echo might be reasonably
recognised if the true target is correctly detected and
tracked and the a-priori knowledge of the stationary scene
is available, namely the shape and position of the main
stationary obstacles forming the observed scene. In fact,
based on geometrical considerations and assuming a simple
propagation model, it is possible in principle to identify and
discard the target tracks that are likely to correspond to
multiple-bounce echoes.
For the purpose of our analysis the nearest sequence of

plots is selected which clearly corresponds to the employed
target. This procedure has been partially automatised by
applying a conventional tracking stage on the range/Doppler
plane (see Section 3.2) and then manually extracting the
track of interest; specifically the (possibly filtered) plots
associated to the selected track are collected which
represent a set of bistatic range and Doppler frequency
measurements (namely, RB1 and fD1), for the considered
125
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Fig. 3 Detection results after association stage over the bistatic range/Doppler plane for

a PCL1
b PCL2
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target, performed by PCL1 along the acquisition. Similarly,
the set of range/Doppler measures is collected for PCL2
(RB2 and fD2); in this case, also the phase difference
between RX 2 and RX 3 measured at the target detection
point is exploited to obtain the target DoA estimation. The
estimated target DoA along the performed acquisition is
show in Fig. 4, compared with the ground truth showing
that it is well in line with the test geometry.
Although the reported analysis is limited to the employed

target track, in practical applications all the tracks identified
by the exploited systems would be given as input to the 2D
localisation stage. In this regard, also the association of
tracks from different PCL need to be automatised; in [28,
29] possible approaches to passive multi-static multi-target
tracking are presented and the challenging task of tracks
association is properly dealt with.
In the following Section the collected target measurements

will be exploited to obtain effective target localisation over
the x-y plane.

3 Target localisation using a minimum
number of measures

Once a target has been detected in the bistatic range/Doppler
plane, its 2D localisation might be desirable in an assigned
area, where a x-y orthogonal coordinate system is defined.
A minimum number of two position dependent
Fig. 4 Target DoA measures obtained by PCL2
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measurements is required to perform the 2D target
localisation. However different sets of two measurements
could be exploited and this choice has implications both on
the resulting localisation accuracy and on the PCL system
to be designed there including the number and displacement
of the receivers and the number of receiving antennas for
each passive receiver.
With reference to our experimental setup, the target 2D

localisation can be performed by using:

(A) two bistatic range measurements provided by two PCL
receivers after the detection stage
(B) two bistatic range measurements obtained from two PCL
receivers after a range/Doppler tracking stage
(C) a range measurement and a DoA measurement provided
by a single PCL system.

In the following of this section these approaches are
investigated and compared, whereas in a subsequent section
we consider the possibility to exploit all available
information.
3.1 Using raw range measurements from two PCL
systems

As is well known, for a given PCL system with known
transmitter and receiver locations, a bistatic range measure
univocally identifies the ellipse where the target lies. The
intersection points of two ellipses provide the estimation of
up to four possible target positions over the x-y plane. The
ambiguous solutions might be discarded by forcing the
target to be within the antennas’ main lobe; this presumes
some degree of a priori knowledge, namely information
about the area covered by transmitting and receiving
antennas beams should be available.
The achievable target localisation accuracy depends on

both the range measures accuracy and on the additional
multiplicative effect caused by the multistatic system
geometry on the achievable precision; the latter effect is
known as the dilution of precision (DOP) factor in GPS and
geomatics engineering [30].
As an example, the result obtained for the considered

experiment is reported in Fig. 5; the white dots represent
the estimated target positions at consecutive acquisition
frames when using the raw range measures extracted from
IET Radar Sonar Navig., 2014, Vol. 8, Iss. 2, pp. 123–131
doi: 10.1049/iet-rsn.2013.0207



Fig. 5 Target localisation using two bistatic range measures

www.ietdl.org
Figs. 3a and b for PCL1 and PCL2. As is apparent,
localisation errors in the order of metres are experienced
along the x dimension whereas the track follows the actual
motion of the target along the y dimension (which is
oriented along the range axis). In particular, the worst
localisation performance is experienced when the target is
far from the surveillance antennas. In fact, in such locations
the bistatic ellipses become quite similar and almost
tangent, thus increasing the DOP factor along the x
dimension.
Table 1 summarises the localisation performance in terms

of positioning error defined as 1P =
���������
12x + 12y

√
where εx and

εy are the errors along the x and y dimensions, respectively.
In particular, the results obtained with the above approach
exploiting two raw range measurements are reported in the
first row of Table 1.
3.2 Using filtered range measurements from two
PCL systems

In [21] we have shown that target localisation performance of
the conceived WiFi based PCL system might be significantly
improved if the target range measurements are used at the
output of a dynamics model-based filtering stage that takes
into account the multiple sequential measurements. To this
aim, in the following a conventional Kalman tracking
algorithm is applied over the range/Doppler plane
separately for each PCL receiver.
In particular, the algorithm operates in conjunction with a

nearest neighbour association strategy. A parabolic motion
model is assumed for the target over the bistatic range/
Doppler plane which results in a 3 × 1 system state vector
(range, Doppler, Doppler rate); this model is representative
Table 1 Target localisation performance using different strategies

Reference paper
section

Exploited measurements and method Maximum
error, m

Section 3.1 2 raw range measurements 3
Section 3.2 2 filtered range measurements
Section 3.3 1 filtered range & 1 DoA

measurements
Section 4.1 2 filtered ranges & 1 DoA

measurements – LS approach
Section 4.2 2 filtered ranges & 1 DoA

measurements – ML approach
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for a target moving in the surveillance space with uniform
linear motion. The noise affecting the collected measures
(bistatic range and Doppler) is assumed to be Gaussian
distributed with zero mean and variances s2

R and s2
D. The

measurements accuracies are evaluated in practice as
s2
R = D2

R/SNR and s2
D = D2

D/SNR, respectively, where ΔR

and ΔD are the achievable range and Doppler resolutions
and the SNR can be estimated at the target detection point
over the range/Doppler map.
Note that a range/Doppler tracking stage is usually adopted

in passive radar applications because it allows both to discard
false alarms and to improve the range measure accuracy prior
to merging the results from multiple PCL receivers, [1, 2]. In
fact, after the line tracking, also the target bistatic Doppler
measurements are indirectly exploited to obtain more
accurate range measurements with respect to the raw case.
As a consequence, the localisation procedure based on the
intersection of the corresponding ellipses yields a much
more stable estimation of the target position in the x-y plane.
The result is reported for comparison in Fig. 5 (dark dots).

As is apparent, the resulting track is almost identical to the
actual path of the car; the slight differences are because of
clutter residuals which affect the estimation of the target
range and Doppler frequency, especially when it approaches
the building in the parking area. Correspondingly the
localisation accuracy is significantly improved since the
standard deviation of the positioning error is reduced by
4.2 m with respect to the previous case (see second row of
Table 1). Obviously, better results could be obtained by
applying a second tracking stage over the x-y plane;
however we are interested in the direct impact of the
available measures on the 2D localisation capability of the
system so that the comparison is performed without a target
tracking in the x-y plane.
3.3 Using range and DoA measurements from a
single PCL system

An alternative approach to target 2D localisation consists in
the exploitation of the bistatic range and DoA measures
provided by a single PCL receiver equipped with a couple
of surveillance antennas. With reference to our experimental
setup we could use the filtered bistatic range measures and
the DoA estimates provided by PCL2.
The target position is obtained by intersecting the bistatic

ellipse with the line identifying the DoA of the target echo.
Note that ambiguous solutions might be found using this
approach, as well as when exploiting two range
measurements, because the DoA measurement could be
ambiguous itself. With particular reference to our case
study, the horizontal displacement of the receiving antennas
(12 cm) yields a 45° ambiguity for the DoA estimation.
positioning Mean positioning
error, m

Positioning error standard
deviation, m

2.65 4.81 5.78
6.64 2.47 1.53
2.56 1.79 0.54

7.04 2.10 1.77

2.37 1.6 0.49
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Fig. 6 Target localisation using bistatic range + DoA from PCL2
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Nevertheless, since directive antennas are employed, the
ambiguous solutions can be discarded by forcing the target
to be within the area covered by the antennas’ main lobe.
Again the achievable localisation accuracy depends both

on the accuracy of the exploited measures and on the PCL/
target geometry. For example, the performance is expected
to rapidly get worse as the target moves away from
the receiver; basically this is because of the decrease in the
target echo power level and to the widening of the
uncertainty x-y area caused by a given DoA error.
The target localisation results for this approach are shown

in Fig. 6 whereas the third row of Table 1 summarises the
obtained performance. As is apparent, the exploitation of
the quite accurate phase difference measurement allows to
further improve the target localisation accuracy. Basically
the maximum positioning error along the target trajectory is
now comparable with the target size.
Based on the previous analysis, we might gather that,

despite the simple approach exploited for DoA estimation
(i.e. phase difference measurement between a couple of
surveillance antennas), the target localisation based on (at
least) one angular measurement yields more reliable
performance. This is a quite interesting result because it
contrasts with the typical case of other PCL systems
operating at lower carrier frequencies for which the DoA
estimation tends to be unstable and inaccurate. Moreover,
this directs the design of a multistatic WiFi-based PCL
system to the inclusion of few sensors equipped with
multiple receiving antennas instead of many lower-cost
sensors using a single surveillance antenna.

4 Target localisation using multiple
measurements

The availability of multiple measurements about the target
obtained from different PCL receivers might potentially
yield improved localisation performance if properly exploited.
With reference to our experimental setup, the target 2D

localisation can be performed by jointly using the target DoA
measurement provided by PCL2 and the two bistatic range
measurements provided by PCL1 and PCL2. In the following
two different approaches are investigated and compared.
4.1 Least square solution

Aiming at the 2D localisation of the target, the exploitation of
range and DoA measurements from multiple PCL receivers
128
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requires the solution of a system of N non-linear equations
in two unknowns.
In our case N = 3 and, based on the quasi-monostatic

configuration of PCL2, we obtain

RB1 = fR1 xt, yt
( ) =

���������������������������
xTX − xt
( )2+ yTX − yt

( )2√

+
������������������������
x1 − xt
( )2+ y1 − yt

( )2√

RB2 = fR2 xt, yt
( ) = 2

���������������������������
xTX − xt
( )2+ yTX − yt

( )2√

q = fq xt, yt
( ) = arctan xt/yt

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where:

† p = [xt, yt]
T are the target coordinates

† RB1 and RB2 are the bistatic ranges given by PCL1 and
PCL2, respectively; and
† ϑ is the target angle of arrival given by PCL2.

The system in (1) can be linearised by using a first-order
Taylor series approximation about the target tentative
position p0 = [xt0, yt0]

T

m � m0 +H · (p− p0) (2)

where a matrix notation has been adopted based on the
following definitions

m = RB1 RB2 q
[ ]T

(3)

m0 = RB1,0 RB2,0 q0

[ ]T

= fR1 xt0, yt0
( )

fR2 xt0, yt0
( )

fq xt0, yt0
( )[ ]T (4)

H =

∂fR1
∂x

∣∣∣∣
xt0,yt0( )

∂fR1
∂x

∣∣∣∣
xt0,yt0( )

∂fR2
∂x

∣∣∣∣
xt0,yt0( )

∂fR2
∂y

∣∣∣∣
xt0,yt0( )

∂fq
∂x

∣∣∣∣
xt0,yt0( )

∂fq
∂y

∣∣∣∣
xt0,yt0( )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Therefore the least square (LS) solution of the system in (2) is
given by

p = HTH
( )−1

HT(m−m0)+ p0 (6)

where the pseudo-inverse of matrix H has been exploited.
This allows to update the target coordinates with respect to
the tentative position and to reiterate the procedure until the
displacement p− p0

∥∥ ∥∥ is within the requirements on the
positioning accuracy or the maximum admitted number of
iterations is reached.
In the hypothesis of error free measurements, this

algorithm converges to the true target position. Obviously,
the passive radar measurements suffer from unknown errors
1M = m̂−m; under the hypothesis of small errors, the
linearisation procedure described above can be exploited
(around the true target position) to evaluate how these
errors reflect on the estimated target position. Specifically it
is easy to verify that the covariance matrix ΣP of the
IET Radar Sonar Navig., 2014, Vol. 8, Iss. 2, pp. 123–131
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Fig. 7 Target localisation using two range measurements + DoA
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corresponding positioning error over the x-y plane is given by

SP = E 1P1
T
P

{ } = HTH
( )−1

HTSMH HTH
( )−1

(7)

where ΣM is the covariance matrix of the errors affecting the
performed measurements.
The results obtained against the available data set are

reported in Fig. 7 (using dark dots) and the corresponding
performance are summarised in Table 1 for comparison.
As is apparent, the direct exploitation of all the available

measurements causes a degradation of the localisation
performance with respect to the use of the minimum
required number of measurements. Specifically the standard
deviation of the positioning accuracy is three times greater
than using a single range measurement and the DoA
measurement. In facts, the inclusion of an additional range
measurement with low accuracy yields worse performance
because the system equally relies on the available
measurements.
This is not surprising since the LS estimation procedure

coincides with a maximum likelihood (ML) estimator of the
target position whenever the joint probability density
function of the available measurements is Gaussian
distributed with identical variances. However, this does not
apply to our localisation problem being each measurement
characterised by its own accuracy. In facts, we are
exploiting non-homogeneous measurements (i.e. range and
DoA) and these are provided by PCL sensors operating
with different geometries, thus experiencing different SNR
values and DOP factors.
The above considerations should be taken into account in

order to better exploit the collected measurements, thus
making it possible to improve the achievable localisation
performance. To accomplish such result, a true ML
estimator should be employed along the line described in
the next Section.

4.2 Maximum likelihood estimator

Under the hypothesis of small errors εM affecting the
performed measurements m̂, the linearisation in (2) can be
exploited

m̂ = m+ 1M = m0 +H · (p− p0)+ 1M (8)

Moreover let us assume that the joint probability density
function of the errors εM is Gaussian with zero mean value
IET Radar Sonar Navig., 2014, Vol. 8, Iss. 2, pp. 123–131
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and covariance matrix ΣM given by

SM =
s2
R1 0 0
0 s2

R2 0
0 0 s2

q

⎡
⎣

⎤
⎦ (9)

where s2
R1, s

2
R2 and s2

q are the variances of the errors on RB1,
RB2 and ϑ, respectively. In practice, s2

R1 and s2
R2 can be

derived from the ‘a posteriori’ error covariance matrix of
the Kalman algorithm, separately applied on PCL1 and
PCL2; similarly s2

q can be estimated as s2
q =

l/2pd cosq
( )2

SNR−1 where ϑ is the estimated target DoA
and the SNR is estimated at the target detection point on
the range/Doppler map. Note that it has been reasonably
assumed that the cross-covariance between the collected
measurements is equal to zero.
Under these hypotheses, the ML estimator for the target

position might be derived by solving the following
minimisation problem

min
p

= m−m0

( )−H · p− p0
( )[ ]T

S
−1
M

{

m−m0

( )−H · p− p0
( )[ ]} (10)

that has the following solution

p = HTS
−1
M H

( )−1
HTS

−1
M m−m0

( )+ p0 (11)

As is apparent, the target position updating obtained by
resorting to the ML estimator depends not only on the
collected measurements and the target-sensors geometry, as
in (6), but also it depends on the accuracy of the available
measurements. Obviously, (11) would coincide with (6)
whenever the errors affecting the performed measurements
are characterised by the same variance (i.e. ΣM = σ2I3 × 3).
Going backwards, the result in (11) would be derived by

considering a LS approach applied against the following
minimisation problem

min
p

= S
−1/2
M H · p− p0

( )− m−m0

( )∣∣ ∣∣2{ }
(12)

This is tantamount to the solution of the system in (2) where
each equation is weighted according to the accuracy of the
corresponding measurement.
The output of the iterative procedure based on the ML

estimator for the considered experiment is reported in Fig. 7
(white dots). Better results are obtained with respect to the
LS approach since the deviations of the target track from
the ground truth are significantly reduced. This is because
of a better exploitation of the DoA measurement when
solving the system of equations. Basically the use of the
different measurements weighted according to their own
accuracies suggests to rely mainly on the angular information.
The quantitative analysis of the performance of the ML

estimator is reported in Table 1. As is apparent the
maximum deviation between the ground truth and the
estimated target position reduces to approximately 2.4 m
(about 5 m smaller that that given by the LS approach).
Similarly the improvements in the mean error and the error
standard deviation are 0.5 m and 1.2 m, respectively.
It is worth noting that, using the true ML approach, the

inclusion of an additional range measurement yields better
129
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performance with respect to the use of a single range and DoA
measurements; this reveals that the system is able to identify
the most reliable measurements and exploit all information in
the best possible way. Note that this allows us to achieve
always the best possible 2D localisation accuracy for the
target in any position inside the surveillance area, without
requiring to select the best subset of measurements to be
used for localisation.
Interestingly enough, the use of the ML intrinsically avoids

that the use of noisy information degrades the global 2D
localisation accuracy, so that it is generally a viable
practical solution. Therefore the ML approach described
above can even be nicely extended when the set of
exploited measurements is widened by including the
Doppler frequencies aiming at estimating also the target’s
velocity.
Fig. 8 Target velocity components estimation
5 Target’s velocity estimation

To obtain an estimate of the target velocity components along
the x and y directions, namely vx and vy, also the bistatic
Doppler frequency measurements should be included in the
system of equations in (1) for both the PCL sensors. In fact,
the Doppler frequency of the target echo depends on its
velocity components vx− vy as well as on the system
bistatic geometry. Thus the target motion evaluation
requires the joint estimation of both the target velocity and
the target position. Specifically, the following two equations
should be added to the system in (1): (see (13))

Therefore a system of five equations in four unknowns
should be solved. Let us define the augmented vector of
measurements ma = [RB1 RB2 ϑ fD1 fD2]

T (5 × 1), the augmented
vector of estimates pa = [xt yt vx vy]

T (4 × 1) and the
corresponding matrix Ha (5 × 4) of partial derivatives
evaluated at the tentative point pa0. The considered system
of equations might be linearised as in (2) and its solution,
based on the ML approach, is given by (11) where the
matrix structures are replaced with their augmented versions
and the covariance matrix ΣMa (5 × 5) includes the
variances of the Doppler frequency measurements.
The results are reported in Fig. 8 along the considered

acquisition for both the velocity components compared with
the ground truth. For the purpose of our analysis, we have
also reported the velocity components obtained as time
derivatives of the estimated target x-y coordinates obtained
in Section 4.2.
As is apparent, the joint estimation of the target position

and velocity based on the ML approach provides much
more accurate results with respect to the case of time
fD1 =
1

l
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( )

vx�������������������������
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1
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derivatives of the position components. This is because of
the exploitation of the quite accurate Doppler frequency
measurements that directly depend on the target motion
parameters. In contrast, the estimated target position yields
information about its motion only when observed at
consecutive time instants; as a consequence, the localisation
errors might be doubled when evaluating the target velocity
components.
Clearly different approaches might be exploited for the

estimation of the target velocity components. Nevertheless
the reported results show that the target motion parameters
can be reasonably estimated based on the measurements
provided by a couple of PCL system dislocated on the
surveillance area. This estimate might fruitfully feed the
target tracking algorithm over the x− y plane or it can
effectively initialise the target motion parameters estimation
stage needed for the target cross-range profile formation
based on ISAR techniques [23].

6 Conclusions

In this paper the 2D target localisation has been addressed for
the case of a WiFi-based PCL system aimed at local area
surveillance applications.
Different strategies have been investigated based on

different set of measurements possibly provided by multiple
PCL receivers. The performance of the considered strategies
has been evaluated and compared against real data collected
for a vehicular target localisation experiment.
It has been shown that a reasonable target localisation

capability is obtained by using the range measurements
from two PCL systems; however, to be fruitfully exploited,
��
2
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such measurements should be taken after the application of a
tracking stage in the bistatic range/Doppler plane.
Besides, the joint exploitation of bistatic range and DoA

measurements has been shown to yield improved 2D
localisation performance thanks to the higher accuracy
provided by the angular information. This gives a hint for
the design of a multistatic WiFi-based PCL system that
should preferably include few sensors equipped with
multiple receiving antennas, instead of many lower-cost
sensors based on a single surveillance antenna.
It has also been shown the importance of knowing the

accuracy of the available measurements, that need to be
taken into account when exploiting a higher number of
measurements. As apparent this enables the use of a true
ML approach for the target position estimation. This allows
to gather the highest benefits from all the available
measurements, thus exploiting full multistatic passive radar
configurations to provide the highest possible 2D
localisation accuracy.
Finally, the ML approach has been extended to the target

motion components estimation stage aiming at increasing
the monitoring capabilities of the conceived system. This is
also very useful for the subsequent potential processing
stages of either target tracking, or cross-range target
profiling by means of ISAR techniques.
Although further improvements are expected if a wider

network of properly displaced receivers is used to collect a
wider set of range/Doppler/DoA measurements, the reported
results clearly demonstrate that there are good potentialities
for the WiFi-based PBR for short range surveillance to
provide accurate 2D location of vehicular targets, despite
the wide antenna beams typically used by such sensors.
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