
Fourth-order Jameson–Schmidt–Turkel
FDTD scheme for non-magnetised
cold plasma

K.P. Prokopidis✉ and D. C. Zografopoulos
ELECT
A fourth-order finite-difference time-domain (FDTD) scheme is
proposed for the solution of Maxwell’s equations in cold plasma
(Drude medium), based on the multistage method of Jameson,
Schmidt and Turkel, which was originally introduced in the framework
of fluid dynamics. First, the system of governing differential equations
is formed as a general first-order, operator-based approach, and then
a four-stage algorithm is established. The accuracy of the method is
verified in benchmark problems compared with analytical solutions
and with the conventional second-order FDTD algorithm.
Introduction: Computational electromagnetics (CEM) has evolved into
an indispensable tool for the modelling of devices and structures
spanning from microwave to optical frequencies. The finite-difference
time-domain (FDTD) method is considered as a versatile and robust
method in CEM due to its simplicity and efficiency [1, 2]. The conven-
tional FDTD method is a non-dissipative scheme with second-order
accuracy both in space and time, which inevitably leads to accumulated
numerical dispersion errors, especially in long-time simulations and/or
large computational domains.

In this context, high-order (HO) FDTD techniques constitute pro-
mising alternatives to the second-order FDTD method, as they are
more accurate thanks to the reduced grid anisotropy and dispersion
errors [1, 3, 4]. The HO methods were initially proposed for simple
dielectrics with constant electric permittivity and magnetic susceptibility
(non-dispersive media) varying only in space. Subsequently, HO tech-
niques were extended to account for complex materials, including
dispersive media with frequency-dependent constitutive parameters.
For instance, HO schemes have been proposed for the modelling of
lossy [5, 6] and dispersive media [7–11] and, recently, for the study
of non-linear optical media [12] and metamaterials [13].

Runge–Kutta (RK) schemes are a family of multistage numerical
techniques, which are widely used for the solution of differential
equations in various fields. Although RK methods provide high accu-
racy, they involve large computational effort and increased memory
requirements. To overcome such problems, Jameson, Schmidt and
Turkel (JST) introduced back in 1981 a more efficient scheme with
fewer intermediate variables and reduced computations per time step.
This original JST scheme was proposed for the study of aerodynamical
problems and computational fluid dynamics. Recently, its application
has been extended to Maxwell’s equations in non-dispersive media [14].

In this work, we apply the JST methodology in a fourth-order
HO-FDTD scheme for dispersive media, namely cold plasma described
by the Drude model. We formulate the governing equations in the
medium as a system of first-order differential equations and we
propose a novel numerical scheme based on the JST algorithm while
preserving the fourth-order accuracy of the corresponding RK scheme.
The spatial derivatives are evaluated using central fourth-order approxi-
mations except for the boundaries where one-sided approximations
are utilised. Initially, we demonstrate the fourth-order convergence
rate of the proposed technique in a resonating cavity problem. In
addition, the accuracy of the proposed scheme with respect to the stan-
dard second-order FDTD method is investigated in the case of broad-
band wave propagation in Drude media. A direct comparison with the
analytical solution reveals its superiority, which is significantly more
pronounced at high frequencies or long propagation distances.

Formulation: The governing field equations in non-magnetised cold
plasma (Drude medium) in the absence of sources are

∇ × E = −m0
∂H

∂t
(1a)

∇ ×H = 1110
∂E

∂t
+ J (1b)

∂J

∂t
+ gJ = 10v

2
pE, (1c)

where vp is the plasma frequency, g is the electron-neutral collision fre-
quency and 11 the relative permittivity at infinite frequency. The relative
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electric permittivity of the medium is described by

1(v) = 11 + v2
p

jvg− v2
. (2)

The governing equations (1a–c) can be recast as the following general
first-order system:

∂U
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= L(U), with U =

E

H

J

⎛
⎜⎝

⎞
⎟⎠, (3)

where L represents the operator
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The system of (3) can be solved using the classical explicit fourth-order
RK method (RK4) as follows:

U(1) = Un + Dt

2
L(Un) (5)

U(2) = Un + Dt

2
L(U(1)) (6)

U(3) = Un + DtL(U(2)) (7)

Un+1 = 1

3
(− Un + U(1) + 2U(2) + U(3))+ Dt

6
L(U(3)), (8)

which features fourth-order accuracy in both linear and non-linear pro-
blems. In the case of linear problems, the more efficient JST scheme can
be applied

U(1) = Un + Dt

4
L(Un) (9a)

U(2) = Un + Dt

3
L(U(1)) (9b)

U(3) = Un + Dt

2
L(U(2)) (9c)

Un+1 = Un + DtL(U(3)). (9d)

This scheme eliminates the need to store the intermediate variables. The
update equations of Ex, Hy and Jx for the first stage of the algorithm are
given by

E(1)
x = En

x +
Dt

41011
dyHn

z

Dy
− dzHn
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( )
(10)
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J (1)x = Jnx + Dt
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pE

n
x − gJnx

( )
. (12)

The remaining update equations can be found in a similar fashion. The
spatial derivatives ∂/∂b, with b = x, y, z, are invoked by the central,
fourth-order spatial operator

dbfi
Db

= 1

24Db
fi−3/2 − 27fi−1/2 + 27fi+1/2 − fi+3/2

( )
, (13)

where the index i corresponds to the spatial variable b and the coeffi-
cients are calculated by an analytical expression [8]. It is noted that
the fields are staggered according to the Yee scheme in space, but not
in time.

One-sided approximations of the derivatives are employed at the
boundaries of the computational domain [3]. Assuming that the compu-
tational domain is terminated with the electric field, the spatial derivative
of the magnetic field at the first grid point next to the boundary is
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approximated by

dbHb, 1 = 1

24
(− 23Hb, 1/2 + 21Hb, 3/2 + 3Hb, 5/2 − Hb, 7/2), (14)

while the derivative of the electric field half cell next to the boundary is
approximated by

dbEb, 1/2 = 1

24
(− 22Eb, 0 + 17Eb, 1 + 9Eb, 2 − 5Eb, 3 + Eb, 4). (15)

The above derivative approximations are third- and fourth-order,
respectively and were obtained using Taylor expansions.

Numerical results and discussion: To check the accuracy of the pro-
posed technique, we present a number of benchmark simulations
using the proposed formulation in comparison with the second-order
technique [15], namely the FDTD(2,2) scheme, and analytical solutions.
As a first example, we consider the case of modes resonating in a one-
dimensional cavity composed of a Drude medium, whose electric field is
given by

Ex(z, t) = E0 sin pm
z

L

( )
esmt , (16)

where L is the length of the cavity, m the mode order, corresponding to
the integer number of half-wavelengths in the cavity, and sm is a
complex number to be determined. The partial differential equation
yielding the electric field in the cavity is

1

m0

∂3Ex

∂z2∂t
− 1011

∂3Ex

∂t3
+ g

m0

∂2Ex

∂z2
− 1011g

∂2Ex
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2
p

∂Ex

∂t
= 0. (17)

By substituting the solution for Ex of (16) in (17), the following
dispersion relation is obtained:

s3m + gs2m + c21
pm

L

( )2
+v2

p

11

[ ]
sm + gc21

pm

L

( )2
= 0, (18)

where c1 = 1/
���������
m01011

√
. Our goal is to demonstrate the convergence

rate of the accuracy of the proposed scheme with respect to the analytical
solution. For simplicity, we set m0 = 1 and 10 = 1. The parameters of
the Drude medium are selected as 11 = 1, vp = 3 and g = 10. In the
numerical computations we use the initial conditions for the fields
Ex, Hy and Jx as functions of z obtained from the analytical solutions
at zero time, taking into account that the magnetic field is staggered in
space. We also choose L = 2p, m = 10 and run simulations for
t = 20 with a varying spatial discretisation step Dz and a corresponding
time step Dt = 0.4Dz. We calculate the L2 error norm defined as

L2 =
��������������������
DtDz

∑
n

∑
i

(eni )
2

√
(19)

where eni is the difference of the numerical solution from the exact one
at the nth time step and at position iDz in space. Fig. 1a illustrates
the electric field in the cavity at time t = 20 for grid size
Dz = L/(Nz − 1) with Nz = 101. It is observed that the solution of the
proposed scheme, namely the (4,4) method, almost perfectly overlaps
with the analytical one, whereas the (2,2) method leads to an evident
deviation. The fourth-order accuracy of the proposed method in com-
parison to its second-order counterpart is demonstrated in Fig. 1b by
calculating the L2 error as a function of the spatial discretisation step.

We next investigate a wave propagation problem inside a Drude
medium. A hard source is imposed at the left boundary of the com-
putational domain in each stage of the scheme to simulate a plane
wave propagating along the positive z-direction. The source is a modu-
lated Gaussian source with spectral content in the region 5–100 GHz.
The total simulation time is properly chosen before the wave reaches
the right boundary. The parameters of the Drude medium are 11 = 1,
vp = 2p 30× 109 rad/s and g = 0.1vp. The cell size is Dz =
0.1mm and the selected time step is Dt = 0.13342 ps. The electric
field is recorded at a distance 1 m away from the source, which corres-
ponds to 333 wavelengths of the smallest excited wavelength. The
analytical solution in the frequency domain of a wave propagating in
a dispersive medium along the +z-direction is E(v, z) = E0e

−z(a+jb),
with

a = − v

c0
ℑm{

�����
1(v)

√
}, b = v

c0
<e{ �����

1(v)
√

}, (20)
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where c0 is the velocity of light in vacuum. The time-domain solution
of the proposed and reference FDTD schemes with respect to the
exact solution is presented in Fig. 2. It is observed that the (4,4)
scheme shows a significantly inferior numerical dispersion error.
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Fig. 1 Electric fields and convergence rates

a Electric field in the investigated cavity computed using the proposed (4,4) and
the conventional (2,2) FDTD method versus analytical solution
b Convergence rate for the proposed and the reference method for various grid
sizes demonstrating an accuracy of fourth and second order, respectively
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Fig. 2 Electric fields

a Time-domain solution of the Ex component of a wave propagating in a Drude
medium computed using the reference (2,2) and the proposed (4,4) FDTD method
with respect to the analytical solution
b A zoomed part of the signals from 3.6 to 3.65 ns

Last, we consider the previous problem with a cell size Dz = 0.2mm

and Dt = 0.4Dz/c0 and record the electric field at two positions
separated by a distance d. A transfer function T is calculated by dividing
the Fourier-transformed spectra of the recorded signals T (v, d) =
E(v, z0 + d)/E(v, z0), where z0 is a reference point in space. The trans-
fer function is obtained also analytically as T (v, d) = e−d(a+jb), where
a and b are defined in (20). The parameters z0 and d are chosen as
z0 = 0.2m and d = 0.3m. Fig. 3a shows the real part of the transfer
function in the spectral region from 40 to 90 GHz, as provided by the
analytical solution and calculated by the proposed (4,4) and the refer-
ence (2,2) FDTD method. It is observed that both numerical methods
provide similar results at low frequencies but the solution of the
second-order scheme deviates at high frequencies. This discrepancy is
clearly demonstrated in Fig. 3b, which focuses on the high frequency
part of the considered spectrum.
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Fig. 3 Real part of transfer function

a Real part of the transfer function calculated by the analytical, the proposed and
the conventional second-order FDTD scheme as a function of frequency
b A zoomed part in the spectral region from 70 to 90 GHz

Conclusion: An accurate fourth-order FDTD scheme for the study of
wave propagation in cold plasma is introduced. The proposed method
belongs to the multi-stage techniques, thus avoiding the use of previous
time steps of the fields while simultaneously reducing the intermediate
variables when compared to the classical fourth-order RK scheme.
The accuracy and robustness of the proposed technique, especially at
high frequencies, long-distance and/or prolonged time simulations, is
verified in a series of examples benchmarked against analytical solutions
and the standard second-order FDTD method.
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