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In this paper, we present and discuss an extension and an improvement of the Figure of Merit
(FoM) that we introduced in a previous paper. The FoM describes the effectiveness of the
frequency doubling materials for ultrashort light pulse modula¥tasecond-order cascaded
effects. In the present work, as an input pulse we use a temporal Gaussian pulse so that our
perturbative method allows an analytical expression even for the output pulse field after the
second pass inside the crystal. For the first time together with the completely analytical ex-
pression for the second pass, we report also the exact numerical coefficients for the peak phase
modulation. With the FoM it is possible to choose the more appropriate nonlinear material and
the use of the cascaded interaction process. Finally, we present for the first time the FoM
dependence from the wavelength in the interval 0.a#1, and to a table already shown we
added more nonlinear materials.

1. Introduction

This paper presents a more complete study regarding what was previously mentioned on the
so-called Figure of MeritFoM) which results to be an important parameter for choosing
nonlinear materials to be employed in second-order cascaded processes.

As it is well known in nonlinear optics, the input short pulse emitted by a passively mode-
locked laser source can be functionally expressed by a hyperbolic secant or a Gaussian time
dependence. Introducing a Gaussian pulse shape in our perturbative method reported else-
where(Tocietal, 1996a, 1996b, 1997, 1998ve were able to find for the first time analytical
relations for the field even at the output of the second pass. The perturbative method describes
the effects due to the self-phase and self-amplitude modulation of a light pulse with a type |
second-order cascaded process in nonstationary conditions. This method accounts for the ef-
fects of the Group Velocity MismatctGVM) between the fundamental and the second har-
monic pulse due to the material dispersion. Even in nonstationary conditions the phase
modulation scales with the various parameters according to simple relations. Depending on the
material and light pulse characteristic, there exists an optimal choice of the parameters for the
excitation of the process.

In the optimized conditions, the phase modulation is proportional to a peculiar combination
of the material parameters such as the nonlinear coefficient and the dispersion properties that
we define as FOM. Because we employed a temporal Gaussian pulse as an input, we were able
to find for the first time exact numerical coefficients for the phase modulation. To the table we
previously presente€loci et al. 1998, we added more nonlinear materials to obtain a more
complete description of the available crystals for the second-order cascaded applications. Fur-
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thermore, we plotted the wavelength dependence for the GVM, forFhend finally accord-
ing to equation(15) for the FoM.
2. Mathematical frame

The time-dependent equations for type | second harmonic genef&it@ process with
mismatched phase velocities are expressed by

d 19
(a_ +— —>p1(§.t) = inop1(&,1) pa(&, ) exp(—id¢) (1a)
g Ul at
for the fundamentalF) pulse and
94 L0 e t) = inop2(é, Dexplis 1
<a§ v, at>p2(§1 )_ |770P1(fy )exp(l é:) ( )

for the second harmon{&H) pulse where, = 2w, describes the SHG process,,= v (w1 )/L
are the normalized group velocitiéaherel is the nonlinear crystal lengthé = z/L is the
normalized longitudinal coordinaté,= (k, — 2k,)L is the phase mismatch parameter,

Ei(§) (kocos’B,) |2 Ex(¢)
PO = e O 4 PE)" {(zklcosf;l)] [ o 0>|pk] @
are the normalized field amplitude®, andg, are the birefringence angles feg andE,, and
B (4rw?) 2 |¥? ) B
To = {(czcosﬁlcosﬂz)][klkz] XeffL|E1(§—0)|pk ()

is the normalized nonlinear coupling parameter in single-pass conversion efficiency and in
stationary condition.

The analytical perturbative method previously repor(€aki et al. 1998 allows us to cal-
culate the output F and SH pulses envelopes as a series development of the nonlinear coupling
parametenm, for a given input F pulse shape, with the coefficients which are time dependent.

Using this approach, it appears that when the cascaded process is used to obtain a strong
self-phase modulation of the incoming pulss required in the case of the so-called Cascaded
Second-order Mode-locking, CSM, introduced by Cerellal. 1995a, 1995por to obtain an
all-optical switching action, the so-called double-pass configurations are potentially more use-
ful. In this kind of configuration, the fundamental pulse undergoes a first modulation process
in the nonlinear crystal, where it also generates a second harmonic pulse. The two pulses are
then reinjected into the crystébr into another identical crystalith the same propagation
conditions, by means of an optical system which must allow a proper compensation of the
phase and time delay between the two pulses. During the second pass the fundamental pulse
undergoes a further self-modulation process, as well as a cross modulation induced by the
residual second harmonic pulse. With a proper choice of the phase and the time delay, with this
configuration it is possible to obtain a complete repumping of the F pulse, without energy
losses toward a generated SH pulse. Nevertheless, for an incoming pulse duration with a du-
ration comparable with or shorter than the crystal group delayv, — 1/v,] (thatis, when the
interaction occurs in nonstationary conditipren unavoidable amplitude modulation process
occurs, which perturbs the self-phase modulation process (fEmdf et al. 1998.

To define the Figure of Meri(FoM) for the materials involved in cascaded second order
process in nonstationary conditions, we will deal with this class of configurations. In particu-
lar, we will consider the phase and amplitude modulation obtained velckit/7) or a Gauss-
ian [exp(—t%/72)] input F pulse shape. For this latter pulse shape, our method provides an
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analytical expression for the pulse shape even at the output of the second pass and we report
here all the calculations for the first time. Defining the auxiliary variables

u, = t/7, (4
o= L[1/v,—1/v,]/27, (5)
y, = 8u o — i, (6)
V> = 8U 0 + 8cAt/T —i6, (7)

whereAt is the time delay between the F and the SH pulse introduced by the optical system
between the first and the second pass. At the lowest order of approximatigrihie funda-
mental field at the output of the second pass in a typical double-pass cascade is then given by

p1 = €%p in[1+ ng(expli (8 + 6, — 26,)]y, + 2y1)], (8)

wherep, i, is the input pulse shageither exg—u?) or sech(u,)]; 6, andé, are the overall
phase delays accumulated by the F and the SH pulses, respectively, in the intrapass path; and
v, andwy, are auxiliary functions which in the case of a Gaussian input pulse have the form
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where erfz) = [2/v77 ][, exp(—x?) dxis the error function of complex argument

Conversely, in the case osachu,) input pulse, the functiong, andy, assume the form of
integral functions which unfortunately do not have closed analytical solution.

From equation(8), the nonlinear phase and amplitude modulation at the output of the first
pass can be expressed as

p1 = €%p inexpl(—az +ig2)nd], (11

where
a; = —Relexpi (6, — 26, + 8)]y2 + 2y1], (12)
¢2 = Imexpli (0, — 201 + 8)]y> + 271], (13

are the nonlinear amplitude and phase modulation coeffi¢@pbsitive value ofv, corre-
sponds to an attenuatip\t this order of approximation the phase and amplitude modulation
are proportional top3.
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We found that the best overall performance for the double—pass phase modulation process
are obtained by setting the phase delaydae- 6, — 26;) = 2nsr, and the time delay tat =
[1/v, —1/v,]L. These conditions determine a complete repumping of the F pulse, without net
energy losses toward a SH pulse, both for a Gaussian angémtimcident pulse; furthermore
they result in an intense nonlinear phase modulation profile, symmetric with respect to the
pulse peak.

3. Scaling laws for the process parameters

Looking at the phase and amplitude modulation profiles obtained wibc#(t/7) or a
Gaussian input pulse shape, we can underline the following behaviors, which are common to
both pulse shapes:

» For agiven crystal length, when the pulse duration decreases and the steadiness parameter
o [see equatiofb)] increases, the phase modulation coefficignexhibits a broad and
flat maximum with respect to- (abouto = 1.4 in the specified conditionat the center of
the pulse and then decreases monotonicedbe figure 1a

« After such a maximum, the phase modulation profile broadens temporally and develops
several satellite peaks.

Similarly at the same point, the amplitude modulation shows a fast gr@sthfigure 1
and the value ofr which determines the occurrence of the maximum in the phase modulation
profile can be considered as the threshold for the onset of a real nonstationary interaction.
Looking at the phase modulation coefficient at the center of the pulse, we can also notice the
following properties:

* the peak value of the phase modulation is inversely proportioelepproximately,~
0.7#/18| both forsechand Gaussian unchirped pulgeigure 2a.

« the threshold value far which determines the onset of the nonlinear interaction is pro-
portional tod (op(6) =~ 0.5|8| /7 for sechpulsesp(8) ~0.35|8| /7 for Gaussian pulses
figure 2b.

It follows that for a given pulse durationand crystal length (that is a given value aof),
there exists an optimum value of the phase mismatch para@é&ewhich o = o, (corre-
sponding tdk, — 2k,| = 7 (1/v, — 1/v,)/7 for asechpulse and which determines a coherence
length about equal to the longitudinal walkoff length.

FiGUre 1a. Second-order nonlinear phase modulation coeffigierfor asechpulse, at the output of the
second pass, with optimized phase and temporal delag, fod .
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Figure 1B. Second-order nonlinear amplitude modulation coefficigntor a sechpulse, at the output
of the second pass, with optimized phase and temporal delay,#ct.

4. Figure of Merit (FoM) for cascaded processes

In the above-described conditions, the expression for the peak phase modulation is given by

407 22
bore = 0.7< g >{ (xen) }|E1§kTL. (14)

c?c0$2B,c08B5 /| niny(1/v, — 1/v4)

The termin square brackets depends only on the material properties, and itis independent from
the pulse parameters and the other excitation conditions. We can therefore define the FoM for
a nonlinear material employed for transient second-order cascaded effects as

_ ()(esz)2
e [nlnz(l/VZ— 1/V1)]' (15

which accounts both for the material nonlinear properties and its dispersion characteristics,
and summarizes their effects on the self-phase modulation process.
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FIGURE 2a. Second-order nonlinear amplitude modulation coefficigntor a sechpulse, evaluated at
the pulse centefu; = 0) as a function of the steadiness parametgfor various values of the phase
mismatchs.
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FiGure 2B. Second-order nonlinear amplitude modulation coefficigntor a Gaussian pulse, normal-
ized tod, evaluated at the pulse center, = 0) as a function of the steadiness parametéescaled with
8), for various values of the phase mismaéch

The FoM shows a quite large variation among the most widely used nonlinear materials, and
a strong dependence from the wavelength.

The evaluation of this FOM provides a guideline for the choice of the nonlinear material for
specific devices or experiments based on the second-order cascaded processes.

We have calculated the FoNY, for the type |, second-order cascaded interaction &t
1064 nm for several commonly employed nonlinear materials; for each material the value of
the various parameters was calculated using the suitable phase-matching angles and polariza-
tion directions.

The choice of the materials described in Table 1 was determined mainly by the fact that they
are used as frequency doubling materi@®P and isomorphs, BBO, Lilg MgO:LiNbO;)
and in some cases they were already employed for the excitation of second-order cascaded
effects in nonstationary conditiofisBO). Other materials, although less used or only recently
proposed, could be interesting, such as urea, an organic compound with a rather large second-
order nonlinearity, or the KLa(NO3)5:2H,0 (KLN ), a material belonging to the nitrate com-
pound class. The latter allows noncritical phase matching close to room temperature in the near
infrared(Ebberset al. 1993.

Table 1 summarizes the main results. We can seeMhamdergoes a quite large variation
over the considered materials, and an estimation of the overall performance based on a reduced
subset of parameter can even be misleading. For instance, we can see that the KDP and its
isomorphs(ADP, KD*P, RDP) exhibit a rather low GVM, making them attractive, at a first
glance, for the excitation of transient cascaded processes; but a comparative analysis based on
the evaluation oM evidences that their rather low value pf; determines an overall perfor-
mance which is the lowest among the considered materials. This is particularly true for the
RDP, as it even lacks the advantage of a low GVM. The situation is reversed for thedritD
for the urea, which have an interesting strong nonlinear coefficient. On the other hand, the
value of the GVM is so high that the overall performance of the material is almost impaired,
mainly in the case of the urea. The BBO provides the better performance among the considered
materials despite its quite high GVM, due to its large nonlinear coefficient which allows the use
of short samples.

The MgO:LiNbO; was included as a representative of the niobate compound class, because
it exhibits interesting nonlinear and phase-matching properties. Both its nonlinear coefficient
and its GVM are very large, several times those shown by the BBO for instance, and they
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TaBLE 1. Figure of MeritM and propagation parameters for several commonly used nonlinear materials.

) GVM Phase-
X eéft (/v —1/v1) M matching

Material Ny, Ny [(cm®/erg*?] (ps/cm) (cm¥(erg9)  scheme Reference

BBO 1.6420 4,27 10°° 0.8500 7.97<10°° Angle Kato 1986
Eckardtet al. 1990

MgO:LINbO; 2.224 —1.12x107% 5.59 4.55x 1076 Temp. Nightingaleet al. 1986
Eckardtet al. 1990

MgO:LiNbO; 2.224  —1.11x107% 5.69 4.37x10°¢ Angle Nightingaleet al. 1986
Eckardtet al. 1990

LBO 1.5900 1.98<10°° .5500 2.82<10°¢ Temp. Velskoet al. 1991

KLM 1.548 —2.75x107° 1.31 2.41x 1078 Temp. Ebberet al.1993

LilO 3 1.8570 4,89 10°° 2.890 2.40¢<10°¢ Angle Eckardtet al. 1990
Weber 1986

ADP 1.5070 8.4 10 0.1341 2.33x 10°° Angle Ghosh & Bhar 1982
Sutherland 1996

KDP 1.4940 5.98< 10 0.0870 1.84x10°¢ Angle Ghosh & Bhar 1982
Sutherland 1996

KD*P 1.4690 5.51x 1071 0.0935 1.50x 10°¢ Angle Ghosh & Bhar 1982
Sutherland 1996

Urea 1.5472 2.3%10° 2.00 1.18x10°¢ Angle Halboutet al. 1979

RDP 1.491 7.5810°1° 0.865 2,99 1077 Angle  Weber 1986

Sutherland 1996

compensate each other yielding the highest performance, apart from the BBO. The MgO:
LiNbO; was included twice because at 1064 nm it allows both angle phase matching at room
temperature, and noncritical phase matching at@@8r 5% MgO concentratiofNightingale

et al.1986).

The KLN exhibit an overall performance similar to the L§Qut with the advantage that it
exhibits noncritical phase matching at room temperature.

We have also investigated the wavelength dependence of the FoM and of the parameters
which concur to its evaluation, for three commonly employed nonlinear materials.

In the evaluation ofyZ; as a function of wavelength, we have neglected the wavelength
dispersion of the elements of the second-order nonlinear optical tensor which usually exhibit a
rather weak wavelength dependeitaetually seldom reported in literatyrdhe main contri-
bution to the wavelength dependencegg@results from the phase-matching conditions, which
determines the directions of the field polarizations with respect to the optical axes. Figure 3
reports the GVM, and figure 4 reporig as a function of wavelength. The FoM for the three
materials obtained by plotting equati¢ib) is reported in figure 5. We can see that for some
materialsM exhibits a rather strong wavelength dependence, and in particular for short wave-
lengths the performance of the Lif@ppears more interesting than the BBO, despite occurring
at 1064 nm.

5. Conclusions

We reported here a definition of a Figure of MdiftoM) for the frequency doubling non-
linear materials to be employed in the second-order cascaded processes excited by ultrashort
pulses.

This FoM allows us to evaluate the effectiveness of the nonlinear materials and it is useful
to compare their relative performances in a given experimental situation.
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Ficure 3. Wavelength dependence of the GVM for BBO, LilGand KDP in conditions of matched
phase velocities.
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The proposed FoM results from the balance of the nonlinear and of the dispersion properties
of the material. For instance, a material with a rather high nonlinear coefficient such as the
LilO 5 exhibits a rather poor performance due to the very high GVM, with respect to the LBO
and BBO which are a better compromise between nonlinear and dispersion properties.

The FoM has also a significant wavelength dispersion, which is due not only to the GVM
wavelength dependence, but also to the fact that the effective nonlinear coeffigiede-
pends on the phase-matching angle, and this last has a strong dependence on the wavelength.

Our results show that a good choice of the proper nonlinear materials for the design of
experiments or devices using the cascaded process at a given wavelength is helped by the use
of the above discussed FoM. Nevertheless, there are other material parameters which become
important when dealing with finite aperture or focused beams, such as the angular acceptance
and the lateral beam walkoff due to the material birefringence. In this sense, the BBO and even
more the LilG; have both a rather low angular acceptance and a rather high walkoff, whereas
the large acceptance angle and the null walkoff achievable with temperature phase matching in
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Ficure 4. Wavelength dependence of the nonlinear second-order coefficient for BBG, laihl@ KDP
in conditions of matched phase velocities.
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FiGure 5. Wavelength dependence of the figure of méfitfor the cascaded second-order nonlinear
process for BBO, LilQ, and KDP.

LBO and conceivably with the KLM, as well as their reasonably high valud ofiake them
attractive materials. Indeed, the LBO was successfully employed for the passive laser-mode
locking through the second-order nonlineariyanailov et al. 1994; Cerulloet al. 1995a,

1995h. The peak-phase modulation, equatitd), can be completely obtained analytically if

we use as input pulse a temporal Gaussian one. To better characterize the nonlinear materials,
we studied and we report here the dependence of the FoM from the wavelength. According to
a chosen interval, a material such as the BBO can become more efficient as in the mid-infrared
where its FoM is higher than that of the widely used LBO. More materials are finally added to
table 1 making it more useful for people working with second-order nonlinear effects.
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