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A B S T R A C T

The tendency of individual CpG sites to be methylated is distinctive, non-random and well-regulated throughout
the genome. We investigated the structural and spatial factors influencing CpGs methylation by performing an
ultra-deep targeted methylation analysis on human, mouse and zebrafish genes. We found that methylation is
not a random process and that closer neighboring CpG sites are more likely to share the same methylation status.
Moreover, if the distance between CpGs increases, the degree of co-methylation decreases. We set up a simu-
lation model to analyze the contribution of both the intrinsic susceptibility and the distance effect on the
probability of a CpG to be methylated. Our finding suggests that the establishment of a specific methylation
pattern follows a universal rule that must take into account of the synergistic and dynamic interplay of these two
main factors: the intrinsic methylation susceptibility of specific CpG and the nucleotide distance between two
CpG sites.

1. Introduction

In vertebrates, the methylation of cytosine is the most frequent
epigenetic modification of DNA, consisting of the addition of a methyl
group to carbon-5 of cytosine. It is mediated by specific DNA methyl-
transferases (DNMTs) that are responsible for de novo methylation (i.e.,
DNMT3a, DNMT3b) and maintenance (i.e., DNMT1) of methylation
patterns during replication [1]. DNA methylation has an important role
in multiple biological processes: development, stem cell differentiation
[2,3], aging [4–6], regulation of gene transcription [7], genomic im-
printing [8] and diseases pathogenesis [9–13].

The tendency of individual CpG sites to be methylated is distinctive
[14], non-random and well-regulated throughout the genome [15].
Several factors may affect the CpGs methylation susceptibility: se-
quence context [14], local chromatin configuration [16] and active
demethylation [15]. It has also been suggested that the methylation
status of a CpG site can be affected by the methylation of neighboring
CpGs. Several studies investigated the co-occurrence of methylation
between neighboring and distant CpG sites both at genome-wide
[17–22] and at locus-specific level [23–28]. Most of these studies
support the general notion that nearby CpG sites are commonly

methylated together. It has been suggested that this phenomenon could
be due to the preference of the DNMTs to methylate CpG pairs at par-
ticular distance range [26,29] or to the influence of the nearby CpG site
in the recruitment of DNA methylase and/or demethylase enzymes
[30,31]. However, most of these studies generally suffer from a statis-
tical limitation due to the low depth of the sequencing. The ultra-deep
bisulfite amplicon sequencing overcomes these problems allowing one
to obtain a very high coverage of bisulfite sequences from selected loci.
By this way it is possible to investigate DNA methylation at single
molecule level and at single-base resolution with sufficient statistical
power. The term “epialleles” is here used to indicate different combi-
nations of methylated CpGs in single molecules. The population of
epialleles can be then computationally treated as a population of hap-
loid organisms, allowing the use of techniques derived from population
genetics and ecology [32–34].

In this study we performed an ultra-deep methylation analysis of
seven different loci (DDOH, p57, SCRN1, DDO_R7, DLX6, H19, TPH1a)
from three different species (human, mouse and zebrafish). The popu-
lations of the epialleles were studied by two approaches widely used in
population genetics and ecology: co-occurrence analysis and Mantel
test. In ecology, the co-occurrence analysis is used to evaluate the co-
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existence among species inside a community [35]. In the methylation
context, CpGs may represent the species, while the epialleles may re-
present the different sampling sites. Here we adopted the co-occurrence
analysis to statistically test the randomness of the methylation process.
In population genetics, the Mantel test is often used to evaluate the
relationship between geographic distance and genetic divergence [36].
Here, we used the Mantel test to evaluate the relationship between
CpGs nucleotide distance and the occurrence of a possible co-methy-
lation between neighboring CpG sites. We obtained sound statistical
evidences that the co-occurrence of methylation between CpGs is non-
random and that the methylation state of a CpG is influenced by the
status of the nearby CpGs with a strong distance effect. In order to
analyze the contribution of both the intrinsic susceptibility and the
distance effect on the probability of a CpG to be methylated, we set up a
simulation model. We found that this probability is dependent on the
synergy of both phenomena.

2. Material and methods

2.1. Ethics approval and consent to participate

C57BL/6 J mice were purchased from “The Jackson Laboratory”. All
research involving animals was performed in accordance with the
European directive 86/609/EEC governing animal welfare and pro-
tection, which is acknowledged by the Italian Legislative Decree no.
116 (January 27, 1992). Animal research protocols were also reviewed
and consented by a local animal care committee.

All fish were treated in accordance with the Directive of the
European Parliament and of the Council on the Protection of Animals
Used for Scientific Purposes (Directive 2010/63/EU) and in agreement
with the Bioethical Committee of University of Napoli Federico II. All
experiments involving fish were approved by the Bioethical Committee
of the University of Naples Federico II (authorization protocol number
47339–2013). Human tissue samples were obtained from the MRC
London Neurodegenerative Disease Brain Bank of the Institute of
Psychiatry, King's College London, UK. All tissues were carried out
under the regulations and licenses of the Human Tissue Authority and
in accordance with the Human Tissue Act of 2004.

2.2. DNA extraction and sequencing

Three samples for each human, mouse and zebrafish tissue were
analyzed. Genomic DNA was extracted from each tissue using Dneasy
Blood & Tissue Kit (Qiagen, Hilden, Germany), following the manu-
facturer's instructions. DNA was quality checked using NanoDrop 2000
(Thermo Scientific) and quantified using Qubit 2.0 Fluorometer
(Invitrogen). DNA was converted by sodium bisulfite by EZ DNA
Methylation Kit (Zymo Research) according to the manufacturer's in-
struction. A first PCR step was performed using bisulfite-specific pri-
mers described in Supplementary Table S1. Reactions were performed
as described [32]. Second PCR step was performed using Nextera XT
primers (Illumina, San Diego, CA), in conditions described in [32]. All
amplicons were quantified using Qubit® 2.0 Fluorometer. Paired-end
sequencing was performed in 281 cycles per read (281× 2) using Il-
lumina MiSeq.

2.3. Data processing

The pair-end reads were merged together using the PEAR tool with a
minimum of 40 overlapping residues and finally they were converted to
FASTA format using PRINSEQ. An average of about 56,000 reads/
sample were obtained. FASTA converted reads where analyzed using
the AmpliMethProfiler pipeline [34] in order to obtain 1 or 0 values for
each methylated or unmethylated CpG for each sample. We retained
only those reads which satisfied the following parameters: i)
length ± 50% compared with the reference length; ii) at least 80%

sequence similarity of the primer with the corresponding gene; iii) at
least 98% bisulfite efficiency; iv) alignment for at least 60% of their
bases with the reference sequence; and v) maximum percentage of
ambiguously aligned CpG sites equal to 0.

2.4. Incidence matrices

We analyzed 12 datasets from 4 genes. Each dataset was organized
in an incidence matrix (i.e., a presence-absence matrix) in which each
row represents a CpG site and each column represents a read. The
presence of a methylation at a specific CpG site was denoted by a 1, and
its absence was denoted by a 0 [37].

2.5. Co-occurrence analysis (C-score)

To assess the CpGs co-methylation for each dataset, we calculated
the C-score index [38] using the sim9 co-occurrence randomization
algorithm implemented in EcoSimR v 0.1.0 R package.

The C-score measures the degree of average CpGs pairwise co-me-
thylation. This index is based on the average number of checkboard unit
(CU) between all possible CpGs pairs in a matrix. The number of
checkboard units (CUij) for each pair of CpGs i and j is:

= − −CU r S r S( )( )ij i j

where ri and rj are the matrix row totals for CpGs i and j (the number of
reads where each CpG of the pair is methylated) and S is the number of
reads where both CpGs are co-methylated. The C-score is then calcu-
lated as the average of CUs per CpGs pair, for all CpGs pairs in a dataset.
If the resulting C-score is significantly larger than the C-score produced
by the null distribution, then at least some pairs of methylated CpGs co-
occur less often than expected by chance. On the contrary, if the C-score
is significantly less than the C-score for the null distribution then more
methylated CpGs co-occur than expected by chance.

2.6. Randomization algorithm (null model algorithm) and standardized
effect size (SES)

The significance of the observed value (C-score) was tested using the
fixed-fixed null model (sim9 algorithm) [37], based on a Monte Carlo
null model simulation to randomize each matrix in the dataset. For the
null model, random matrices were produced by shuffling the original
matrix through repeated swapping of random submatrices [39]. Fol-
lowing the most conservative option for null model comparisons, the
random matrices retained the row and column totals as the real original
matrix, thus conserving the number of species per site and the number
of sites per species [37]. As the default, using this algorithm, we gen-
erated 1000 random matrices for each original dataset. The C-score was
calculated for each null matrix (simulated matrix; Iexp) and the mean
and the standard deviation for the index values thus obtained were
calculated. Using the observed (Iobs) and simulated C-score index, we
calculated the standardized effect size (SES) for each matrix [40], ac-
cording to the following formula [41]:

=
−

SES
I I

SD
obs exp

exp

where Iobs is the observed C-score value, Iexp is the mean of the 1000
simulated C-score values calculated from the random matrices and
SDexp is the standard deviation of the 1000 simulated C-score values
calculated from the random matrices.

SES measures the number of standard deviations that the observed
C-score is above or below the mean C-score from simulated matrices. In
other words, it measures the statistical amount of deviation from
random co-occurrence. High SES values indicate greater C-score than
expected from the observed number of species and low SES values in-
dicate lower C-score than expected. As a consequence, high SES of the
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C-score means less co-occurrence than low SES values. In the methy-
lation context, a low SES score (near to zero) indicate a stochastic
methylation and each CpG would have the same probability to be
methylated, regardless of the nucleotide distance. By comparing Iobs
with the distribution of simulated values, it is possible to assess the
probability that Iobs does not differ from the value expected by chance.
For our purposes, we consider as significant a |SES| > 1.96, which
corresponds to the 95% confidence interval of the two-tailed distribu-
tion. The null hypothesis is that the average effect size is zero and that
95% of the observations will lie between −2 and+2. In our study,
using the sim9 algorithm, we estimated CpGs co-occurrence with 1000
permutations; this allows us to confirm our analysis with a p-value <
.001.

2.7. Mantel test

A Mantel test was used to test the correlation between CpGs nu-
cleotide distance and the occurrence of a possible co-methylation be-
tween neighboring CpG sites. The Mantel is given by:

∑ ∑= ×
= =

Z g dm
i

n

j

n

ij ij
1 1

where gij and dij are, respectively, the epigenetic (in our case, the
pairwise CpGs co- methylation) and nucleotide distances between CpG i
and CpG j, considering n CpGs. Because of Zm is given by the sum of
products of distances, its value depends on the number of CpGs sites
under investigation, as well as on their distances. The linear depen-
dence between the two matrices was calculated with the Pearson cor-
relation coefficient. The statistical significance was assessed with 1000
permutations, followed by a Bonferroni correction and using a sig-
nificance level (alpha) of 0.05. “vegan” R- package (version 2.4-1) was
used to perform the tests and draw correlograms.

3. Results

3.1. Co-occurrence analysis

We performed an in-depth methylation analysis using ultra-deep
bisulphite amplicon sequencing of seven different loci (DDOH, p57,
SCRN1, DDO_R7, DLX6, H19, TPH1a) from three different species
(human, mouse and zebrafish) and different tissues (brain, cerebellum,
thyroid, gut and lymphocytes). Detailed information on samples is re-
ported in Supplementary Table S1.

As first step we estimated, for each gene analyzed, the mean me-
thylation values of each CpG. As expected, the different CpGs showed
different methylation values. These differences were well conserved
among different samples of the same gene (Supplementary Fig. S1)
suggesting that this phenomenon could be partially due to a sort of
intrinsic proneness to be methylated.

To assess the CpGs co-methylation, we adopted a statistical ap-
proach widely used in the ecology field, named the co-occurrence
analysis. In ecology, this analysis establishes if species are randomly
distributed or according to some rules in a certain environment. The
degree of average species pairwise co-occurrence can be evaluated by
the C-score measure. The significance of observed C-score value was
then evaluated by SES measure (see Material and Methods). SES score
represents how much far the observed phenomenon (co-methylation) is
from the randomness. Usually in ecology, a |SES| > 1.96 was con-
sidered as statistically significant, corresponding to the 95% confidence
interval of the two-tailed distribution.

Table 1 shows C-score and SES score values obtained for each
sample analyzed. SES score was highly significant for each sample
analyzed. This result provides sound statistical evidence that the me-
thylation status is not randomly distributed among CpGs belonging to
the same molecule, but that a sort of a “rule” seems to exist.

3.2. Correlation between nucleotide distance and CpG co-methylation

To find the possible elements of this “rule”, we explored the role of
the neighboring CpGs in influencing the methylation status of other
ones. In particular, we determined if and how the nucleotide distance
between two CpGs influences their co-methylation. To reach this aim,
we used the Mantel test. This test divides CpGs into distance groups and
checks the amount of co-methylation in the different groups. Basically,
Mantel test compare two distance matrices: the CpGs nucleotide dis-
tance on one hand and the CpG co-methylation on the other. Fig. 1
shows the Mantel correlogram for each gene under investigation. For
each condition tested, we found a significant (P < 0.05, Bonferroni-
corrected) positive correlation in the first distance class. This finding
suggests that the co-methylation is statistically more frequent for CpGs
located under 50 base pairs of distance. The Mantel correlation was
positive for all genes and all species under investigation. This result
suggests that the methylation status of a CpG influences the methyla-
tion status of the closest CpGs.

3.3. Simulation model

We used a simulation model to explore the interplay between two
possible factors influencing the CpG susceptibility to be methylated: the
intrinsic one (without influences of the neighboring CpGs) and the
other one depending on the methylation status of neighboring CpGs. As
a first step, we developed an algorithm for the generation of artificial
epiallele populations starting from real data. The starting epiallele po-
pulation (based on real data) was then artificially methylated in silico,
according to the methylation rules that we plan to check. The final step
was to compare the final artificial epiallele population obtained using
the tested rules with the real, experimental ones. To perform these si-
mulations we used an experimental dataset described by us in a pre-
vious paper [33]. These data derive from the in-depth sequencing of a
398 bp region at the 5′ end of the DDO_R4 gene from three mice (lung
and gut) at different three times during their development (denoted for
simplicity Tin < Tinter < Tfin). During this time, the experimental data
showed an increase in the total methylation of the region. The six CpGs
present in the region were methylated in different combinations in each

Table 1
Results of the co-occurrence analysis. The analysis was based on the C-score.

Sample Gene Tissue Obs C-score Mean Sim C-score SES

H1 DDOH Cerebellum 453,924 374,814 51.879
H2 DDOH Cerebellum 624,716 589,889 43.277
H3 DDOH Cerebellum 224,274 202,449 38.335
H1 p57 Thyroid 1,515,898 1,462,635 23.342
H2 p57 Thyroid 3,370,075 3,311,756 18.022
H3 p57 Thyroid 4,736,823 4,533,619 54.136
H1 SCRN1 Lymphocytes 18,775,895 17,140,321 112.16
H2 SCRN1 Lymphocytes 27,500,479 25,114,478 128.12
H3 SCRN1 Lymphocytes 54,456,835 50,239,266 143.14
M1 DDO_R7 Brain 206,718,758 199,931,706 169.62
M2 DDO_R7 Brain 2,508,116,080 2,473,615,574 179.87
M3 DDO_R7 Brain 528,810,035 519,745,258 125.88
M1 DLX6 Brain 13,316,719 13,080,118 23.756
M2 DLX6 Brain 6,588,269 6,562,251 34.221
M3 DLX6 Brain 7,256,850 7,111,403 22.087
M1 H19 Brain 1,242,362,655 987,023,122 2141
M2 H19 Brain 14,271,939 11,632,589 532.27
M3 H19 Brain 9,675,527 8,337,075 271.99
ZF1 TPH1a Brain 7,492,867 6,983,630 178.46
ZF2 TPH1a Brain 6,612,375 6,255,254 148.28
ZF3 TPH1a Brain 3,854,568 3,662,860 108.4
ZF1 TPH1a Gut 77,971,777 74,951,078 275.16
ZF2 TPH1a Gut 25,181,406 24,348,413 159.69
ZF3 TPH1a Gut 57,673,366 54,223,635 342.76

Abbreviations: Obs C-score=Observed C-score; Mean sim C-score=Mean si-
mulated C-score from 1000 random runs; SES= Standardized effect size.
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molecule, with the formation of 64 different epialleles, whose fre-
quencies varied with time.

The simulation algorithm started from real initial conditions,
namely a population of Ne= 75,648 epialleles (individuals) distributed
among the 64 possible ones according to the observed frequencies
measured at the starting time Tin. Such population was then evolved for

an arbitrary number of generations Ng=30, and the final distribution
of epiallele frequencies was then compared with the real ones corre-
sponding to Tfin. The changes in methylation status of a given in-
dividual CpG when passing to the next generation were driven by its
methylation probability. The simulation approach allowed us to test
three different biological models of methylation assuming different

Fig. 1. Correlogram plots. The correlogram plots show the relationship between the pairwise CpGs distances classes and the co-methylation for each sample for A)
human genes, B) mouse genes, and C) zebrafish genes. On the x-axis, the nucleotide distance classes are reported in bins of 50 nucleotides. On the y-axis, the co-
methylation between pairwise CpGs is reported. Colored circles represent statistically significant co-methylation after Bonferroni correction (p-value < .05).
Abbreviations: CB=Cerebellum; Thy=Thyroid; Lymp=Lymphocytes.
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criteria to define the methylation probability for each CpG.
Let us denote with si(tn)= 0,1 the methylation status of the i-th CpG

(with i=1,..,6) at a certain generation time tn, with si(tn)= 1 for me-
thylated status and 0 otherwise. Furthermore, we denote with P
(si(tn)= 0; si(tn+1)= 1) the methylation probability for the i-th CpG
once passing from generation tn to tn+1.

Model A – According to this approach we made the assumption that
the P(si(tn)= 0; si(tn+1)= 1)= pi, namely methylation probability is
only determined by individual susceptibility of the i-th CpG, here de-
noted by pi.

Model B – In this case the probability to be methylated for the i-th
CpG during the simulation was only depending on the status of me-
thylation of the surrounding CpGs, according to the following formula

= = = ⎡
⎣⎢

− ⎤
⎦⎥

+P s t s t p
d t

D
( ( ) 0; ( ) 1) exp

( )
i n i n

i n
1

min

where p denotes the individual susceptibility taken equally for all sites,
whereas dimin is defined as follows.

= ∑ ≠
∀ ≠ = =d t d s t( ) min [ ] if ( ) 0i n

j i s t j j n
min

: ( ) 1
ij 1

6

j n
.with dij denoting the

physical distance among the i-th and j-th CpG. In case there is no me-
thylated CpG, namely if ∑j=1

6sj(tn)= 0, we assume dimin(tn)= 300 that
is a value greater than the maximum possible distance between any
couple of CpG considered.

Model C – In this case one merges Model A and B thus obtaining the
methylation probability of the i-th CpG in the form

= = = ⎡
⎣⎢

− ⎤
⎦⎥

+P s t s t p
d t

D
( ( ) 0; ( ) 1) exp

( )
i n i n i

i n
1

min

with the individual susceptibility pi now depending on the particular
site i, and dimin defined as before.

In all cases the free parameters D, p or pi have to be fitted by the
observations. Given a population at a generation tn and an arbitrary
epiallele contained in it, represented by a six methylation status
(s1(tn),.., s6(tn)), we evolved it through generations according to the
methylation probability parameterized by the previous models. The
comparison of the final distribution of epiallele frequencies so obtained
with the observed ones allows determining the best fit values of free
parameters (Table 2). The comparison of the epialleles frequencies
achieved by the three models with the real data shows that only
epiallele frequencies obtained by model C resemble the experimental
data. To better evaluate the phenomenon, we calculated the differences
between simulated and experimental data for the three models. Fig. 2
shows that model C shows the lowest simulated/experimental delta
values, suggesting that both the individual susceptibility and the dis-
tance effect are necessary to fit simulated data with experimental ones.

4. Discussion

In this study, we investigated factors influencing CpGs' methylation
by performing ultra-deep methylation analysis on seven different loci
from three different species (human, mouse and zebrafish).

For any locus tested, we found that, the methylation of CpGs located
on the same molecule occurs in a non-stochastic manner. We achieved
this result adopting the co-occurrence analysis, a statistical approach

that is widely used in ecology but never used before in epigenetics. In
the ecological version of this analysis, the null hypothesis is that species
are randomly distributed in the different environments. The alternative
hypothesis is that some kind of rule exists determining non-random co-
occurrences of species in the same environment. The degree of species
co-occurrence is evaluated by the C-score measure. In our “epigenetic”
version of the test, the null hypothesis is that methylated CpGs are
randomly distributed on the molecules. The alternative hypothesis is
that rules exist, which may determine the methylation of the CpGs lo-
cated on the same DNA molecule. For each locus tested, we found very
high values of C-scores. This result provides statistically sound evidence
that methylated CpGs are distributed on each single molecule in an
absolutely non-stochastic manner. Next, we explored the hypothesis
that one of the factors influencing the methylation of a CpG can be the
pre-existing methylation landscape on the molecule. Indeed, previous
studies have suggested that CpGs influence each other with a distance-
dependent effect, by means that nearby CpG sites tend to be methylated
together [17,22,23,30,31]. Consistently with these observations,
DNMT3a structure studies revealed a correlation of methylated CpG
sites at distances of 8 to 10 nucleotides, indicating that DNMTs may
methylate DNA in a periodic pattern [26,29]. Starting from these ob-
servations, we tested, in our experimental system, the hypothesis that
the likelihood of a CpG site to be methylated could be influenced by the
physical distance of the nearby methylated CpG site. Also in this case
we adopted a statistical test borrowed from ecology and population
genetics: the Mantel test [36]. In these scientific areas the Mantel test is
one of the most popular methods used to evaluate spatial processes
involved in determining population genetic structure [36]. Basically,

Table 2
Performances of the simulation models. The performances of three different simulation scenarios are here presented by reporting their reduced-χ2 evaluated
comparing the epiallele frequencies observed at Tfin (see Simulation Model section for its definition) with the predicted ones, if we start from the observed frequencies
at Tin. In the Table we also report the range for free parameters involved in each model.

Models Best fit Parameters χ2/dof

Model A P1= 0.022 ± 0.005, P2= 0.030 ± 0.006, P3= 0.010 ± 0.001, P4= 0.015 ± 0.002, P5= 0.012±0.002, P6= 0.011 ± 0.003 0.017 ± 0.005
Model B P= 0.08 ± 0.02, D=113 ± 15 0.013± 0.002
Model C P1= 0.07 ± 0.02, P2= 0.11 ± 0.04, P3=0.023 ± 0.004, P4= 0.049 ± 0.011, P5=0.039 ± 0.011, P6= 0.039 ± 0.011, D=120 ± 20 0.0009 ± 0.0004

Fig. 2. Simulation models. For each sample, the box plot shows the prediction
error of the three simulation models expressed as the difference over semi-sum.
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Mantel analysis is a statistical test of the correlation between two ma-
trices. In population genetics, the two matrices are, in most cases, the
genetic divergences and the geographical distances. In our case, the two
matrices were the nucleotide distance and the methylation co-occur-
rence.

By using Mantel analysis, we found that closer CpG sites are more
likely to be simultaneously methylated, and that, if the distance be-
tween CpG sites increases, the degree of co-methylation decreases. The
co-methylation mainly appears at distances< 50 nt. This distances are
in good agreement with those previously obtained for a limited number
of loci by different methods [27,28]. It is intriguing to note that we
found very similar results for all genes analyzed in the present study,
independently of species (human, mouse and zebrafish) and tissue
origin, suggesting that the “distance effect” could be a universal rule.

Previous studies have suggested that also other factors can influence
likelihood of a CpG site to be methylated. Among them, it seems that
the CpGs possess an intrinsic propensity to be methylated [42]. Indeed,
it is well established that CpG sites are not evenly methylated, but that
some sites are more prone to be methylated than others [30]. Both
epigenetic and genetic factors have been invoked to explain this dif-
ferent susceptibility [18]. For example, it has been demonstrated that
DNA methyltransferases show different preference for the CpGs'
flanking sequences [43]. Furthermore it has been demonstrated that
highly methylated CpG sites are more likely flanked by A/T rich se-
quences while unmethylated ones tend to be flanked by G/C rich se-
quences [23].

Therefore, in addition to the influence of the methylation status of
neighboring CpGs, the intrinsic propensity for methylation of the CpG
site must also be taken into account. To study the interplay of these two
factors in influencing the methylation of a CpG, we set up a simulation
model. The simulation approach allowed us to test three different
biological scenarios by simply modifying the criteria that defined, in the
simulation algorithm, the likelihood of each CpG to be methylated. In
the first model, the likelihood was only dependent on the individual
susceptibility of each CpG sites. In the second model, the likelihood of
each CpG to be methylated depended only on the status of methylation
of the surrounding CpGs. In the third model, the likelihood depended
on both factors. The best fit with the experimental data was obtained
only in this last case, when both parameters were introduced in the
simulation algorithm. This result suggests that the combined action of
intrinsic susceptibility and distance effects influence the likelihood of
one CpG to be methylated.

This study has some limitations, which have to be pointed out. First,
we tested our hypothesis in a limited number of loci. Some previous
studies investigated the same topic by an genome-wide approach
[17–22]. By this approach, the gain in universalization of the finding is
balance by a loss statistical power, because of the low depth of the
sequence for each genomic region. We decided to use a “targeted”
strategy in our study because the in-depth single molecule DNA me-
thylation analysis guarantees, in our opinion, a greater statistical re-
liability. The availibility of thousands sequences of the same locus al-
lowed us to use statistical approaches borrowed from ecology and
population genetics further increasing the statistical soundness of the
results. Another limitation concerns the simulation model. We tested, in
our simulations, only two parameters: intrinsic susceptibility and dis-
tance effects. It is very likely that many other factors are involved in
determining in vivo the methylation of a CpG. Therefore our simula-
tions are not oriented to give an exhaustive description of the biological
system, but only to test the interaction between two variables of this
system.

5. Conclusions

In this study we showed that methylation of CpGs located on the
same DNA fragment occurs non-stochastic. In particular, we found that
closer neighboring CpG sites are more likely to share the same

methylation status, and that, if the distance between CpG sites in-
creases, the degree of co-methylation decreases. By a simulation ap-
proach, we showed that the probability of a CpG site to be methylated is
conditioned by a synergistic effect of the methylation landscape of the
nearby region and the intrinsic susceptibility of that site to undergo
methylation.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2019.05.007.
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