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Use of deep learning to detect cardiomegaly on thoracic
radiographs in dogs
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A B S T R A C T

The purpose of this study was to develop a computer-aided detection (CAD) device based on
convolutional neural networks (CNNs) to detect cardiomegaly from plain radiographs in dogs. Right
lateral chest radiographs (n = 1465) were retrospectively selected from archives. The radiographs were
classified as having a normal cardiac silhouette (No-vertebral heart scale [VHS]-Cardiomegaly) or an
enlarged cardiac silhouette (VHS-Cardiomegaly) based on the breed-specific VHS. The database was
divided into a training set (1153 images) and a test set (315 images). The diagnostic accuracy of four
different CNN models in the detection of cardiomegaly was calculated using the test set.
All tested models had an area under the curve >0.9, demonstrating high diagnostic accuracy. There was

a statistically significant difference between Model C and the remainder models (Model A vs. Model C,
P = 0.0298; Model B vs. Model C, P = 0.003; Model C vs. Model D, P = 0.0018), but there were no significant
differences between other combinations of models (Model A vs. Model B, P = 0.395; Model A vs. Model D,
P = 0.128; Model B vs. Model D, P = 0.373). Convolutional neural networks could therefore assist
veterinarians in detecting cardiomegaly in dogs from plain radiographs.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Error in the interpretation of plain radiographs is common both in
human (Kelly et al., 2016; Waite et al., 2016) and veterinary medicine
(Alexander, 2010). The average error rate reported in human
medicine is about 26% (Herman and Hessel, 1975) and, despite
increasingly higher levels of training radiologists, has remained
virtually unchanged during the last five decades (Berlin, 2007). The
main causes of interpretation errors are perceptual errors, omission
errors, cognitive biases, fatigue, and distraction (Waite et al., 2016).
Level of expertise plays a major role in the error rate (Gatt et al.,
2003); nonetheless, expertise alone is not sufficient to significantly
reduce the error rate in a clinical setting (Bruno et al., 2015). Similar
causes of interpretation error are recognized in veterinary medicine
(Alexander, 2010); however, studies on the rate and impact of
radiographic interpretation error are, to the best of the authors’
knowledge, not currently available in veterinary literature.

Strategies for error reduction in radiology include: structured
reports and checklists, standardization of the interpretation process,
strategies for cognitive debiasing, and metacognitive interventions
* Corresponding author.
E-mail address: tommaso.banzato@unipd.it (T. Banzato).

http://dx.doi.org/10.1016/j.tvjl.2020.105505
1090-0233/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article
).
(Croskerry, 2009). In recentdecades, research intothis topichasbeen
largely focused on the development of computer-aided detection
(CAD) methods, especially those based on artificial intelligence (Lin
et al.,1993; Monnier-Cholley et al.,1998; Kakeda et al., 2004; Suzuki
et al., 2005; Cicero et al., 2017; Wang et al., 2017; Dunnmon et al.,
2019; Seah et al., 2019). The increasing availability of large-scale
databases and servers with high computing power constitute the
game-changing approach for the future development of these
technologies (Yasaka and Abe, 2018).

In veterinary medicine, the availability of highly-trained radiol-
ogists is limited and most clinical practises do not have such
professionals amongst their staff. Further, interpretation of radio-
graphs in the emergency setting is oftenperformed by non-specialist
veterinarians who may be having to care for multiple patients
concurrently (i.e. are distracted) and under time constraints. In such
a scenario, the availability of CAD methods to assist the clinician in
interpreting of basic radiographic changes could be beneficial in
reducing interpretation error. In veterinary medicine, the use of CAD
methods has been explored in ultrasonography (Drost et al., 2000;
Ivancic and Mai, 2008; Banzato et al., 2015; Zotti et al., 2015; Banzato
et al., 2017a,c; Banzato et al., 2018a; Da Silva et al., 2018; Rodrigues
Simões et al., 2018; Mattei et al., 2019), radiology (Vaccaro et al.,
2012), magnetic resonance imaging (Banzato et al., 2017b, 2018b,c)
and computed tomography (Marschner et al., 2017; Longo et al.,
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1 See: ImageNet. www.image-net.org. (Accessed 3 July 2020).
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2018). Nevertheless, technical limitations of the CAD methods
described in these studies have hindered the routine use of CAD in
clinical practice.

Cardiac disease is a leading cause of death in pet dogs (O’Neill
et al., 2013; Inoue et al., 2015; Boland et al., 2018). Cardiomegaly is
a frequent radiographic finding associated with cardiac disease
(Lamb et al., 2001). A method to index heart size to body size, and
more accurately determine cardiomegaly, is known as the
vertebral heart scale (VHS), where dimensions of the cardiac
silhouette are measured in terms of thoracic vertebral body lengths
on plain radiographs (Buchanan and Bücheler, 1995). Although
such a method is available, VHS may not be routinely used to
quantitatively evaluate heart size, and radiographic diagnoses of
cardiomegaly (especially if mild to moderate) might be missed by
veterinarians with limited training in veterinary radiology or
cardiology. Thus, the aim of this study was: (1) to develop a CAD
method to detect cardiomegaly from plain radiographs in dogs;
and (2) to test the accuracy of the developed CAD method.

Materials and methods

Database construction

All the methods were carried out in accordance with the relevant guidelines and
regulations. This study was conducted respecting Italian Legislative Decree 26/2014
(transposing the EU directive 2010/63/EU regarding animal welfare and protection).
As the data used in this study were part of routine clinical activity, no ethical
committee approval was needed. Informed consent regarding personal data
processing was obtained from the owners.

All thoracic radiographs of dogs referred for specialist examination at the
Veterinary Teaching Hospital of the University of Padua between January 2014 and
October 2019 were reviewed. Signalment was obtained from digital imaging and
communications in medicine (DICOM) files and recorded for each patient. The
radiography system was replaced during the observation period: with a computed
radiography system (Kodak Point of Care CR-360 System, Carestream Health Inc.)
used between January 2014 and June 2018; and a direct radiography system (FDR D-
EVO 1200 G43, Fujifilm Corporation) used between July 2018 and October 2019. The
radiographs from the computed radiography system were used to train the network
(training set) and the radiographs from the direct radiography system were used to
test the accuracy of the CAD method (test set). Initially, radiographic quality was
checked, and poorly positioned or poorly exposed radiographs were excluded from
further analysis. Cases in which the cardiac silhouette was not clearly visible (e.g.
when pleural effusions, overlying masses or focal/disseminated alveolar pattern
were superimposed over the heart) or was displaced (e.g. when pneumothorax was
present) were excluded from further analysis. In order to reduce the intrinsic
variability of the data (Greco et al., 2008), only right lateral projections were
included in the database, with all other views excluded from further analysis. No
patients had manual inflation of their lungs.

The VHS was calculated by two experienced operators (TB and AZ; 10 years’ and
20 years’ experience in veterinary diagnostic imaging, respectively) jointly
evaluating each radiograph. The images were classified as having a normal cardiac
silhouette (No-VHS-Cardiomegaly) or having an enlarged cardiac silhouette (VHS-
Cardiomegaly), based on the calculated VHS alone, regardless the presence of other
pathologies (e.g. masses, alveolar patterns, etc.). Breed-specific VHS reference
intervals, as reported in the available literature, were used for the classification of
pedigree dogs (Lamb et al., 2001), whereas a VHS reference interval of 9.2–10.2 was
used for the classification of mixed-breed dogs or pedigree dogs where no breed-
specific reference interval were available (Buchanan and Bücheler, 1995). The
images were stored in separate folders according to their VHS classification (No-
VHS-Cardiomegaly; VHS-Cardiomegaly), and whether they were to be used for
training or for testing.

Image processing

All the radiographic images were exported in an 8-bit Joint Photographic
Experts Group (JPEG) format using a freely available image visualization and
analysis software (Horos, Nimble). Images were then manually cropped to a square
format in order to avoid geometric distortions. Lastly, the images were resized using
commercially available software (MATLAB and Statistics Toolbox, release 2019b, The
MathWorks) to meet the specific requirements of the different convolutional neural
network (CNN) architectures tested.

Deep learning

The deep-learning analysis was performed on a dedicated workstation (Linux
operating system; Ubuntu 18.04, Canonical) equipped with four graphic processing
units (Tesla V100; NVIDIA), a 2.2 GHz processor (Intel Xeon E5-2698 v4; Intel) and
256 GB random access memory. A deep-learning toolbox (MATLAB and Statistics
Toolbox, release 2019b) was used for image analysis. The accuracy of four different
models, based on different CNN architectures was tested. Specifically, Model A was
based on Inception V3 (Szegedy et al., 2015; Szegedy et al., 2017)., Model B was
based on Inception-ResNet V2 (Szegedy et al., 2015), Model C was based on VGG-19
(Simonyan and Zisserman, 2015), and Model D was based on ResNet-101 (He et al.,
2016). All the CNN architectures were pre-trained on a large-scale database1 of
everyday colour images were used for image classification. The learn rate was
automatically adjusted using an adaptive learn rate function. Image normalization
was performed prior to the analysis. During training, the images in the training set
were randomly split into a training set comprising 80% of the images and a
validation set comprising 20% of the images. Training was performed for 10 epochs,
where an epoch is a complete iteration of the CNN on the images. The training and
validation sets were randomly shuffled after every epoch. The following network
hyperparameters were always used: optimizer stochastic gradient descent; batch
size of 32; and initial learn rate of 3e-4. An adaptive learn rate option was selected.
No data augmentation technique was used. The predicted class (i.e. No-VHS-
Cardiomegaly vs. VHS-Cardiomegaly) of each case in the test set was recorded.

Statistics and data analysis

Normal distribution of the descriptive data was tested with the Shapiro–Wilk
test. Normally distributed data were reported as mean and standard deviation,
whereas non-normally distributed data were reported as median with the limits of
the overall range. A contingency table with the results of the test set was created
and the area under the curve (AUC), sensitivity, specificity, accuracy, positive and
negative likelihood ratios (PLR and NLR, respectively) and positive and negative
predictive values (PPV and NPV, respectively) were calculated using commercially
available software (MedCalc v. 15.05, MedCalc Software; and MATLAB and Statistics
Toolbox, release 2018a). Confidence intervals (95% CI) were calculated as exact
Clopper-Pearson confidence intervals. The AUC value as a criterion of discrimination
accuracy was classified as low (0.5�0.7), moderate (0.7�0.9) or high (>0.9;
McCrum-Gardner, 2008). The AUC of the individual architectures was compared
with the DeLong method (DeLong et al., 1988).

Results

Database

A diagram of the workflow used in constructing the database is
provided in Fig. 1. Of a total of 6282 canine thoracic radiographs
were retrieved, 1153 images were included in the final training set
and 315 images were included in the final test set. The VHS of both
final training and test sets were normally distributed. Of the
included images, 281 of the final training set (24.4%) were
classified as VHS-Cardiomegaly (mean VHS 12.2, �0.9) and 872 as
No-VHS-Cardiomegaly (mean VHS 9.6, �0.4); whilst 70 of the final
test set (22.2%) were classified as VHS-Cardiomegaly (mean VHS
11.7, �1.0) and 245 as No-VHS-Cardiomegaly (mean VHS 10.1,
�0.4). A bar-plot showing the breed distribution of dogs classified
as No-VHS-Cardiomegaly or VHS-Cardiomegaly in both the final
training and test sets is reported in Supplementary document 1.
The distribution of the different radiographic findings in both the
final training and test sets are graphically depicted in Supplemen-
tary document 2.

Classification accuracy

Model A showed an AUC of 0.965 (95% CI: 0.943�0.988), Model
B showed an AUC of 0.953 (95% CI: 0.923�0.983), Model C showed
an AUC of 0.904 (95% CI: 0.858�0.950), and Model D showed an
AUC of 0.973 (95% CI: 0.958�0.988). There were significant
differences in the performances between Model C and the other
models (Model A vs. Model C, P = 0.0298; Model B vs. Model C,
P = 0.003; Model C vs. Model D, P = 0.0018); whereas, no significant
differences were evident for the other comparisons (Model A vs.
Model B, P = 0.395; Model A vs. Model D, P = 0.128; and Model B vs.
Model D, P = 0.373). The complete results for the classification
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Fig. 1. Diagram of the workflow used in building the database to train the convolutional neural network. L, lateral view; RL, right lateral view; LL, left lateral view; DV,
dorsoventral view; VD, ventrodorsal view; VHS, vertebral heart scale.
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accuracy of the architectures tested in the test set are reported as
Supplementary material. The comparison of the ROC curves is
reported in Fig. 2.

Examples of radiographs correctly and incorrectly classified by
the Model A model are reported in Figs. 3 and 4, respectively. The
Model A misclassified 31 radiographs in total (three VHS-
Cardiomegaly and 28 No-VHS-Cardiomegaly). The VHS was 11.2
or higher in all three false negative cases, furthermore, in two
there were concomitant radiographic findings consistent with
cardiogenic pulmonary oedema. In the 28 misclassified No-VHS-
Cardiomegaly cases no common features or concomitant radio-
graphic finding were identified. Model B misclassified 27 cases
(seven VHS-Cardiomegaly and 20 No-VHS-Cardiomegaly). In three
cases the VHS was 11.1 or higher whereas in four cases the VHS was
between 10.5 and 11. Also for Model B there were no common
features or radiographic findings in the false positive cases. Model
C showed the overall worse performance with 39 misclassified
cases (10 VHS-Cardiomegaly and 29 No-VHS-Cardiomegaly) with
no clear pattern in both false positive and false negative. Finally,
Model D misclassified 26 cases (four VHS-Cardiomegaly and 22 No-
Fig. 2. Comparison of the receiver operating characteristic curves of Models A,
B, C, and D.
VHS-Cardiomegaly). The VHS of the false negative cases was
between 10.6 and 11.1. As for the other models, there was no clear
pattern in the false positive cases.

Discussion

The results of this study suggest that the application of CNN-
based CAD methods could, prospectively, assist veterinarians in the
interpretation of thoracic radiographs. In this paper, due to the
limited size of the available database, only a single radiographic
finding (cardiomegaly) was included. Interestingly, a similar
classification accuracy was obtained by Lakhani and Sundaram
(2017) in the detection of tuberculosis on thoracic radiographs
from a small-sized (1007 images) database. Other authors (Cicero
et al., 2017; Rajpurkar et al., 2017) have developed and tested CNNs
capable of identifying several radiographic abnormalities. In the
paper by Cicero et al. (2017), six categories were included (Normal,
Cardiomegaly, Effusion, Consolidation, Oedema, and Pneumotho-
rax), whilst in the paper by Rajpurkar et al. (2017) 14 categories of
pathology were included (Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolida-
tion, Edema, Emphysema, Fibrosis, Pleural Thickening, and
Hernia). In both studies massive databases were available
(65,000 radiographs in the first paper and 112,120 images in the
latter). Creating databases of such size is only feasible using
machine-learning techniques capable of extracting relevant
information from reports and automatically assigning tags to
the associated images. Interestingly, the accuracy in detecting
cardiomegaly as reported by Rajpurkar et al. (2017 was similar to
the best classification results obtained in this study.

Another interesting aspect of this study was that the radio-
graphs used to train the CNNs were classified either as No-VHS-
Cardiomegaly or VHS-Cardiomegaly based on the available
breed-specific VHS reference intervals as reported in the literature.
Indeed, the relative dimensions of the normal cardiac silhouette,
and therefore the VHS reference intervals, have a significant breed-
related variability (Lamb et al., 2001). For example, boxers,
Labrador retrievers, and cavalier King Charles spaniels have a
relatively larger cardiac silhouette, as compared to other breeds
(Lamb et al., 2001). The high classification accuracy obtained in the
test set reveals that the CNN was able to account for the high
variability in the morphology of the thorax and the cardiac
silhouette, typical of the canine species, during classification of the
images. These algorithms are often described as black boxes
because, even if the CNN was capable to identify high-level
features to correctly classify the radiographs regardless of the



Fig. 3. Examples of radiographs accurately classified by Model A as having either a normal cardiac silhouette (A, D) or cardiomegaly (B, D), using measured vertebral heart
scale (VHS) as the reference standard. A, lateral radiograph of an English bulldog with a normal cardiac silhouette (VHS 9.9; breed-specific reference interval 9.2–10.2). B,
lateral radiograph of an English bulldog with an enlarged cardiac silhouette (VHS 11.3). C, lateral radiograph of a boxer dog with a normal cardiac silhouette (VHS 10.8; breed-
specific reference interval 10.8–12.4). D, lateral radiograph of a boxer dog with an enlarged cardiac silhouette (VHS 12.8).
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breed, the parameters used for classification are not directly
accessible to the operator (Prieto et al., 2016).

The diagnostic accuracy of several deep-learning models was
tested in this work and only Model C displayed a significantly lower
accuracy compared to remainder tested models. The actual reasons
underlying the performance differences of the deep-learning
models on a specific database are difficult to fully assess and,
therefore, we cannot offer an in-depth explanation for such
differences. For instance, the performance of one CNN (not
included in this study) is affected by noise, blur, missing pixels
and brightness (Grm et al., 2018). By comparison, Model A has been
reported to outperform other CNNs in the classification of
diagnostic images in other studies (Banzato et al., 2018a; Noguchi
et al., 2018; Banzato et al., 2019). Compared to the ‘everyday life’
photographs used to pre-train the CNNs, diagnostic images are
usually acquired in a highly standardized fashion by trained
personnel, and, therefore, differences in image quality are minimal
among the images acquired with the same scanner.

The main strengths of this work are firstly, that the training set
and test set were unrelated. In fact, these two sets of radiographs
were acquired through different scanners with different resolu-
tions and an overall different image quality. The high classification
accuracy obtained on the test set suggests that the developed CAD
methods could become a reliable, ready-to-use tool in clinical
practice. However, as recently demonstrated by Zech et al. (2018),
CNNs may have significantly varied performances on different
sites, primarily related to differences in disease prevalence.
Therefore, the on-site accuracy should be tested prior to the
introduction of these CAD methods in clinical practice. Secondly,
the CAD methods developed in this study could be directly applied
to new images to detect cardiomegaly. Indeed, the limited pre-
processing required and the use of CNNs enable straightforward
use of this CAD method.

A limitation of this study is that the radiographs were
classified based only on the VHS from a single radiographic view.
It is possible that dogs with a normal VHS might have a
significant cardiomyopathy and dogs with a VHS above the
reference interval might have normal cardiac function (Lamb
et al., 2000, 2001). Further, the VHS reference intervals used
were based upon a group mean plus one standard deviation,
which would identify 16% of normal dogs as having an increased
VHS (Buchanan and Bücheler, 1995), whilst not all pedigree dogs
have breed-specific reference intervals available, which might
result in the over- or under-estimation of cardiomegaly in these
dogs. The aim of the present study was not to overcome the well-
known limitations of plain radiographs in the detection of
cardiac disease, but simply to develop a CAD method to
automatically classify canine thoracic radiographs as either
No-VHS-Cardiomegaly or alternatively VHS-Cardiomegaly sug-
gesting to the veterinarian that a more accurate examination of



Fig. 4. Examples of radiographs incorrectly classified by Model A as having cardiomegaly when they had a normal cardiac silhouette (A, B), or as being normal when they had
cardiomegaly (C, D), using measured vertebral heart scale (VHS) as the reference standard. A, lateral radiograph of a mixed breed dog with a normal cardiac silhouette (VHS
9.9; reference interval 9.2–10.2). B, lateral radiograph of a mixed breed dog with a normal cardiac silhouette (VHS 9.9). C, lateral radiograph of a mixed breed dog with an
enlarged cardiac silhouette (VHS 10.7). D, lateral radiograph of a pug dog with an enlarged cardiac silhouette (VHS 11.7).
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the cardiac function could be necessary. Further studies,
classifying the thoracic radiographs based on the results of a
full cardiological examination might help in the development of
a CNN aimed to detect cardiac disease.

Another limitation of this study is that cases in which the
cardiac silhouette was obscured were excluded from analysis.
Further studies, possibly including a larger number of radiographs
(ideally from several different veterinary clinics) would enable
development of a CAD method capable of detecting several
different radiographic abnormalities (e.g. nodules, effusions,
pneumothorax, etc.). A major challenge in developing this kind
of CAD method is that increasing the number of categories requires
an increasingly higher number of images to accurately train the
CNN; this problem is called ‘the curse of dimensionality’. i.e. when
a large number of features, which is the case of CNNs, are extracted
from an insufficient number of images, the observations for each
category become sparse, and the algorithm is unable to converge to
an optimal solution, thus resulting in poor detection accuracy
(Liang et al., 2015).

Conclusions

The CNNs used, trained on a relatively small database of
radiographic images, showed a high classification accuracy in
the detection of cardiomegaly in dogs. These CAD methods
developed stand as the first step in structuring a tool to assist the
routine clinical work of veterinarians in detecting cardiomegaly
in dogs.
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