Contents lists available at ScienceDirect

Systematic and Applied Microbiology

journal homepage: http://www.elsevier.com/locate/syapm

Corrigendum

Corrigendum to Characterization of *Bifidobacterium* species in feaces of the Egyptian fruit bat: Description of *Bifidobacterium vespertilionis* sp. nov. and *Bifidobacterium rousetti* sp. nov. [Syst. Appl. Microbiol. 42 (2019) 126017]

Monica Modesto^a, Maria Satti^b, Koichi Watanabe^{c,d}, Edoardo Puglisi^e, Lorenzo Morelli^e, Chien-Hsun Huang^d, Jong-Shian Liou^d, Mika Miyashita^f, Tomohiko Tamura^f, Satomi Saito^f, Koji Mori^f, Lina Huang^d, Piero Sciavilla^a, Camillo Sandri^g, Caterina Spiezio^g, Francesco Vitali^h, Duccio Cavalieri^h, Giorgia Perpetuiniⁱ, Rosanna Tofaloⁱ, Andrea Bonetti^a, Masanori Arita^{j,k}, Paola Mattarelli^{a,*}

^a Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy

^b Department of Genetics, SOKENDAI University (National Institute of Genetics), Yata 1111, Mishima, Shizuoka 411-8540, Japan

- ^c Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- ^d Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
- e Department for Sustainable Food Processes, Faculty of Agricultural, Food and Environmental Sciences, Universita'Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- ^f Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
- ^g Department of Animal Health Care and Management, Parco Natura Viva Garda Zoological Park, Bussolengo, Verona, Italy
- ^h Department of Biology, University of Florence, Florence, Italy
- ¹ Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- JRIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- k Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan

The authors regret that in the above article the DSM collection number listed in the abstract and in the protologue "Description of *Bifidobacterium rousetti* sp. nov." were incorrect. The correct DSM collection number is 106023^T. The Abstract with the correct DSM collection number is presented below. These changes in no way alter the original conclusions of the paper.

Abstract

Fifteen bifidobacterial strains were obtained from feces of *Rousettus aegyptiacus*; after grouping them by RAPD PCR only eight were selected and characterized. Analysis of 16S rRNA and of five housekeeping(*hsp60*, *rpoB*, *clpC*, *dnaJ*, *dnaG*) genes revealed that these eight strains were classified into five clusters: Cluster I (RST 8 and RST 16^T), Cluster II (RST 9^Tand RST 27), Cluster III (RST 7 and RST 11), Cluster IV (RST19), Cluster V (RST 17) were closest to *Bifidobacterium avesanii* DSM 100685^T (96.3%), *Bifidobacterium tissieri*

* Corresponding author at: Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy. *E-mail address:* paola.mattarelli@unibo.it (P. Mattarelli).

https://doi.org/10.1016/j.syapm.2020.126169 0723-2020/© 2020 Elsevier GmbH. All rights reserved. DSM 100201^T (99.7 and 99.2%), *Bifidobacterium reuteri* DSM 23975^T (98.9%) and *Bifidobacterium myosotis* DSM 100196^T (99.3%), respectively. Strains in Cluster I and strain RST 9 in Cluster II could not be placed within any recognized species while the other ones were identified as known species. The average nucleotide identity values between two novel strains, RST 16^T and RST 9^T and their closest relatives were lower than 79% and 89%, respectively. In silico DNA–DNA hybridization values for those closest relatives were 32.5 and 42.1%, respectively. Phenotypic and genotypic tests demonstrated that strains in Cluster I and RST 9^T in Cluster II represent two novel species for which the names *Bifidobacterium vespertilionis* sp. nov. (RST 16^T = BCRC 81138^T = NBRC113380^T = DSM 106023^T) are proposed.

Description of Bifidobacterium rousetti sp. nov.

Bifidobacterium rousetti (rou.set'ti. N.L. gen. n. rousetti of *Rousettus aegyptiacus*, the Egyptian fruit bat).

Cells are Gram-positive-staining, non-motile, asporogenous, non-haemolytic, F6PPK-positive, catalase- and oxidase-negative, indole-negative, and when growing in TPY broth are rods of various shapes forming a branched structure with 'Y' at both sides. The well

DOI of original article: https://doi.org/10.1016/j.syapm.2019.126017.

isolated colonies grown on the surface of TPY agar under anaerobic conditions are white, opaque, smooth and circular with entire edges, while the embedded colonies are lens-shaped or elliptical. Colonies reach 1.0–2.0 mm in diameter after 3 days of incubation. Cells can grow in the range 22–48 °C. Cells grow at pH 4.0–7.5. Optimal conditions of growth occur at pH 7 and 37 °C. Using API50 CHL system acids are produced from d-glucose, l-arabinose, dfructose, d-mannitol, d-mannose, raffinose, turanose, d-galactose, sorbitol, gluconic acid and produced weakly from d-ribose, maltose, lactose, starch and 5-ketogluconate but not from other carbohydrates. Activity was observed for a- and b-galactosidase, a-glucosidase, a-arabinosidase, glutamic acid decarboxylase, arginine arylamidase, proline arylamidase, phenylalanine arylamidase, leucine arylamidase, tyrosine arylamidase, alanine arylamidase, glycine arylamidase, histidine arylamidase, serine arylamidase. Activity was also observed weakly for 1-arginine dihydrolase, b-glucosidase. Aesculine is hydrolysed. No reduction of nitrates was recognized. Cells are positive for urease. The peptidoglycan type is L-Orn(L-Lys)-D-Glu. The type strain RST 9^T (=BCRC 81136^T = NBRC 113378^T = DSM106023^T) was isolated from the feces of the Egyptian fruit bat *Rousettus egyptiacus*. The DNA G+C content of the type strain is64.55 mol%. The taxonumber of digital protologue is TA00875.

The authors apologize for any inconvenience caused.