
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 184 (2021) 541–548

1877-0509 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2021.04.008

10.1016/j.procs.2021.04.008 1877-0509

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2021) 000–000
www.elsevier.com/locate/procedia

The 12th International Conference on Ambient Systems, Networks and Technologies (ANT)
March 23 - 26, 2021, Warsaw, Poland

Envisioning Model-Based Performance Engineering Frameworks
Davide Arcellia*

aDepartment of Information Engineering, Computer Science and Mathematics, University of L’Aquila, via Vetoio 1, L’Aquila, 67100, Italy

Abstract

Our daily activities depend on complex software systems that must guarantee certain performance. Several approaches have been
devised in the last decade to validate software systems against performance requirements. However, software designers still en-
counter problems in the interpretation of performance analysis results (e.g., mean values, probability distribution functions) and
in the definition of design alternatives (e.g., to split a software component in two and redeploy one of them) aimed at fulfilling
performance requirements.

This paper describes a general model-based performance engineering framework to support designers in dealing with such
problems aimed at enhancing the system. The framework relies on a formalization of the knowledge needed in order to characterize
performance flaws and provide alternative system design. Such knowledge can be instantiated based on the techniques devised for
interpreting performance analysis results and providing feedback to designers. Three techniques are considered in this paper for
instantiating the framework and the main challenges to face during such process are pointed out and discussed.
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1. Introduction

Over the last decade, research has highlighted the importance of performance as an essential quality attribute of
many software systems, that is very complex and pervasive to be addressed. In fact, if performance targets are not met,
a variety of negative consequences (such as user dissatisfaction, lost income, etc.) can impact on a significant fraction
of software projects.

This motivates the activities of modeling and analyzing performance of software systems at the earlier phases of
the life-cycle, by reasoning on predictive quantitative results, in order to avoid expensive post-deployment rework.
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Software Performance Engineering (SPE) is the discipline that represents the entire collection of engineering activ-
ities, used throughout the software development cycle, and directed to meet performance requirements [26]. In this
context, many model-based performance engineering approaches have been proposed. Nevertheless, the identification
of performance problems is still critical in the software design, mostly because the results of performance analysis (i.e.
mean values, variances, and probability distributions) are difficult to be interpreted for providing feedback to designers
(i.e. alternative software models) that can improve system performance. Support to the interpretation of performance
analysis results that helps to fill the gap between numbers and design alternatives is still very challenging.

In this paper, a general model-based SPE framework is envisioned. To this aim, a knowledge is devised as basis for
obtaining alternative software models, which enables a characterization of performance problems and corresponding
solutions. After a general definition of the framework in formal terms, the latter is instantiated modulo three different
well-known techniques, i.e. performance antipatterns [27], bottleneck analysis [29] and design space exploration [14].
Several challenges arise while instantiating the framework, which are also pointed out in this paper.

The paper is organized as follows. Section 2 illustrates and formalizes the model-based SPE framework. Section 3
shows how such framework can be instantiated relying on different techniques. Finally, Section 4 points out the main
challenges in this context, whilst Section 5 concludes the paper.

2. General Framework

In this section we present a general framework that aims at suggesting alternative system design with enhanced
performance, represented in Figure 1.

S represents a software model usually provided by the software designer. D represents a performance characteri-
zation of the system, such as workload and operational profile (i.e., the way users interact with the system), specified
by a performance expert (possibly as software model annotations). R represents performance requirements. specified
by the customer. Finally, P represents the performance indices of interests obtained through the performance analysis
of S with respect to D.

If the calculated performance indices P satisfy the requirements R, that is P � R, then the software system S and
its performance characterization D fit the expectations. In this case no feedback is generated since no performance
problems have been detected in the system under analysis.

On the contrary, if the performance requirements are not satisfied, then the framework interprets the analysis results
P and generates software design feedback. Such step – namely Results Interpretation and Feedback Generation –
produces a set of new Software Models S’ owning new performance characterizations D’.

Identifying performance problems in the software design from performance analysis results is difficult since the
latter are basically numbers (e.g., mean values, variances, etc.) or distribution functions, far from software design
elements (e.g., software components, and deployment nodes) and design alternatives (asynchronous vs. synchronous
communications). Moreover, performance indices often have to be jointly examined to localize the critical parts of
a software model: a single performance index (e.g., the utilization of a service) might not give enough information
without analyzing other indices (e.g., the throughput of a called service).

Specific experience and knowledge on software performance is needed to fill the gap between numbers and design
alternatives, so to identify problems and devise solutions for them. Performance experts own such knowledge, namely
K. The latter can be partitioned in two, i.e. K = (Kp,Ks), where Kp represents the knowledge needed to identify the
performance problems in the software model and Ks denotes the knowledge needed to devise design alternatives (pos-
sibly) implementing solutions to those problems. Conforming to this distinction, Results Interpretation and Feedback
Generation step is composed by two tasks, as illustrated in the gray box at the bottom of Figure 1.
Results Interpretation is defined as a function i that takes as input: (i) a system design S, (ii) a performance charac-
terization D of S and (iii) corresponding performance indices of interest P; by exploiting a problem characterization
knowledge Kp, i identifies and returns a set of performance flaws {F} occurring to S. In lambda calculus notation
[12], such function is formalized as:

λKp. i (S ,D, P) = {F} (1)
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Fig. 1. Reference framework for results interpretation and feedback generation.

Feedback Generation is defined as a function g that takes as input: (i) a system design S, (ii) a performance char-
acterization D of S and (iii) a set of performance flaws F occurring to S; by exploiting a solution characterization
knowledge Ks, g suggests sets of refactoring actions which produce new software models S’ characterized by new
performance assumptions D’ and showing new performance indices P’. In lambda calculus notation [12], such func-
tion is formalized as:

λKs. g (S ,D, {F}) = {(S ′,D′, P′)} (2)

The obtained software models S’ can thus undergo results interpretation and new feedback can be generated. The
final goal is to find a software model S� characterized by performance assumptions D� producing performance in-
dices P� which best fit performance requirements. However, several iterations of the whole process can be conducted
to find such a software model, because removing a flaw might introduce new flaws and does not necessarily result into
performance improvement, due to heuristic decisions based on stochastic results.

3. Framework Instantiation and Examples of Existing Approaches

Kp and Ks strictly depend on the performance engineering technique(s) adopted for Result Interpretation and Feed-
back Generation. Table 1 describes Kp and Ks in the context of three techniques, namely Performance Antipatterns
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[27], Bottleneck Analysis [29] and Design Space Exploration [14], and provides references to existing approaches
exploiting such techniques.

Table 1. Examples of knowledge K for different performance engineering techniques and approaches exploiting them.
Technique Kp Ks Approaches
Performance
Antipatterns
[27] (KPA)

Antipatterns specification describes the bad prac-
tices that negatively affects performance indices.
One example of performance antipatterns is Empty
Semi Trucks that occurs when an excessive num-
ber of requests is required to perform a task. It may
be due to inefficient use of available bandwidth, an
inefficient interface, or both.

Antipatterns specification includes a solution description that let
the software architect devise refactoring actions. As an example
Empty Semi Trucks can be solved by using the Batching perfor-
mance pattern. Such pattern combines items into messages to make
better use of available bandwidth. The Coupling performance pat-
tern, Session Facade design pattern, and Aggregate Entity design
pattern provide more efficient interfaces.

[11, 8, 9]

Bottleneck
Analysis [29]
(KBA)

A system bottleneck occurs when one (or a lim-
ited number) of software or hardware resources are
highly utilized and will be the first to saturate, thus
throttling the system performance.

A system bottleneck is avoided by setting a multi-threading con-
figuration for software components and a multi-processor configu-
ration for hardware platforms, or re-allocating the work among the
system resources.

[17, 30]

Design Space
Exploration
[14] (KDS E )

- Explores the search space looking for solutions that best fit a pre-
defined fitness function. Such function drives towards the sequence
of refactoring actions to apply to this system, i.e., altering its de-
sign structure without altering its semantics with the final goal to
locate reasonably good solutions.

[22, 3]

3.1. Performance Antipatterns

Performance antipatterns perfectly match a domain knowledge KPA = (KPA
p ,K

PA
s ) which distinguishes between

problems and corresponding solutions, as they are two-fold: On one hand, a performance antipattern identifies a bad
practice (namely KPA

p ) that negatively affects the performance indices of a software model; On the other hand, it
provides descriptions of possible refactoring actions aimed at removing the bad practice (namely KPA

s ). Hence, bad
practices define KPA

p , whilst corresponding solutions define KPA
s .

The function i in Equation 1 can be instantiated as iPA in Equation 3, by exploiting Performance Antipatterns
as backbone knowledge (i.e. [Kp = KPA

p ]). The resulting set of performance flaws, namely {FPA}, is composed by
instances of performance antipatterns detected on a software model S showing performance indices P under a certain
characterization D.

λKp. i (S ,D, P)[Kp = KPA
p ] = iPA (S ,D, P) = {FPA} (3)

Consequently, the function g in Equation 2 is re-written as gPA in Equation 4 (i.e. [Ks = KPA
s , {F} = {FPA}]),

resulting into alternative system design.

λKs. g (S ,D, {F})[Ks = KPA
s , {F} = {FPA}] = gPA (S ,D, {FPA}) = {(S ′,D′, P′)} (4)

Many papers have appeared in literature which ground on performance antipatterns, mainly due to the fact that the
latter are formulated in a general manner, hence they can be tailored to specific modelling notations. For example,
in previous work [8] we have proposed an approach which allows to detect and remove performance antipatterns
occurring to UML models [24] annotated with MARTE profile [25]. Such approach has brought to the development
of a tool that has been exploited in [9], in the context of MegaM@Rt2 ECSEL project1.

Moreover, as can be noticed from Table 1, design patterns may be used in model refactoring in order to remove
performance antipatterns, that is what we have preliminary introduced in further previous work [11].

1 https://megamart2-ecsel.eu/
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3.2. Bottleneck Analysis

A bottleneck usually refers to hardware and/or software components as causes of performance degradation. It can
be seen as a specialization of KPA, where Kp and Ks characterize, respectively, possible bottleneck situations and
corresponding solutions.

The function i in Equation 1 can be instantiated as iBA in Equation 5, by exploiting Bottleneck Analysis as back-
bone knowledge (i.e. [Kp = KBA

p ]). The resulting set of performance flaws, namely {FBA}, is composed by bottleneck
components detected on a software model S showing performance indices P under a certain characterization D.

λKp. i (S ,D, P)[Kp = KBA
p ] = iBA (S ,D, P) = {FBA} (5)

Consequently, the function g in Equation 2 is re-written as gBA in Equation 6 (i.e. [Ks = KBA
s , {F} = {FBA}]),

resulting into alternative system design.

λKs. g (S ,D, {F})[Ks = KBA
s , {F} = {FBA}] = gBA (S ,D, {FBA}) = {(S ′,D′, P′)} (6)

Bottleneck analysis has been especially used until two decades ago in the context of software performance engi-
neering. For example, Franks et al. [17] have developed a framework for detecting sources of bottlenecks which may
occur to to Layered Queuing Network (LQN) models [18], applying improvements and estimating the effectiveness of
the latter. Instead, Xu [30] has proposed an approach for the automated bottleneck identification and removal before
the software system implementation, based on a set of rules for detecting bottlenecks occurring within LQNs.

3.3. Design Space Exploration

The function i in Equation 1 can be instantiated as iDS E in Equation 7, by exploiting Design Space Exploration
as backbone knowledge (i.e. [Kp = KDS E

p ]). However, as DSE does not rely on detecting particular situations in order
to identify alternative system design, the knowledge KDS E

p is empty, hence the resulting set of performance flaws –
namely {FDS E} – is empty as well.

λKp. i (S ,D, P)[Kp = KDS E
p ] = iDS E (S ,D, P) = {FDS E} = ∅ (7)

Consequently, the function g in Equation 2 is re-written as gDS E in Equation 8 (i.e. [Ks = KDS E
s , {F} = {FDS E} =

∅]), resulting into alternative system design.

λKs. g (S ,D, {F})[Ks = KDS E
s , {F} = {FDS E} = ∅] = gDS E (S ,D, ∅) = {(S ′,D′, P′)} (8)

Design Space Exploration has started to be applied to performance optimization of hardware/software systems
since a decade, i.e. when Martens et al. [22] have used NSGA-II genetic algorithm [16] – that is a widespread evo-
lutionary computation technique – in order to find optimal trade-offs among performance, reliability and costs, for
software architectures modelled in terms of Palladio Component Models [13].

NSGA-II has been recently used in previous work [3], where an approach has been proposed for optimizing the
performance of self-adaptive systems represented by a particular type of QN models [20], namely SMAPEA QNs
[5, 4].

3.4. Combined Approaches

Performance engineering techniques can be also used in synergy, as demonstrated by some approaches that have
appeared in literature. For example, Trubiani et al. [28] have proposed an approach which exploits KPA and KBA in
different ways, i.e.:
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1. By exploiting KPA
s and KBA

s separately, meaning that Results Interpretation and Feedback Generation step is
executed twice, i.e. one per each knowledge, and the obtained performance improvements are compared in order
to provide evidence of the relative strengths and weaknesses of the two techniques.

2. By exploiting one knowledge first – e.g. KBA
p and KBA

s – followed by the other one, i.e. Results Interpretation and
Feedback Generation step is firstly executed with respect to the former knowledge and the obtained output might
be subsequently improved by further execution with respect to the latter knowledge.

3. By exploiting the intersection between KBA
p and KPA

p in order to drive the application of KPA
s during Results

Interpretation and Feedback Generation, meaning that only performance antipatterns involving bottlenecks are
solved thus reducing the solution space.

More recently, we have introduced EASIER [7], that is an approach relying on NSGA-II genetic algorithm – i.e.
KDS E – for refactoring software architecture modelled in terms of Æmilia specifications [1], aimed at multi-objective
performance optimization. The number of performance antipatterns occurring to the system is one of the considered
performance metrics composing the multi-objective fitness function, thus combining KPA

p and KDS E ; however, refac-
toring is not aimed at removing antipatterns – i.e. KPA

p is not exploited – although this might happen as a side-effect.

4. Challenges

Several challenging aspects have to be considered while instantiating the performance-based model refactoring
framework, which are pointed out in the following.

Ambiguity in formalization. Different knowledge formalizations bring to different results. Hence, an unavoidable
gap arises among different interpretations of the existing literature used to build up a knowledge. The consolidation
of the devised knowledge requires wide investigation while applying the framework. Moreover, the formalization also
depends on the system modeling language. For example, dealing with annotated UML software models might allow
to formalize fine-grained knowledge, whilst Queuing Networks might restrict the set of available constructs, resulting
into a coarse-grained knowledge [6].

Influence of other software layers. Often a software model only contains information on the software system and
the hardware platform. However, between these two layers there might other components, e.g. middleware, which
should be considered because they could jeopardize the performance of the whole system [23].

Accuracy of problem identification. False positive/negative problem instances may be detected, mostly due to
the presence of thresholds in the function i , which inevitably introduce a degree of uncertainty influencing recall and
precision [10]. Potential sources to suitably tune thresholds are: (i) the system requirements; (ii) the domain expert’s
knowledge; (iii) the evaluation of the system under analysis.

Inhibition of refactoring actions and conflicts. Restrictions due to functional or other non-functional require-
ments may inhibit refactoring actions, e.g. splitting or redeploying specific components due to legacy constraints or
budget limitations. Moreover, model refactoring cannot be unambiguously applied in case of incoherence of the cor-
responding refactoring actions, e.g. changing a property of a system component which has been previously removed.
Hence, particular mechanisms should be introduced – e.g. pre- and post- conditions [21] – enabling the specification
of criteria which allow to properly combine refactoring actions.

Model transformation. Working on software models may require model transformation capabilities. In fact, a
system may be represented by a set of models, each characterizing a different ”views” (e.g. behavioral, deployment);
in this context, consistency among the different views of the system shall be maintained by means of advanced Model-
Driven Engineering techniques [19], as the refactoring of a view shall properly propagate to other views. Moreover,
model transformation may be required in order to obtain a performance model from the software model, e.g. from
UML to LQN [2], aimed at estimating performance indices of interest and possibly enabling performance flaws
detection and removal.

No strict guarantee of performance improvement. Producing a candidate software model S’ by solving one
or more performance flaws or by automatic generation does not imply performance improvement, as only further
performance analysis (i.e. P’) can reveal if S’ shows enhanced performance. Moreover, when a candidate software
model S’ is identified, it might satisfy some performance requirements while worsening some others. Hence, trade-
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offs among performance requirements shall be taken into account, as well as among other non-functional properties,
e.g. reliability, dependability, costs [22].

Lack of model parameters. Performance engineering is not limited along the software life-cycle [15], but it
is obvious that an early usage is subject to lack of information because the system knowledge improves while the
development process evolves. The framework should be thus applied in different phases of the software life-cycle, as
the knowledge improves and prototype system implementations are available.

Run-time metrics. A performance-driven evolution of a software system at run-time may be required. To this
aim, proper run-time traces may be generated from a running system implementation in order to obtain realistic
performance indices [9]. However, processing time restrictions at run-time might bring to re-think/adapt/tailor the
techniques used to recommend alternative system designs/configurations, preferring solutions which are not optimal,
but that keep the system within a feasible behavioral envelope.

Level of automation and human need. A key point for adopting the framework in practice is the degree of
automation that can be achieved. Automation should not fully replace the human contribution; in fact, human in-
tervention may be needed for building the knowledge – e.g. defining performance antipatterns detection rules and
corresponding solutions – and to drive the process of result interpretation and feedback generation. This makes the
framework suitable to be adopted as a semi-automated support for identifying good candidate software models.

5. Conclusion

In this paper, a general model-based performance engineering framework aimed at enhancing system design has
been envisioned, focusing on the knowledge used as basis for producing alternative software models, which enables
a characterization of performance problems and corresponding solutions, depending on different techniques. Such
knowledge has been here formalized in general terms and then instantiated with respect to three different well-known
techniques, i.e. performance antipatterns, bottleneck analysis and design space exploration.

Examples of existing approaches exploiting each of these techniques or a mix of them have been provided as well,
and the main challenges to face while instantiating the framework have been pointed out, highlighting the complexity
of model-based software performance engineering.
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