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Abstract

Most of death causes are related to cardiovascular disease. In fact, there are several anomalies afflicting the heart beat, for instance
heart murmur or artefact. We propose a method for heart disease detection. By gathering a set of feature obtainable directly from
cardiac sounds, we consider this feature vector as input for a deep neural network to discriminate whether a cardiac sound is
belonging to an healthy or to a patient with a cardiac disease. The experiment we performed demonstrated the effectiveness of the
proposed approach in real-world environment.
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1. Introduction and Related Work

According to the Center for Disease Control and Prevention every 37 seconds one person loses his/her life due to
cardiovascular diseases [22]. Lifestyle can conduct to heart disease, for instances obesity and overweight, unhealthy
diet and excessive use of alcohol.

The United Kingdom National Health Service considers several test to diagnose heart-related problems, for instance
electrocardiogram, exercise stress tests, coronary angiography or radionuclide tests. All these techniques require peo-
ple to physically go to hospital facilities.

In this paper we propose a methodology to detect cardiac disease by analysing cardiac sounds. Cardiac sounds
can be obtained by doctors, using a digital stethoscope but also directly from the patients, by exploiting his/her smart
devices (for instance a tablet or a smartphone) equipped with an adequate mobile application. Cardiac sounds are
converted in numeric values (features) and thus are used as input for a deep learning classifier to detect whether the
cardiac sound is belonging to an healthy patient or to a patient with a cardiac disease.

The aim of this paper is to provide a method for a first level of screening related to cardiac pathologies.
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Several works in current literature are related to the automatic detection of cardiac disease [11]. For instance,
authors in [20] propose a predictive model for heart disease diagnosis using a fuzzy rule-based approach with decision
tree. Researchers in [1] evaluated six different machine learning algorithms to predict the presence of coronary artery
disease. Neural networks are considered by Gu et al. [15], regression analysis applications for myocardial infarct
localisation are considered in [10]. Authors in [17] grading myocardial motion defects, while researchers in [16] are
focused in estimating disease from heart volumes.

The main difference with the cited work and the approach we propose is represented by the user of the propose
method: in fact, our approach is the first one providing a first level of screening obtainable directly from the patient.
As a matter of fact, the cardiac sounds are easily obtainable by exploiting a mobile device.

The paper proceeds as follows: next section describes the proposed method, Section 3 presents the results of the
experimental analysis on a real-world dataset and, finally, conclusion and future plan of research are discussed in
Section 4.

2. The Method

In this section we describe the method we propose for the automatic detection of hearth diseases starting from
cardiac sounds. We firstly describe the feature vector we propose and thus we discuss the deep learning network we
designed.

2.1. The Feature Vector

Table 1 describes the feature vector involved in the following study.

Table 1: The Features.

# Feature Description

F chroma_stft Compute a chromagram from a waveform
Fy  spectral_centroid ~ Mean of the magnitude spectrogram

F5  spectral_bandwidth ~ Compute the spectral bandwidth

F4  zero_crossing_rate  Compute the zero-crossing rate

Fs mfcc Mel-Frequency Cepstral Coefficients

In particular, F's represents a groups of features. In fact, the Mel-Frequency Cepstral Coeflicients (i.e., Fs) rep-
resents one of the most widespread method to extract numerical features from an audio signal and is used majorly
whenever working on audio signals. The mel frequency cepstral coefficients of a signal are a small set of features
(usually 20) which concisely describe the overall shape of a spectral envelope. In this work the F's feature groups 20
mel frequency cepstral coefficients (indicated with m fcci with 1 <1 < 20).

2.2. The Deep Learning Model

Figure 1 shows the deep learning architecture we designed. We adopt a sequential model i.e., a linear stack of
layers.

The architecture is composed mainly by two kind of layers: one InputLayer and four DenseLayer. An InputLayer
is aimed to send the feature vectors into the network. Subsequently, considering that the input data are represented as
vectors we consider densely connected layers i.e., DenseLayer with a relu activation function.

To understand what is happening into the deep network when is composed by a stack of several DenseLayer, let us
consider the following code snippet for the implementation of a DenseLayer:

layer = layers.Dense(32, input_shape=(784,))

The instruction represents the definition of a DenseLayer accepting a 784 sized vector and will return a 32 sized vector
(a dense layer with 32 output units). As a consequence, the next layers will be declared in such a way that it is able to
accept as input a 32 sized vector so building the layer chain.
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Fig. 1: The deep learning architecture. In yellow the InputLayer , in blue the DenseLayer, in green the activation function we set for three Dense-
Layer (i.e.,relu) and in purple the activation function for the last DenseLayer (i.e.,softmax).

The purpose of the layer is to transform the data. In the following we explain how these transformations can take
place: a more complete declaration of the DenseLayer, previously considered, is the following one:

layer = layers.Dense(16, input_shape=(784,), activation="relu’)

The argument passed to DenseLayer is 16 in this case and it represents the number of hidden units of layers (an output
16 sized vector): formally a hidden unit is a dimension in the representation space of the layer.

In this layer the function able to “resize” the data has been specified (i.e., activation="relu’ and it is called activation
function). The layer can be interpreted as follows:

output = relu(dot(W, input)+b)

The output value is the combination of several operations: a dot product (i.e., dot) between the input vector and W
(the weights of the layer) and an addition between the resulting vector and the bias (i.e., b). While the relu and the
addition are element-wise operations, the dot operation combines entries (this is the operation that consents to the
layer to “resize” the output data) [13]. Considering that W represents the actual value of weights for the considered
layers (considering that the number of the weight is equal to the number of the neurons, for this reason whether we
want to transform the data into a 16 size vector, the layer exhibits 16 weight, one weight for each neuron), while input
represents the input feature vector.

The first three DenseLayer of the proposed neural network consider relu as activation function.

We consider the relu activation function because it allows the network to converge very quickly with the backprop-
agation.

In addition the relu function, frequently considered as candidate for intermediate layers, another widespread acti-
vation function, the so-called softmax, is usually considered as last layer in classifiers neural network based before
the output layer.

For instance, whether an instance under analysis can belong to one of the 2 label considered (the label in the
proposed method are disease and healthy), it is possible to add following layer as final one:

layer = layers.Dense(2, activation="softmax’)
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The input from the previous layer is resized in a 2 size vector, the only difference is that the resizing is done using the
softmax function and not the relu one.

The reason why the softmax activation function is considered as last layer before the output one is that its aim is
to normalize an input vector into a probability distribution: it is usual that vector can exhibit negative or greater than
one values. In order to have a feature vector which elements summed are equal to one we apply the softmax function.
For instance, by considering as example a case with four labels, whether the output of the previous DenseLayer with
the softmax activation function is equal to [0.2,0.1,0.4,0.3] this is symptomatic that the instance under analysis is
belonging to the #3 class (the first element of the output vector presents the probability that the instance is belonging
to the first class and so on).

The last DenseLayer in the proposed deep learning architecture considers a softmax activation function. We con-
sider the softmax activation function because is able to handle multiple classes in only one class, and divides by their
sum, giving the probability of the input value being in a specific class. It is typically used only for the output layer, for
neural networks that need to classify inputs into multiple categories.

2.3. Study Design

The evaluation consists of three stages: (i) a comparison of descriptive statistics of the populations of patients; (ii)
a comparison of distribution of the considered features ; and (iii) a classification analysis aimed at assessing whether
the exploited features are able to correctly discriminate between healthy and patient afflicted by cardiac disease. The
(1) and (ii) tasks of the study design was accomplished with Orange framework, a suite of machine learning software
[9], largely employed in data mining for scientific research. With regard to the (iii) task, the model was developed by
exploiting Keras', a high-level neural networks API, written in Python and capable of running on top of TensorFlow?,
a machine learning open-source software library for both research and production at Google.

3. Experimental Analysis

In following section the results of the experiment, aimed to demonstrated the effectiveness of cardiac sounds from
discriminating between healthy and patients heart disease affected, we performed are presented.

To evaluate the proposed method, we consider a dataset composed by real cardiac sounds obtained by the Classi-
fying Heart Sounds Challenge®. The heartbeat sounds are gathered by exploiting the iStethoscope Pro iPhone app*.
The app exploits the audio capabilities of modern mobile devices, performing realtime filtering and amplification, and
enabling users to view Fast Fourier transform (FFT) spectrograms and email eight seconds of audio. The quality of
the audio as assessed by the cardiologists is as good as or better than commercially available digital stethoscopes [12].
The dataset contains heartbeats related to following disease categories: murmur (heart sounds produced when blood is
pumped across a heart valve), extrasystoles (additional heartbeats that occur outside the physiological heart rhythm)
and artifact (disturbances in thythm monitoring). 145 heartbeats disease related are considered and 31 heartbeats
recorded by healthy patients, for a total of 176 heartbeats considered in the experimental evaluation.

The machine used to run the experiments and to take measurements was an Intel Core i7 8th gen, equipped with
2GPU and 16Gb of RAM.

The remaining of the section reflects the stages described in the study design.

3.1. Descriptive Statistics

For the descriptive statistics comparison we consider scatterplots i.e., a plot considered for showing the relation-
ship between two numerical features. We consider scatterplot with the aim to provide a graphical impact about the
numerical values obtained from different features under analysis: as a matter of fact, the lower the overlapping of the

! https://keras.io/

2 https://www.tensorflow.org/

3 http://www.peterjbentley.com/heartchallenge/

4 https://apps.apple.com/it/app/istethoscope-pro/id322110006
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numerical values assumed by different numerical features, the greater the probability of obtaining a classifier with
good prediction accuracy. For space reason, few cases are represented and discussed, but similar consideration can be
made for all the numeric features involved in the study.

Figure 2 shows the scatterplot for mfcc20 and mfccl4 features: the red points are related to healthy patients, while
the blue one to patients with a cardiac disease.
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Fig. 2: Scatterplot for mfcc20 and mfec14 features.

From the scatterplot in Figure 2 it seems that the disease instances ranges in a wider spaces if compared to the
healthy one. This can be symptomatic that healthy persons produce similar cardiac sounds if compared to persons
afflicted by a cardiac disease.

Figure 3 shows the scatterplot for mfcc7 and mfccl9 features.
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Fig. 3: Scatterplot for mfcc7 and mfccl9 features.

Also in this second scatterplot two Mel-frequency cepstral coefficients are considered (i.e., mfcc7 and mfccl9).
Coherently with the scatterplot in Figure 2, both the instances related to healthy and patient affected by a cardiac
disease are falling in a similar area in the scatterplot. We note that the healthy instances exhibit similar numeric values
if compared to the disease instances.

In Figure 4 is shown the scatterplot for the mfcc6 and the F, features.

Even in this case the majority of the healthy and disease instances are localised in the same area i.e., in the left
side of the scatterplot. In particular the healthy instances present numeric value in a similar range if compared with
the disease ones.

The last scatterplot we present is the one depicted in Figure 5: it represents mfcc9 and F; features.

Coherently with scatterplots in Figures 2, 3 and 4 also in this scatterplot the healthy and the disease instances are
grouped in the same area, with a concentration in similar numeric values for the healthy instances.
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Fig. 4: Scatterplot for mfcc6 and F4 features.
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Fig. 5: Scatterplot for mfcc9 and F features.

3.2. Distribution Comparison

In the following we analyse the numeric features distribution, with the aim to highlight whether there are differences
from the healthy and disease afflicted patients from the point of view of the numeric features we consider. The idea
behind the distribution analysis is to understand whether the single features exhibits similar values between the healthy
and disease patients distributions.

In Figure 6 is shown the distribution related to healthy and disease affected patients for the F, feature.

As evidenced from the scatterplot in Figure 6 the distribution of the healthy patients assumes a more restricted set
of values if compared to the ones obtained from the disease afflicted patients.

The F3 feature scatterplot is depicted in Figure 7.

Also this feature follows a trend really closer to the one exhibited from the F, feature in the scatterplot in Figure 6.

Figure 8 shows the distribution related to the mfccl feature.

For healthy patients the m fcc1 feature is approximately ranging between —800 and —100, while for disease affected
patients the same feature is ranging between —1200 and —370. This is confirming that disease instances span in wider
interval with respect to healthy instances.

In Figure 9 the distribution for the m fcc10 feature is shown.

Coherently with the distributions of the other features, also the healthy instances for the mfccl0 features range in
a smaller intervals if compared to the ones of the disease affected patients.

3.3. Classification Analysis

For model building and evaluation, we split the dataset into training and testing part in 80:20 ratio i.e., a hold-out
validation is considered.
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Fig. 7: Distribution for the F3 feature.
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Fig. 9: Distribution for the mfcc10 feature.

We consider two metrics to evaluate the performances of the classification: accuracy and loss.

The accuracy of a measurement system is the degree of closeness of measurements of a quantity to that quantity’s
true value: it is the fraction of the classifications that are correct and it is computed as the sum of true positives and
negatives divided all the evaluated instances:

tp+n

Accuracy = D fnt o

where #p indicates the number of true positives, tn indicates the number of true negatives, fn indicates the number
of false negatives, fp indicates the number of false positives.

The Loss is a quantitative measure of how much the predictions differ from the actual output (i.e., the label). Loss
is inversely proportional to the correctness or the model.

The loss is calculated on training and validation and its interpretation is how well the model is doing for these two
sets: it is a summation of the errors made for each example in training or validation sets.

From the Accuracy and Loss definitions, it is expected that Accuracy and Loss should be inversely proportional:
for high values of accuracy, low loss values are expected (and the opposite). Furthermore, considering that the weights
and bias are initially random selected, the accuracy trend should start by exhibiting low values (and high loss value,
symptomatic that the network is performing wrong predictions), but whether the network during the several “epochs”
(i.e., one forward pass and one backward pass of all the training examples) is able to learn (i.e., it is able to solve the
driver prediction problem), the accuracy should start to exhibit higher values in the next iterations (and consequently
the loss should exhibit low values). The epoch is a parameter chosen by the network designer, usually the number of
epochs chosen is such that the loss is at least and it does not get worse in the immediately succeeding epochs and,
consequently, the accuracy value reached is the maximum and in the immediately succeeding epochs is not improving,
symptomatic that the network has reached the stability and that further epochs would not improve performances. We
set the number of epochs equal to 100, because the network reached the stability with a number less or equal to 100.

Figure 10 show the accuracy values when the number of epoch is increasing.

After 87 epochs the network reaches the stability with an accuracy equal to 0.9899. The research paper in [12] con-
sider the same dataset with supervised machine learning techniques [18, 8] obtaining lower performances if compared
to the proposed method: as a matter of fact they obtain a precision equal to 0.71 with the J48 algorithm, to 0.92 with
the MLP algorithm and to 0.58 with the UCL algorithm, confirming the effectiveness of deep learning for improving
the performances.

Figure 11 shows the loss values when the epoch number is increasing.

The loss continues to decrease when the epoch number is increasing, it reaches a value equal to 0.788 for the 100-th
epoch.
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4. Conclusion and Future Work

With the aim to provide a method for the first screening level of cardiac pathologies, in this paper we propose
an approach to determine directly from heartbeat sounds whether a patient is afflicted by a heart disease or not.
The heartbeat sounds can be easily obtained from the patient, in fact the dataset evaluated in the study is obtained
with a smartphone equipped with the iStethoscope Pro mobile app. An accuracy of 0.98 is reached, demonstrating the
effectiveness of the proposed method to discriminate between healthy and disease affected patients. As future work we
plan to evaluate the proposed method on the detection of specific cardiac pathologies. Moreover, we will investigate
whether the proposed methods can obtain good performance also on other type of sounds obtainable from digital
stethoscopes for instance, sounds gathered from lung [3]. We will also investigate if formal verification techniques
[21, 14] can obtain better performances as demonstrated in similar contexts, from cancer detection [5, 2, 4] to malware
detection [19, 7, 6].
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